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Which	rule	to	use?
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• We just introduced infinitely many rules
Ø (Recall positional scoring rules…)

• How do we know which is the “right” rule to use?
Ø Various approaches
Ø Axiomatic, statistical, utilitarian, …

• How do we ensure good incentives without using money?
Ø Bad luck!   [Gibbard-Satterthwaite, next lecture]



Is	Social	Choice	Practical?
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• UK referendum: Choose 
between plurality and STV for 
electing MPs

• Academics agreed STV is 
better...

• ...but STV seen as beneficial to 
the hated Nick Clegg

• Hard to change political 
elections!
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• Voting can be useful 
in day-to-day 
activities

• On such a platform, 
easy to deploy the 
rules that we believe 
are the best

Voting:	
For	the	People,	
By	the	People



Incentives
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• Can a voting rule incentivize voters to truthfully report their 
preferences?

• Strategyproofness
Ø A voting rule is strategyproof if a voter cannot submit a false 

preference and get a more preferred alternative (under her true 
preference) elected, irrespective of the preferences of other voters

Ø Formally, a voting rule 𝑓 is strategyproof if for every preference 
profile ≻, voter 𝑖, and preference ≻!", we have

𝑓 ≻ ≽! 𝑓 ≻#!, ≻!"

Ø Question: What is the relation between 𝑓 ≻ and 𝑓 ≻#!, ≻!"
according to ≽!" ?



Strategyproofness
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• None of the rules we saw are strategyproof!

• Example: Borda Count
Ø In the true profile, 𝑏 wins
Ø Voter 3 can make 𝑎 win by pushing 𝑏 to the end

1 2 3

b b a

a a b

c c c

d d d

1 2 3

b b a

a a c

c c d

d d b

Winner

a

Winner

b



Borda’s Response	to	Critics
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Random 18th

century 
French dude

My scheme is 
intended only for 

honest men!



Strategyproofness
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• Are there any strategyproof rules?
Ø Sure

• Dictatorial voting rule
Ø The winner is always the most 

preferred alternative of voter 𝑖

• Constant voting rule
Ø The winner is always the same

• Not satisfactory (for most cases)

Dictatorship

Constant function



Three	Properties
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• Strategyproof: Already defined. No voter has an incentive to 
misreport.

• Onto: Every alternative can win under some preference 
profile.

• Nondictatorial: There is no voter 𝑖 such that 𝑓 ≻ is always 
the alternative most preferred by voter 𝑖.



Gibbard-Satterthwaite
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• Theorem: For 𝑚 ≥ 3, no deterministic social choice function 
is strategyproof, onto, and nondictatorial simultaneously L

• Proof: We will prove this for 𝑛 = 2 voters.

Ø Step 1: Show that SP ⇒ “strong monotonicity” [Assignment]

Ø Strong Monotonicity (SM): If 𝑓 ≻ = 𝑎, and ≻" is such that 
∀𝑖 ∈ 𝑁, 𝑥 ∈ 𝐴: 𝑎 ≻! 𝑥 ⇒ 𝑎 ≻!" 𝑥, then 𝑓 ≻" = 𝑎.

o If, for each 𝑖, the set of alternatives defeated by 𝑎 in ≻!" is a superset 
of what it defeats in ≻!, then if it was winning under ≻, it should 
also win under ≻"



Gibbard-Satterthwaite
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• Theorem: For 𝑚 ≥ 3, no deterministic social choice function 
is strategyproof, onto, and nondictatorial simultaneously L

• Proof: We will prove this for 𝑛 = 2 voters.

Ø Step 2: Show that SP + onto ⇒ “Pareto optimality” [Assignment]

Ø Pareto Optimality (PO): If 𝑎 ≻! 𝑏 for all 𝑖 ∈ 𝑁, then 𝑓 ≻ ≠ 𝑏.

o If there is a different alternative 𝑎 that everyone prefers to 𝑏, then 
𝑏 should not be the winner. 



