CSC2556

Lecture 2

Voting II

Credit for many visuals: Ariel D. Procaccia
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Which rule to use?

* We just introduced infinitely many rules
> (Recall positional scoring rules...)

 How do we know which is the “right” rule to use?
> Various approaches
> Axiomatic, statistical, utilitarian, ...

 How do we ensure good incentives without using money?
> Bad luck! [Gibbard-Satterthwaite, next lecture]
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Is Social Choice Practical?

UK referendum: Choose
between plurality and STV for
electing MPs

Academics agreed STV is
better...

...but STV seen as beneficial to
the hated Nick Clegg

Hard to change political
elections!
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ROBOVOTE




@ ROBOVOTE Create  Demo About  Feedback Register  Login

Voting:
| |

RoboVote is a free service that helps users combine "fo ‘

O r t e e O p e’ their preferences or opinions into optimal decisions. To \é

T T L
do so, RoboVote employs state-of-the-art voting ) -/ 1
methods developed in artificial intelligence research.

By the People Learn More Sy

Al-Driven Decisions

Poll Types

H RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote
[ ) )
VOtI ng Ca n be u sefu I which scenario best fits the problem at hand.

N d ay‘tO‘d ay o Objective Opinions
*
Y In this scenario, some alternatives are objectively better than others, and the opinion

a Ct|V|t|eS of a participant reflects an attempt to estimate the correct order. RoboVote's
proposed outcome is guaranteed to be as close as possible — based on the
available information — to the best outcome. Examples include deciding which
product prototype to develop, or which company to invest in, based on a metric such
as projected revenue or market share. Try the demo

* Onsuch a platform,
easy to deploy the Subjective Preferences

In this scenario participants’ preferences reflect their subjective taste; RoboVote

ru I es th at We be I ieve proposes an outcome that mathematically makes participants as happy as possible
overall. Common examples include deciding which restaurant or movie to go to as a
group, which destination to choose for a family vacation, or whom to elect as class
a re th e beSt president. Try the demo

Ready to get started?
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Incentives

* Can a voting rule incentivize voters to truthfully report their
preferences?

* Strategyproofness

> A voting rule is strategyproof if a voter cannot submit a false
preference and get a more preferred alternative (under her true
preference) elected, irrespective of the preferences of other voters

» Formally, a voting rule f is strategyproof if for every preference
profile >, voter i, and preference >§, we have

f(>) = (> >0)

» Question: What is the relation between f(>) and f(>_;, >})
according to =; ?
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Strategyproofness

* None of the rules we saw are strategyproof!

* Example: Borda Count
> In the true profile, b wins
> Voter 3 can make a win by pushing b to the end
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Borda's Response to Critics

My scheme is
intended only for
honest men!

Random 18th
century
French dude
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Strategyproofness

Are there any strategyproof rules?
> Sure

Dictatorial voting rule

> The winner is always the most
preferred alternative of voter i

Dictatorship

> The winner is always the same

Constant voting rule /
&}1 t»\iq

- (e

Not satisfactory (for most cases)

Constant function
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Three Properties

 Strategyproof: Already defined. No voter has an incentive to
misreport.

* Onto: Every alternative can win under some preference
profile.

* Nondictatorial: There is no voter i such that f(;) is always
the alternative most preferred by voter i.
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Gibbard-Satterthwaite

* Theorem: For m = 3, no deterministic social choice function
is strategyproof, onto, and nondictatorial simultaneously ®

* Proof: We will prove this for n = 2 voters.

> Step 1: Show that SP = “strong monotonicity” [Assignment]

> Strong Monotonicity (SM): Iff(;) = q, and >’ is such that
ViEN,x€EA:a> x=>a>; x,thenf(;’) = a.

o If, for each i, the set of alternatives defeated by a in > is a superset
of what it defeats in >;, then if it was winning under >, it should
also win under >’
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Gibbard-Satterthwaite

* Theorem: For m = 3, no deterministic social choice function
is strategyproof, onto, and nondictatorial simultaneously ®

* Proof: We will prove this for n = 2 voters.
> Step 2: Show that SP + onto = “Pareto optimality” [Assignment]
» Pareto Optimality (PO): If a >; b foralli € N, then f(;) * b.

o If there is a different alternative a that everyone prefers to b, then
b should not be the winner.
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Gibbard-Satterthwaite

