CSC2556

Lecture 6

Impartial Selection \& Facility Location

Announcements

- Reminder
> Assignment 1 has been posted and is due by 11:59pm ET on Feb 27 (i.e., at the end of the reading week)
> The assignment is long, so start working on it as soon as possible
- Project
> This would be a good time to start looking for teammates (Piazza can be useful) and start brainstorming some preliminary project ideas
> If you want my quick thought on your preliminary idea, you can email me; to discuss it in more detail, email me to set up a 1-1 meeting
> Proposals will be due in the first week of March

Impartial
 Selection

Impartial Selection

- "How can we select k people out of n people?"
> Applications: electing a student representation committee, selecting k out of n grant applications to fund using peer review, ...
- Model
> Input: a directed graph $G=(V, E)$
> Nodes $V=\left\{v_{1}, \ldots, v_{n}\right\}$ are the n people
$>$ Edge $e=\left(v_{i}, v_{j}\right) \in E: v_{i}$ supports/approves of v_{j}
- We do not allow or ignore self-edges $\left(v_{i}, v_{i}\right)$
> Output: a subset $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right|=k$
$>k \in\{1, \ldots, n-1\}$ is given

Impartial Selection

- Impartiality: A k-selection rule f is impartial if whether or not $v_{i} \in f(G)$ does not depend on the outgoing edges of v_{i}
> v_{i} cannot manipulate his outgoing edges to get selected
> Q: But the definition says v_{i} can neither go from $v_{i} \notin f(G)$ to $v_{i} \in$ $f(G)$, nor from $v_{i} \in f(G)$ to $v_{i} \notin f(G)$. Why?
- Societal goal: maximize the sum of in-degrees of selected agents $\sum_{v \in f(G)}|i n(v)|$
$>\operatorname{in}(v)=$ set of nodes that have an edge to v
$>\operatorname{out}(v)=$ set of nodes that v has an edge to
> Note: OPT will pick the k nodes with the highest indegrees

Optimal $=$ Impartial

- An optimal 1-selecton rule must select v_{1} or v_{2}
- The other node can remove his edge to the winner, and make sure the optimal rule selects him instead
- This violates impartiality

Goal: Approximately Optimal

- α-approximation: We want a k-selection system that always returns a set with total indegree at least α times the total indegree of the optimal set
- Q: For $k=1$, what about the following rule?

Rule: "Select the lowest index vertex in $\operatorname{out}\left(v_{1}\right)$. If $\operatorname{out}\left(v_{1}\right)=\varnothing$, select v_{2}."
> A. Impartial + constant approximation
> B. Impartial + bad approximation
> C. Not impartial + constant approximation
> D. Not impartial + bad approximation

No Finite Approximation $:$

- Theorem [Alon et al. 2011]

For every $k \in\{1, \ldots, n-1\}$, there is no impartial k selection rule with a finite approximation ratio.

- Proof:
> For small k, this is trivial. E.g., consider $k=1$.
- Consider G that has two nodes v_{1} and v_{2} that point to each other, and there are no other edges
- For finite approximation, the rule must choose either v_{1} or v_{2}
- Say it chooses v_{1}. If v_{2} now removes his edge to v_{1}, the rule must choose v_{2} for any finite approximation, which violates impartiality

No Finite Approximation $:$

- Theorem [Alon et al. 2011]

For every $k \in\{1, \ldots, n-1\}$, there is no impartial k selection rule with a finite approximation ratio.

- Proof:
> Proof is more intricate for larger k. Let's do $k=n-1$.
○ $k=n-1$: given a graph, "eliminate" a node.
> Suppose for contradiction that there is such a rule f.
> W.I.o.g., say v_{n} is eliminated in the empty graph.
> Consider a family of graphs in which a subset of $\left\{v_{1}, \ldots, v_{n-1}\right\}$ have edges to v_{n}.

No Finite Approximation $:$

- Proof ($k=n-1$ continued):
> Consider star graphs
- A non-empty subset of $\left\{v_{1}, \ldots, v_{n-1}\right\}$ has an edge to v_{n} and there are no other edges
- Represented by bit strings $\{0,1\}^{n-1} \backslash\{\overrightarrow{0}\}$
> v_{n} cannot be eliminated in any star graph (Why?)
> $f:\{0,1\}^{n-1} \backslash\{\overrightarrow{0}\} \rightarrow\{1, \ldots, n-1\}$
- "Who will be eliminated?"

No Finite Approximation $:$

- $\operatorname{Proof}(k=n-1$ continued):
> Impartiality: $f(\vec{x})=i \Leftrightarrow f\left(\right.$ flip $\left._{i}(\vec{x})\right)=i$
- flip $_{i}$ flips the $i^{\text {th }}$ coordinate
- " i cannot add/remove his edge to v_{n} to change whether he is eliminated"

> For each i, strings on which f outputs i are paired
- So, for each i, the number of strings on which f outputs i is even
- But this is impossible (Why?)
> So, impartiality must be violated

Back to Impartial Selection

- So what can we do to select impartially? Randomize!
- Impartiality for randomized mechanisms
> An agent cannot change the probability of her getting selected by changing her outgoing edges
- Example
> Choose k nodes uniformly at random
> Impartial by design
> Question: What is its approximation ratio?
> Good when $k \approx n$ but bad when $k \ll n$

Random Partition

- Idea
> Partition V into V_{1} and V_{2} and select k nodes from V_{1} based only on edges coming to from V_{2}
> For impartiality, agents shouldn't be able to affect whether they end up in V_{1}
> But a deterministic partition would be bad in the worst case
- Mechanism
> Assign each node to V_{1} or V_{2} i.i.d. with probability $1 / 2$
> Choose k nodes from V_{1} that have most incoming edges from nodes in V_{2}