Gibbard-Satterthwaite
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• Proof for n=2: Consider problem instance 𝐼(𝑎, 𝑏)

≻𝟏 ≻𝟐
a b

b a

Say 𝑓 ≻$, ≻% = 𝑎

≻𝟏 ≻𝟐#

a b

b

a

𝑓 ≻$, ≻%" = 𝑎

• PO: 𝑓 ≻$, ≻%" ∈ {a, b}
• SP: 𝑓 ≻$, ≻%" ≠ 𝑏

≻𝟏## ≻𝟐##

a
A
N
Y

A
N
Y

𝐼(𝑎, 𝑏)

𝑓 ≻$, ≻% ∈ {𝑎, 𝑏}
Ø PO

𝑓 ≻"" = a
Ø SM



Gibbard-Satterthwaite
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• Proof for n=2:

Ø If 𝑓 outputs 𝑎 on instance 𝐼(𝑎, 𝑏), voter 1 can get 𝑎 elected 
whenever she puts 𝑎 first.
o In other words, voter 1 becomes dictatorial for 𝑎.
o Denote this property by the notation 𝐷(1, 𝑎). 

Ø If 𝑓 outputs 𝑏 on 𝐼(𝑎, 𝑏)
o Voter 2 becomes dictatorial for 𝑏, i.e., we have 𝐷(2, 𝑏). 

• For every (𝑎, 𝑏), 𝑓 either satisfies the property 𝐷 1, 𝑎 or 
the property 𝐷 2, 𝑏 .
Ø We’re not done! (Why?)



Gibbard-Satterthwaite

CSC2556 - Nisarg Shah 15

• Proof for n=2:
Ø Fix 𝑎∗ and 𝑏∗. Suppose 𝐷 1, 𝑎∗ holds.

Ø Then, we show that voter 1 is a dictator.

o That is, 𝐷(1, 𝑐) also holds for every 𝑐 ≠ 𝑎∗

Ø Take 𝑐 ≠ 𝑎∗. Because 𝐴 ≥ 3, there exists 𝑑 ∈ 𝐴\{𝑎∗, 𝑐}

Ø Consider 𝐼(𝑐, 𝑑); 𝑓 sastisifies either 𝐷(1, 𝑐) or 𝐷 2, 𝑑
Ø But 𝐷(2, 𝑑) is incompatible with 𝐷(1, 𝑎∗)

o Who would win if voter 1 puts 𝑎∗ first and voter 2 puts 𝑑 first?

Ø Thus, we have 𝐷(1, 𝑐), as required ∎



Circumventing	G-S
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• Restricted preferences (later in the course)
Ø Not allowing all possible preference profiles

Ø Example: single-peaked preferences
o Alternatives are on a line (say 1D political spectrum)
o Voters are also on the same line
o Voters prefer alternatives that are closer to them

• Use of money (later in the course)
Ø Require payments from voters that depend on the preferences they 

submit

Ø Prevalent in auctions



Circumventing	G-S
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• Randomization (later in this lecture)

• Equilibrium analysis
Ø How will strategic voters act under a voting rule that is not 

strategyproof?

Ø Will they reach an “equilibrium” where each voter is happy with the 
(possibly false) preference she is submitting?

• Restricting information required for manipulation
Ø Can voters successfully manipulate if they don’t know the votes of 

the other voters?



Circumventing	G-S
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• Computational complexity
Ø We need to use a rule that is the rule is manipulable

Ø Can we make it NP-hard for voters to manipulate?
[Bartholdi et al., SC&W 1989]

Ø NP-hardness can be a good thing!

• 𝑓-MANIPULATION problem (for a given voting rule 𝑓)
Ø Input: Manipulator 𝑖, alternative 𝑝, votes of other voters (non-

manipulators)

Ø Output: Can the manipulator cast a vote that makes 𝑝 uniquely win 
under 𝑓?



Example:	Borda
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• Can voter 3 make 𝑎 win?
Ø Yes

1 2 3

b b

a a

c c

d d

1 2 3

b b a

a a c

c c d

d d b



A	Greedy	Algorithm
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• Goal: 
Ø The manipulator wants to make alternative 𝑝 win uniquely

• Algorithm:
Ø Rank 𝑝 in the first place
Ø While there are unranked alternatives:
o If there is an alternative that can be placed in the next spot 

without preventing 𝑝 from winning, place this alternative.
o Otherwise, return false.



