CSC2556

Lectures 4-5

Distortion

CSC2556 - Nisarg Shah

Distortion Approach

Distortion Approach

• A quantitative approach to voting

Assumptions

- 1. Voters' ranked preferences are induced by their underlying numerical utilities / costs
- 2. The goal is to maximize the social welfare (sum of voter utilities) / minimize the social cost (sum of voter costs)
- 3. Select an alternative that *approximately optimizes* the goal even in the worst case (the approximation ratio is called *distortion*)
- Increasingly popular in recent years
 - Yields an optimal voting rule with minimal assumptions, but the optimal rule can be hard to understand or compute

Utilitarian Framework

- Underlying utility profile $\vec{u} = (u_1, ..., u_n)$
 - > $u_i(a) =$ utility of voter *i* for alternative *a*
 - > Normalization: $\sum_{a} u_i(a) = 1$ for all voters *i*
 - ➤ Each voter i submits a consistent ranking >_i
 ∀a, b : a >_i b ⇒ u_i(a) ≥ u_i(b)
- Goal: social welfare $sw(a, \vec{u}) = \sum_i u_i(a)$
 - ≻ Ideally, we would like to choose $a^* \in \operatorname{argmax}_a sw(a, \vec{u})$
 - \succ But voting rule f only gets access to the ranked profile $\overrightarrow{\succ}$

Utilitarian Framework

• Distortion of *f*

dist(f) = sup
$$\frac{\max_a \operatorname{sw}(a, \vec{u})}{\operatorname{sw}(f(\overrightarrow{\succ}), \vec{u})}$$

○ Supremum is over consistent pairs of *u* and *⇒*○ If *f* is randomized, we use *E*[sw(*f*(*⇒*), *u*)]

• Example on the board!

- Theorem [Caragiannis et al. '16]
 - > Given ranked preferences, the optimal deterministic voting rule has $\Theta(m^2)$ distortion.
- Proof (lower bound):
 - > High-level approach:
 - \circ Take an arbitrary voting rule f
 - \circ Construct a preference profile $\overrightarrow{\succ}$
 - \circ Let f choose a winner a on $\overrightarrow{\succ}$
 - Reveal a bad utility profile \vec{u} consistent with $\overrightarrow{\succ}$ in which *a* is Ω(*m*²) factor worse than the optimal alternative

- Proof (lower bound):
 - Let f be any voting rule
 - > Consider $\overrightarrow{\succ}$ on the right
 - Case 1: $f(₹) = a_m$ Infinite distortion. WHY?

≻ Case 2:
$$f(\overrightarrow{\succ}) = a_i$$
 for some $i < m$

 \circ Bad utility profile \vec{u} consistent with $\overrightarrow{\succ}$

- Voters in column i have utility 1/m for every alternative
- All other voters have utility 1/2 for their top two alternatives

$$\circ$$
 sw(a_i , \vec{u}) = $\frac{n}{m-1} \cdot \frac{1}{m}$, sw(a_m , \vec{u}) ≥ $\frac{n-n/(m-1)}{2}$
 \circ Distortion = Ω(m^2)

n/(m-1) voters per column				
a_1	a_2		a_{m-1}	
a_m	a_m		a_m	
:	:	:	:	

- Proof (upper bound):
 - > Actually, the simple plurality rule achieves $O(m^2)$ distortion
 - Suppose a is a plurality winner

 \circ At least n/m voters have a as their top choice

 \circ Every voter has utility at least 1/m for their top choice

- $\succ sw(a, \vec{u}) \ge n/m^2$
- > $sw(a^*, \vec{u}) ≤ n$ for every alternative a^*
- > $O(m^2)$ distortion

• Theorem [Boutilier et al. '12]

> Given ranked preferences, the optimal randomized voting rule has distortion $O(\sqrt{m} \cdot \log^* m)$ but $\Omega(\sqrt{m})$.

• Proof (lower bound):

Same high-level approach:

- \circ Take an arbitrary *randomized* voting rule f
- \circ Construct a preference profile $\overrightarrow{\succ}$
- \circ Let f choose a distribution over alternatives p
- Reveal a bad utility profile \vec{u} consistent with $\overrightarrow{\succ}$ in which the expected social welfare under p is $\Omega(\sqrt{m})$ factor worse than the optimal social welfare