* Proof for n=2: Consider problem instance I(a, b)

d

a

b
— ‘ b . - ,
I(a,b) . . N v
a Y
f(>1,>2) € {a, b} f(>1,>3)=a (") =a
> PO > SM
* PO: f(>1,>3) € {a,b}
Say f(>1,>,) =a *SP: f(>1,>5) # Db

CSC2556 - Nisarg Shah



Gibbard-Satterthwaite

* Proof for n=2:

> If f outputs a on instance I(a, b), voter 1 can get a elected
whenever she puts a first.

o In other words, voter 1 becomes dictatorial for a.
o Denote this property by the notation D(1, a).

> If f outputs bonI(a,b)
o Voter 2 becomes dictatorial for b, i.e., we have D(2, b).

* Forevery (a,b), f either satisfies the property D(1,a) or
the property D(2, b).
> We're not done! (Why?)
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Gibbard-Satterthwaite

* Proof for n=2:
> Fix a® and b*. Suppose D(1,a*) holds.
> Then, we show that voter 1 is a dictator.
o Thatis, D(1,c) also holds for every ¢ # a*
> Take ¢ # a*. Because |A| = 3, there exists d € A\{a", c}
> Consider I(c,d); f sastisifies either D(1,c¢) or D(2,d)
» But D(2,d) is incompatible with D(1,a")
o Who would win if voter 1 puts a” first and voter 2 puts d first?

> Thus, we have D(1, ¢), as required m
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Circumventing G-S

» Restricted preferences (later in the course)
> Not allowing all possible preference profiles

» Example: single-peaked preferences
o Alternatives are on a line (say 1D political spectrum)
o Voters are also on the same line
o Voters prefer alternatives that are closer to them

* Use of money (later in the course)

> Require payments from voters that depend on the preferences they
submit

» Prevalent in auctions
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Circumventing G-S

 Randomization (later in this lecture)

e Equilibrium analysis

> How will strategic voters act under a voting rule that is not
strategyproof?

> Will they reach an “equilibrium” where each voter is happy with the
(possibly false) preference she is submitting?
e Restricting information required for manipulation

> Can voters successfully manipulate if they don’t know the votes of
the other voters?
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Circumventing G-S

 Computational complexity
> We need to use a rule that is the rule is manipulable

> Can we make it NP-hard for voters to manipulate?
[Bartholdi et al., SC&W 1989]

> NP-hardness can be a good thing!

* f-MANIPULATION problem (for a given voting rule f)

> Input: Manipulator i, alternative p, votes of other voters (non-
manipulators)

» Output: Can the manipulator cast a vote that makes p uniquely win
under f?
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Example: Borda

e Can voter 3 make a win?
> Yes

[T
=

1| 2 | 3 1|2 3
)

o o Q O
o o Q O

o o Q O
o o Q O
O QO o Q
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A Greedy Algorithm

* Goal:
» The manipulator wants to make alternative p win uniquely

4

Algorithm:
> Rank p in the first place
> While there are unranked alternatives:

o If there is an alternative that can be placed in the next spot
without preventing p from winning, place this alternative.

K o Otherwise, return false.

/
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Example: Borda
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Example: Copeland
-nnnn Hﬂﬂﬂﬂ

a e e
b a C C 3 2 4 2
C d b b 2 2 3 1
d e a a O 0 1 2
e C d d 2 3 2

Preference profile Pairwise elections
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Example: Copeland
-nnnn Hﬂﬂﬂﬂ

a e e
b a C C C 3 2 4 2
C d b b 2 3 4 2
d e a a O 0 1 2
e C d d 2 3 2

Preference profile Pairwise elections
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Example: Copeland
-nnnn Hﬂﬂﬂﬂ

a e e
b a C C 3 2 4 2
C d b b d 2 3 4 2
d e a a O 1 1 3
e C d d 2 2 3 2

Preference profile Pairwise elections
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Example: Copeland
-nnnn Hﬂﬂﬂﬂ

a e e a
b a C C C 3 2 4 2
C d b b d 2 3 4 2
d e a a e O 1 1 3
e C d d 2 3 3 2

Preference profile Pairwise elections
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Example: Copeland
-nnnn Hﬂﬂﬂﬂ

a e e a
b a C C C 3 2 4 2
C d b b d 2 3 4 2
d e a a e O 1 1 3
e C d d b 2 3 3 2

Preference profile Pairwise elections
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When does this work?