Example:	Borda
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1 2 3

b b a

a a

c c

d d

1 2 3

b b a

a a b

c c

d d

1 2 3

b b a

a a c

c c

d d

1 2 3

b b a

a a c

c c b

d d

1 2 3

b b a

a a c

c c d

d d

1 2 3

b b a

a a c

c c d

d d b



Example:	Copeland
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1 2 3 4 5
a b e e a
b a c c
c d b b
d e a a
e c d d

a b c d e
a - 2 3 5 3
b 3 - 2 4 2
c 2 2 - 3 1
d 0 0 1 - 2
e 2 2 3 2 -

Preference profile Pairwise elections
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Example:	Copeland
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1 2 3 4 5
a b e e a
b a c c c
c d b b
d e a a
e c d d

a b c d e
a - 2 3 5 3
b 3 - 2 4 2
c 2 3 - 4 2
d 0 0 1 - 2
e 2 2 3 2 -

Preference profile Pairwise elections
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Example:	Copeland

24

1 2 3 4 5
a b e e a
b a c c c
c d b b d
d e a a
e c d d

a b c d e
a - 2 3 5 3
b 3 - 2 4 2
c 2 3 - 4 2
d 0 1 1 - 3
e 2 2 3 2 -

Preference profile Pairwise elections
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Example:	Copeland
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1 2 3 4 5
a b e e a
b a c c c
c d b b d
d e a a e
e c d d

a b c d e
a - 2 3 5 3
b 3 - 2 4 2
c 2 3 - 4 2
d 0 1 1 - 3
e 2 3 3 2 -

Preference profile Pairwise elections
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Example:	Copeland
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1 2 3 4 5
a b e e a
b a c c c
c d b b d
d e a a e
e c d d b

a b c d e
a - 2 3 5 3
b 3 - 2 4 2
c 2 3 - 4 2
d 0 1 1 - 3
e 2 3 3 2 -

Preference profile Pairwise elections
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When	does	this	work?
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• Theorem [Bartholdi et al., SCW 89]:
Fix voter 𝑖 and votes of other voters. Let 𝑓 be a rule for 
which ∃ function 𝑠(≻", 𝑥) such that:

1. For every ≻!, 𝑓 chooses candidates maximizing 𝑠(≻! , ⋅)
2. 𝑦 ∶ 𝑥 ≻! 𝑦 ⊆ 𝑦 ∶ 𝑥 ≻!" 𝑦 ⇒ 𝑠 ≻!, 𝑥 ≤ 𝑠 ≻!", 𝑥

Then the greedy algorithm solves 𝑓-MANIPULATION correctly.

• Question: What is the function 𝑠 for the plurality rule?



Proof	of	the	Theorem
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• Suppose for contradiction:
Ø Algo creates a partial ranking ≻! and then fails, 

i.e., every next choice prevents 𝑝 from winning
Ø But ≻!" could have made 𝑝 uniquely win

• 𝑈 ← alternatives not ranked in ≻"
• 𝑢 ← highest ranked alternative in 𝑈

according to ≻"#

• Complete ≻" by adding 𝑢 next, and then 
other alternatives arbitrarily

𝑏
≻"#

𝑝
𝑎
𝑑
𝑐

𝑝
≻"

𝑏
𝑑
𝑎
𝑐

Output of 
algo

𝑢

𝑈 = {𝑎, 𝑐}



Proof	of	the	Theorem
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• 𝑠 ≻", 𝑝 ≥ 𝑠(≻"#, 𝑝)
Ø Property 2

• 𝑠 ≻"#, 𝑝 > 𝑠(≻"#, 𝑢)
Ø Property 1 & 𝑝 uniquely wins under ≻!"

• 𝑠 ≻"#, 𝑢 ≥ 𝑠(≻", 𝑢)
Ø Property 2

• Conclusion
Ø Putting 𝑢 in the next position wouldn’t have 

prevented 𝑝 from winning
Ø So the algorithm should have continued

𝑏
≻"#

𝑝
𝑎
𝑑
𝑐

𝑝
≻"

𝑏
𝑑
𝑎
𝑐

Output of 
algo

𝑢

𝑈 = {𝑎, 𝑐}



Hard-to-Manipulate	Rules
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• Natural rules
Ø Copeland with second-order tie breaking 

[Bartholdi et al. SCW 89]
o In case of a tie, choose the alternative for which the sum of 

Copeland scores of defeated alternatives is the largest

Ø STV [Bartholdi & Orlin, SCW 91]

Ø Ranked Pairs [Xia et al., IJCAI 09]
o Iteratively lock in pairwise comparisons by their margin of victory 

(largest first), ignoring any comparison that would form cycles.
o Winner is the top ranked candidate in the final order.