Random Partition

- Analysis:
> OPT = optimal set of k nodes
> We pick $X=k$ nodes in V_{1} with most incoming edges from V_{2}
> $I=\# V \rightarrow$ OPT edges
> $I^{\prime}=\# V_{2} \rightarrow O P T \cap V_{1}$ edges
> Note: $E\left[I^{\prime}\right]=I / 4$ (Why?)
> \# incoming edges to $X \geq I^{\prime}$
- $\mathrm{E}[\#$ incoming edges to $X] \geq E\left[I^{\prime}\right]=\frac{I}{4}$

Random Partition

- Generalization
> Divide into ℓ parts, pick k / ℓ nodes from each part based on incoming edges from all other parts
- Theorem [Alon et al. 2011]:
> $\ell=2$ gives a 4-approximation
> For $k \geq 2, \ell \sim k^{1 / 3}$ gives $1+O\left(\frac{1}{k^{1 / 3}}\right)$ approximation

Better Approximations

- Alon et al. [2011]'s conjecture
> There should be a randomized 1-selection mechanism that achieves 2-approximation
> Settled by Fischer \& Klimm [2014]
> Permutation mechanism:
- Select a random permutation $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ of the vertices
- Start by selecting $y=\pi_{1}$ as the "current answer"

○ At any iteration t, let $y \in\left\{\pi_{1}, \ldots, \pi_{t}\right\}$ be the current answer
○ From $\left\{\pi_{1}, \ldots, \pi_{t}\right\} \backslash\{y\}$, if there are more edges to π_{t+1} than to y, change the current answer to $y=\pi_{t+1}$

Better Approximations

- 2-approximation is tight
> In an n-node graph, fix u and v, and suppose no other nodes have any incoming/outgoing edges
> Three cases: only $u \rightarrow v$ edge, only $v \rightarrow u$, or both.
- The best impartial mechanism selects u and v with probability $1 / 2$ in every case, and achieves 2 -approximation
- Worst case is a bit eccentric
> $n-2$ nodes are not voting.
> What if every node must have an outgoing edge?
> Fischer \& Klimm [2014]
- In that case, permutation mechanism gives between $12 / 7$ and $3 / 2$ approximation, and no mechanism can do better than $4 / 3$

Facility Location

Facility Location

- Set of agents N
- Each agent i has a true location $x_{i} \in \mathbb{R}$
- Mechanism f
> Takes as input reports $\tilde{x}=\left(\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right)$
> Returns a location $y \in \mathbb{R}$ for the new facility
- Cost to agent $i: c_{i}(y)=\left|y-x_{i}\right|$
- Social cost $C(y)=\sum_{i} c_{i}(y)=\sum_{i}\left|y-x_{i}\right|$

Facility Location

- Social cost $C(y)=\sum_{i} c_{i}(y)=\sum_{i}\left|y-x_{i}\right|$
- Q : Ignoring incentives, what choice of y would minimize the social cost?
- A: The median location $\operatorname{med}\left(x_{1}, \ldots, x_{n}\right)$
$>n$ is odd \rightarrow the unique " $(n+1) / 2$ "th smallest value
$>n$ is even \rightarrow " $n / 2$ "th or " $(n / 2)+1$ "st smallest value
> Why?

Facility Location

- Social cost $C(y)=\sum_{i} c_{i}(y)=\sum_{i}\left|y-x_{i}\right|$
- Median is optimal (i.e., 1-approximation)
- What about incentives?
> Median is also strategyproof (SP)!
> Irrespective of the reports of other agents, agent i is best off reporting x_{i}

Informal Proof of SP

No manipulation can help

Max Cost

- A different objective function $C(y)=\max _{i}\left|y-x_{i}\right|$
- Q: Again ignoring incentives, what value of y minimizes the maximum cost?
$\Rightarrow \mathrm{A}$: The midpoint of the leftmost $\left(\min _{i} x_{i}\right)$ and the rightmost $\left(\max _{i} x_{i}\right)$ locations
- Q: Is this optimal rule strategyproof?
> A: No!

Max Cost

- $C(y)=\max _{i}\left|y-x_{i}\right|$
- We want to use a strategyproof mechanism
> Note: Strategyproofness has nothing to do with the objective function, so median is still SP
- Question: What is the approximation ratio of median for maximum cost?

1. $\in[1,2)$
2. $\in[2,3)$
3. $\in[3,4)$
4. $\in[4, \infty)$

Max Cost

- Answer: 2-approximation
- Other SP mechanisms that are 2-approximation
> Leftmost: Choose the leftmost reported location
> Rightmost: Choose the rightmost reported location
> Dictatorship: Choose the location reported by agent 1
> ...

Max Cost

- Theorem [Procaccia \& Tennenholtz, ‘09]
> No deterministic SP mechanism has approximation ratio <2 for maximum cost
- Proof:

Max Cost + Randomized

- The Left-Right-Middle (LRM) Mechanism
> Choose $\min _{i} x_{i}$ with probability $1 / 4$
> Choose $\max _{i} x_{i}$ with probability $1 / 4$
$>$ Choose $\left(\min _{i} x_{i}+\max _{i} x_{i}\right) / 2$ with probability $1 / 2$
- Question: What is the approximation ratio of LRM for maximum cost?
- At most $\frac{(1 / 4) * 2 C+(1 / 4) * 2 C+(1 / 2) * C}{C}=\frac{3}{2}$

Max Cost + Randomized

- Theorem [Procaccia \& Tennenholtz, '09]: The LRM mechanism is strategyproof
- Informal Proof:

1/4

Max Cost + Randomized

- Exercise for you!
> Try showing that no randomized SP mechanism can achieve approximation ratio $<3 / 2$.