 Theorem [Bartholdi et al., SCW 89]:

Fix voter i and votes of other voters. Let f be a rule for
which 3 function s(>;, x) such that:

1. Forevery >;, f chooses candidates maximizing s(>;, *)
2. x> yie{y:x>y}=>sCiux) <sCpx)

Then the greedy algorithm solves f-MANIPULATION correctly.

* Question: What is the function s for the plurality rule?
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Proof of the Theorem

e Suppose for contradiction: g

» Algo creates a partial ranking >; and then fails, Output of
i.e., every next choice prevents p from winning ]

algo
> But >; could have made p uniquely win

U «—

U « alternatives not ranked in >;

p
b
d
a
C

* u < highest ranked alternative in U
according to >}

Complete >; by adding u next, and then
other alternatives arbitrarily

QL @ T ©

>U={a,c}
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Proof of the Theorem

, —
s(>i,p) = s(>;,p) p
> Property 2 Output of | b
, , algo
* s(>pp) > s w) d
> Property 1 & p uniquely wins under >; U« g
c

s(>,u) = s, u)

> Property 2

» Putting u in the next position wouldn’t have
prevented p from winning

b

e Conclusion p
a

> So the algorithm should have continued d

>U={a,c}

C
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Hard-to-Manipulate Rules

 Natural rules

> Copeland with second-order tie breaking
[Bartholdi et al. SCW 89]
o In case of a tie, choose the alternative for which the sum of
Copeland scores of defeated alternatives is the largest
> STV [Bartholdi & Orlin, SCW 91]

> Ranked Pairs [Xia et al., IJCAI 09]

o Iteratively lock in pairwise comparisons by their margin of victory
(largest first), ignoring any comparison that would form cycles.

o Winner is the top ranked candidate in the final order.

> Can also “tweak” easy to manipulate voting rules [Conitzer &
Sandholm, 1JCAI 03]
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Example: Ranked Pairs
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Randomized Voting Rules

Input: preference profile

Output: distribution over alternatives
> To think about successful manipulations, we need numerical utilities

* Uu; is consistent with >; if
a >; b = u;(a) = u;(b)

Strategyproofness:
> Foralli, >_;, >;, >, and u; consistent with >;

Elu (F(3))] 2 Blw (F_i )]

where >; is consistent with u;.
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Randomized Voting Rules

e A (deterministic) voting rule is
> unilateral if it only depends on one voter
> duple if its range contains at most two alternatives

* Question:
> What is a unilateral rule that is not strategyproof?
> What is a duple rule that is not strategyproof?
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Randomized Voting Rules

* A probability mixture f over rules f1, ..., fr is a rule given by
some probability distribution (a4, ..., @) s.t. on every

profile =, f returns f; ;) W.p. ;.

* Example:

> With probability 0.5, output the top alternative of a randomly chosen
voter

> With the remaining probability 0.5, output the winner of the
pairwise election between a™ and b*

 Theorem [Gibbard 77]

> A randomized voting rule is strategyproof only if it is a probability
mixture over unilaterals and duples.
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Approximating Voting Rules

* |dea: Can we use strategyproof voting rules to approximate
popular voting rules?

* Fix arule (e.g., Borda) with a clear notion of score denoted
sc(>,a)

* A randomized voting rule f is a c-approximation to sc if for

every profile >
E[sc (;,f(;))

>
max, sc(>,a) -
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Approximating Borda

* Question: How well does choosing a random alternative
approximate Borda?

1. 0(1/n)
2. 0(1/m)
3. 0(1/vm)
4, O(1)

 Theorem [Procaccia 10]:

No strategyproof voting rule gives 1/, + w (1/«/ﬁ)
approximation to Borda.
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Interlude: Zero-Sum Games

<] 7
Bk
1 EES




Interlude: Minimiax Strategies

* A minimax strategy for a player is
> a (possibly) randomized choice of action by the player
> that minimizes the expected loss (or maximizes the expected gain)
> in the worst case over the choice of action of the other player

* |ntuition
> Suppose | were to act first

> And the other player could observe my strategy and respond to it
(thus picking a response that is the worst case for me)

> Then, which randomized choice would | make?