Ø Can also “tweak” easy to manipulate voting rules [Conitzer & 
Sandholm, IJCAI 03]



Example:	Ranked	Pairs
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8

6

12

2

10

4

a b

d c



Example:	Ranked	Pairs
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8

6

2

10

4

a b

d c



Example:	Ranked	Pairs
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8

6

2

4

a b

d c



Example:	Ranked	Pairs
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6

2

4

a b

d c



Example:	Ranked	Pairs
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2

4

a b

d c



Example:	Ranked	Pairs
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2

a b

d c



Example:	Ranked	Pairs
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a b

d c



Randomized	Voting	Rules
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• Input: preference profile
• Output: distribution over alternatives

Ø To think about successful manipulations, we need numerical utilities

• 𝑢" is consistent with ≻" if 
𝑎 ≻" 𝑏 ⇒ 𝑢" 𝑎 ≥ 𝑢"(𝑏)

• Strategyproofness:
Ø For all 𝑖, ≻#!, ≻!, ≻!", and 𝑢! consistent with ≻!

𝔼 𝑢! 𝑓 ≻ ≥ 𝔼 𝑢! 𝑓 ≻#!, ≻!"

where ≻! is consistent with 𝑢!.



Randomized	Voting	Rules
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• A (deterministic) voting rule is 
Ø unilateral if it only depends on one voter
Ø duple if its range contains at most two alternatives

• Question: 
Ø What is a unilateral rule that is not strategyproof?
Ø What is a duple rule that is not strategyproof?



Randomized	Voting	Rules
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• A probability mixture 𝑓 over rules 𝑓,, … , 𝑓- is a rule given by 
some probability distribution (𝛼,, … , 𝛼-) s.t. on every 
profile ≻, 𝑓 returns 𝑓. ≻ w.p. 𝛼..

• Example: 
Ø With probability 0.5, output the top alternative of a randomly chosen 

voter
Ø With the remaining probability 0.5, output the winner of the 

pairwise election between 𝑎∗ and 𝑏∗

• Theorem [Gibbard 77]
Ø A randomized voting rule is strategyproof only if it is a probability 

mixture over unilaterals and duples.



Approximating	Voting	Rules
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• Idea: Can we use strategyproof voting rules to approximate 
popular voting rules?

• Fix a rule (e.g., Borda) with a clear notion of score denoted 
sc ≻, 𝑎

• A randomized voting rule 𝑓 is a 𝑐-approximation to sc if for 
every profile ≻

𝔼[sc ≻, 𝑓 ≻

max/ sc ≻, 𝑎
≥ 𝑐



Approximating	Borda
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• Question: How well does choosing a random alternative 
approximate Borda?
1. Θ( ⁄1 𝑛)
2. Θ( ⁄1 𝑚)
3. Θ( ⁄1 𝑚)
4. Θ(1)

• Theorem [Procaccia 10]:
No strategyproof voting rule gives ⁄, 0+𝜔 H, 1
approximation to Borda.



Interlude:	Zero-Sum	Games
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-1 1

1 -1



Interlude:	Minimiax Strategies
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• A minimax strategy for a player is 
Ø a (possibly) randomized choice of action by the player 
Ø that minimizes the expected loss (or maximizes the expected gain)
Ø in the worst case over the choice of action of the other player

• Intuition
Ø Suppose I were to act first
Ø And the other player could observe my strategy and respond to it 

(thus picking a response that is the worst case for me)
Ø Then, which randomized choice would I make?

• In the previous game, the minimax strategy for each player 
is ( ⁄1 2 , ⁄1 2).   Why?