- Proof (lower bound):
 - > Let f be an arbitrary rule
 - > Consider $\overrightarrow{\succ}$ on the right with \sqrt{m} special alternatives
 - > f must choose at least one special alternative (say a^*) w.p. at most $1/\sqrt{m}$
 - Bad utility profile *u* consistent with *⇒*:
 All voters ranking *a** first give utility 1 to *a**
 All other voters give utility 1/*m* to each alternative *n*/*√m* ≤ sw(*a**, *u*) ≤ 2*n*/*√m*sw(*a*, *u*) ≤ *n/m* for every other *a*Distortion lower bound: Ω(√*m*) (proof on the board!)

n/\sqrt{m} voters per column				
<i>a</i> ₁	<i>a</i> ₂		$a_{\sqrt{m}}$	
• • •	•	:	:	

- Proof (upper bound):
 - Given preference profile →, define harmonic scores sc(a, →):
 Each voter gives 1/k points to her kth most preferred alternative
 Take the sum of points across voters
 - How does the harmonic score relate to social welfare?
 It is an upper bound on social welfare
 - $sw(a, \vec{u}) \le sc(a, \overrightarrow{\succ})$ (WHY?)
 - On average, it is a relatively tight upper bound
 - $\sum_{a} sc(a, \overrightarrow{\succ}) = n \cdot \sum_{k=1}^{m} 1/k = n H_m \le n \cdot (\ln m + 1)$
 - $\sum_{a} sw(a, \overrightarrow{\succ}) = n$

- Proof (upper bound):
 - ➤ Golden rule f:
 - \circ With probability $\frac{1}{2}$:
 - Choose every *a* with probability proportional to $sc(a, \overrightarrow{\succ})$
 - \odot With the remaining probability 1/2:
 - Choose every a with probability 1/m (uniformly at random)

→ dist $(f) \le 2\sqrt{m \cdot (\ln m + 1)}$ (proof on the board!)

Some Thoughts

- How do we interpret the distortion number?
 - Sometimes distortion can be high for all alternatives
 - The exact distortion number may be less useful than determining which alternative minimizes distortion
- Optimal vs asymptotically optimal
 - Plurality and "golden rule" are (almost) asymptotically optimal
 - But one can also write an optimization program that chooses the exact alternative minimizing distortion on each input →
 - Polytime-time computable for both deterministic (via a direct formula) and randomized (via a non-trivial LP) cases

Some Thoughts

• Extensions

- Selecting a subset of k alternatives or a ranking of alternatives
- Participatory budgeting
- > Graph matching
- Resource allocation
- ≻ ...

Metric Framework

- Costs instead of utilities
- Underlying metric *d* over voters and alternatives
 - [Triangle Inequality] $\forall x, y, z: d(x, y) + d(y, z) \ge d(x, z)$

 \circ Each voter *i* submits a consistent ranking \succ_i

- $\forall a, b : a \succ_i b \Rightarrow d(i, a) \le d(i, b)$
- Goal: social cost $sc(a, d) = \sum_i d(i, a)$
 - > Ideally, we would choose $a^* \in \operatorname{argmin}_a sc(a, d)$
 - > But voting rule f only gets access to the ranked profile $\overrightarrow{\succ}$

Metric Distortion

• Metric distortion of f

dist(f) =
$$\sup_{d,\overrightarrow{\succ}} \frac{\operatorname{sc}(f(\overrightarrow{\succ}),d)}{\min_{a} \operatorname{sc}(a,d)}$$

○ Supremum is over consistent pairs of d and ⇒
 ○ If f is randomized, we use E[sc(f(⇒), d)]

• Example on the board!

• A simple lower bound of 3 with just two candidates

What about upper bounds?

Distortion	Rule	Citation
Unbounded	k-approval ($k > 2$)	[Anshelevich et al., 2015]
$\Theta(m)$	Plurality, Borda count	[Anshelevich et al., 2015]
$\Theta(\sqrt{m})$	Ranked pairs, Schulze	[Kempe 2020]
$O(\log m)$,	STV	[Skowron and Elkind, 2017]
$\Omega(\sqrt{\log m})$		
5	Copeland's rule	[Anshelevich et al., 2015]
$2 + \sqrt{5} \approx 4.236$	A new rule	[Munagala and Wang, 2019]
3	PluralityMatching	[Gkatzelis et al., 2020]

Distortion	Rule	Citation
3 - 2/n	Random Dictatorship	[Anshelevich and Postl, 2017]
3 - 2/m	Smart Dictatorship	[Kempe 2020 <i>,</i> Gkatzelis et al. 2020]
≥ 2	Lower bound	Same example as before
≥ 2.0261	Lower bound	[Charikar and Ramakrishnan, 2021]

- Major open question:
 - > What is the optimal metric distortion for randomized voting rules?