* |In the previous game, the minimax strategy for each player
is(1/2,1/2). Why?
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Interlude: Minimiax Strategies

< 7
¥
1,

* In the game above, if the shooter uses (p, 1 — p):
> If goalie jumps left: p - (— %) +(1-p)-1=1- gp
> If goalie jumpsright:p-1+ (1 —p)-(—1)=2p—-1
» Shooter chooses p to maximize min {1 — 3—2p, 2p — 1}

o p* =%/, reward of shooter = + 1/,
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Interlude: Minimax Theorem

* Theorem
[von Neumann, 1928]:

Every 2-player zero-sum game has a
unique value v such that

> Player 1 can guarantee value at least v
> Player 2 can guarantee loss at most v

> This value is achieved when each player
plays their own minimax strategy.
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Yao's Minimax Principle

Rows as inputs

Columns as deterministic algorithms

Cell numbers = running times

Best randomized algorithm
» Minimax strategy for the column player

min max E[time] =
rand algo input

~ max min E[time]
dist over inputs det algo
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Yao's Minimax Principle

* To show a lower bound T on the best worst-case running
time achievable through randomized algorithms:

> Show a “bad” distribution over inputs D such that every
deterministic algorithm takes time at least T on average, when
inputs are drawn according to D

min max E[time] = min E[time]
rand algo tnput det algo

For any distribution over inputs
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Randomized Voting Rules

—1 —_t

<

v, B

U l Approximation ratio i
k @ 15 1

D, - 8
1 15 1
S 15 1
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Randomized Voting Rules

* Rows = unilaterals and duples

* Columns = preference profiles

Cell numbers = approximation ratios

Quantity of interest

> Expected ratio of the best distribution over unilaterals and duples on
the worst-case profile

Equivalent quantity

> Expected ratio of the best unilateral or duple rule when the profiles
are drawn from the worst distribution D

> Any distribution D gives a lower bound on the quantity of interest
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Back to Borda

e Assumem=n+1

* A bad distribution:
»> Choose a random alternative x*

» Each voter i chooses a random number k; €
{1, ...,A/m} and places x* in position k;

> The other alternatives are ranked cyclically
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Back to Borda

 Question: What is the best lower bound on sc(;,x*) that
holds for every profile > generated under this distribution?

1. +n

2. \m

3. n-(m—+m)
4 n-m
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Back to Borda

e How bad are other alternatives?
n(m-1)
2

> For every other alternative x, sc(;), x) ~

* How surely can a unilateral/duple rule return x*?

> Unilateral: By only looking at a single vote, the rule is essentially
guessing x* among the first «/m positions and captures it with
probability at most 1//m.

> Duple: By fixing two alternatives, the rule captures x* with
probability at most 2/m.

* Putting everything together...
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Quantitative GS Theorem

* Regarding the use of NP-hardness to circumvent GS
> NP-hardness is hardness in the worst case
> What happens in the average case?

* Theorem [Mossel-Racz ‘12]:

> For every voting rule that is at least e-far from being a dictatorship or
having range of size 2...

> ...the probability that a uniformly random profile admits a
manipulation is at least p(n, m, 1/¢) for some polynomial p
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Coalitional Manipulations

* What if multiple voters collude to manipulate?

> The following result applies to a wide family of voting rules called
“generalized scoring rules”.

 Theorem [Conitzer-Xia ‘08]:

Powerful l
Coalition of Manipulators [------------------ @(\/ﬁ)
Powerless \

Powerful = can manipulate with high probability
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Interesting Tidbit

e Detecting a manipulable profile versus finding a beneficial
manipulation

* Theorem [Hemaspaandra, Hemaspaandra, Menton ‘12]
If integer factoring is NP-hard, then there exists a
generalized scoring rule for which:
> We can efficiently check if there exists a beneficial manipulation.
» But finding such a manipulation is NP-hard.
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Axiomatic Approach
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Axiomatic Approach

e AXiom:

> A requirement that the voting rule must behave in a certain way

e Goal:

> Define a set of reasonable axioms, and search for voting rules that
satisfy them together

> Ultimate hope: a unigue voting rule satisfies the set of axioms
simultaneously!

> What often happens: no voting rule satisfies the axioms together ®
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We have already seen axioms!

Condorcet consistency

* Majority consistency

Strategyproofness

* Ontoness

Non-dictatorship

* Strong monotonicity

Pareto optimality
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Axiomatic Approach

* Some axioms are weak and satisfied by all natural rules

» Unanimity:
o If all voters have the same top choice, that alternative is the winner.
(top(>) =aVieN)=f(>)=a
> Q: How does this compare to Pareto optimality?

> Pareto optimality is weak but still violated by natural voting methods
like voting trees
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Axiomatic Approach

* Anonymity:
» Permuting the votes does not change the winner
> In other words, voter identities don’t matter

> Example: these two profiles must have the same winner:
{voter1l:a > b > c,voter 2: b > c > a}
{voter 1: b > c > a,voter2:a > b > c}

* Neutrality:
> Permuting alternative names just permutes the winner accordingly
> Example:
o Say a winson {voter1:a > b > c,voter2: b > ¢ > a}
o We permute allnames: a - b, b — c,andc — a
o New profile: {voter 1: b > ¢ > a, voter 2: ¢ > a > b}
o Then, the new winner must be b
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Axiomatic Approach

* Neutrality is tricky for deterministic rules
> Incompatible with anonymity
o Consider the profile {voter 1: a > b, voter 2: b > a}
o Without loss of generality, say a wins
o Imagine a different profile: {voter 1: b > a, voter 2: a > b}
* Neutrality = we exchanged a < b, so winner must be b
* Anonymity = we exchanged the votes, so winner must be a

* We usually only require neutrality for...

> Randomized rules: E.g., a rule could satisfy both by choosing a and b
as the winner with probability Y2 each, on both profiles

> Deterministic rules that return a set of tied winners: E.g., a rule could
return {a, b} as tied winners on both profiles.
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Axiomatic Approach

* Consistency: If a is the winner on two profiles, it must be the
winner on their union.

f(F)=anf(Z)=a=f(>1+>;)=a

> Example: >;={a>b >c}, =,={a>c>b,b >c > a}
> Then, ={+>,={a>b>c,a>c > b,b >c > a}

* Theorem [Young '75]:

> Subject to mild requirements, a voting rule is consistent if and only if it
is a positional scoring rule!
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Axiomatic Approach

* Weak monotonicity: If a is the winner, and a is “pushed up”
in some votes, a remains the winner.

> f(5) =a= f(¥') = a, where
ob>ceb>;cVieN, b,c € A\{a} (Order of others preserved)
oa>;b=>a>;bVieN, be A\{a} (aonlyimproves)

* Contrast with strong monotonicity

> SM requires f(;”) = a even if >’ only satisfies the 2" condition
> Too strong; only satisfied by dictatorial or non-onto rules [GS Theorem]
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Axiomatic Approach

* Weak monotonicity is satisfied by most voting rules
> Popular exceptions: STV, plurality with runoff

* But violation of weak monotonicity helps STV be hard to
manipulate

> Theorem [Conitzer-Sandholm ‘06]:
“Every weakly monotonic voting rule is easy to manipulate on
average.”
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Axiomatic Approach

e STV violates weak monotonicity

7 voters | 5 voters | 2 voters | 6 voters Sl 7 voters | 5 voters | 2 voters | 6 voters_
a b b C a b a C

b C C a b C b a

C a a b C a C b
* First ¢, then b eliminated * First b, then a eliminated
e Winner: a e Winner: ¢
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Axiomatic Approach

* Arrow’s Impossibility Theorem
> Applies to social welfare functions (profile — ranking)

> Independence of Irrelevant Alternatives (IIA): If the preferences of all
voters between a and b are unchanged, the social preference
between a and b should not change

> Pareto optimality: If all prefer a to b, then the social preference
shouldbea > b

> Theorem: IIA + Pareto optimality = dictatorship

* Interestingly, automated theorem provers can also prove
Arrow’s and GS impossibilities!
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Axiomatic Approach

* Polynomial-time computability
> Can be thought of as a desirable axiom

> Two popular rules which attempt to make the pairwise comparison
graph acyclic by inverting edges are NP-hard to compute:

o Kemeny’s rule: invert edges with minimum total weight
o Slater’s rule: invert minimum number of edges

> Both rules can be implemented by straightforward integer linear
programs

o For small instances (say, up to 20 alternatives), NP-hardness isn’t a
practical concern.
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