Interlude:	Minimiax Strategies
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• In the game above, if the shooter uses (𝑝, 1 − 𝑝):
Ø If goalie jumps left: 𝑝 ⋅ − $

%
+ 1 − 𝑝 ⋅ 1 = 1 − '

%
𝑝

Ø If goalie jumps right: 𝑝 ⋅ 1 + 1 − 𝑝 ⋅ −1 = 2𝑝 − 1
Ø Shooter chooses 𝑝 to maximize min 1 − '(

%
, 2𝑝 − 1

o 𝑝∗ = ⁄) *, reward of shooter = + ⁄$ *

− U1 2 1
1 -1



Interlude:	Minimax	Theorem
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• Theorem 
[von Neumann, 1928]:
Every 2-player zero-sum game has a 
unique value 𝑣 such that
Ø Player 1 can guarantee value at least 𝑣
Ø Player 2 can guarantee loss at most 𝑣

Ø This value is achieved when each player 
plays their own minimax strategy.



Yao’s	Minimax	Principle
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• Rows as inputs
• Columns as deterministic algorithms
• Cell numbers = running times
• Best randomized algorithm

Ø Minimax strategy for the column player

min
2/34 /567

max
"389:

𝐸[𝑡𝑖𝑚𝑒] =

max
4";: 7<=2 "389:;

min
4=: /567

𝐸[𝑡𝑖𝑚𝑒]



Yao’s	Minimax	Principle
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• To show a lower bound 𝑇 on the best worst-case running 
time achievable through randomized algorithms:
Ø Show a “bad” distribution over inputs 𝐷 such that every 

deterministic algorithm takes time at least 𝑇 on average, when 
inputs are drawn according to 𝐷

min
2/34 /567

max
"389:

𝐸[𝑡𝑖𝑚𝑒] ≥ min
4=: /567

𝐸[𝑡𝑖𝑚𝑒]

For any distribution over inputs



Randomized	Voting	Rules
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≺! … … … … ≺"

𝑈!
1
15 … … … … 2

21

… … … … … … …
𝑈#

7
15

5
21

𝐷!
4
15 … … … … 8

21

… … … … … … …
𝐷$

13
15 … … … … 17

21

Approximation ratio



Randomized	Voting	Rules
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• Rows = unilaterals and duples
• Columns = preference profiles
• Cell numbers = approximation ratios

• Quantity of interest
Ø Expected ratio of the best distribution over unilaterals and duples on 

the worst-case profile 

• Equivalent quantity
Ø Expected ratio of the best unilateral or duple rule when the profiles 

are drawn from the worst distribution 𝐷
Ø Any distribution 𝐷 gives a lower bound on the quantity of interest



Back	to	Borda
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• Assume 𝑚 = 𝑛 + 1

• A bad distribution:

Ø Choose a random alternative 𝑥∗

Ø Each voter 𝑖 chooses a random number 𝑘! ∈
1,… , 𝑚 and places 𝑥∗ in position 𝑘!

Ø The other alternatives are ranked cyclically

1 2 3

c b d

b a b

a d c

d c a

𝑥∗ = 𝑏
𝑘% = 2
𝑘& = 1
𝑘' = 2



Back	to	Borda
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• Question: What is the best lower bound on sc ≻, 𝑥∗ that 
holds for every profile ≻ generated under this distribution? 

1. 𝑛
2. 𝑚
3. 𝑛 ⋅ 𝑚 − 𝑚
4. 𝑛 ⋅ 𝑚



Back	to	Borda
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• How bad are other alternatives?
Ø For every other alternative 𝑥, sc ≻, 𝑥 ~ + ,#$

%

• How surely can a unilateral/duple rule return 𝑥∗?
Ø Unilateral: By only looking at a single vote, the rule is essentially 

guessing 𝑥∗ among the first 𝑚 positions and captures it with 
probability at most 1/ 𝑚.

Ø Duple: By fixing two alternatives, the rule captures 𝑥∗ with 
probability at most 2/𝑚.

• Putting everything together…



Quantitative	GS	Theorem
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• Regarding the use of NP-hardness to circumvent GS
Ø NP-hardness is hardness in the worst case
Ø What happens in the average case?

• Theorem [Mossel-Racz ‘12]:
Ø For every voting rule that is at least 𝜖-far from being a dictatorship or 

having range of size 2…
Ø …the probability that a uniformly random profile admits a 

manipulation is at least 𝑝 𝑛,𝑚, ⁄$ - for some polynomial 𝑝



Coalitional	Manipulations
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• What if multiple voters collude to manipulate?
Ø The following result applies to a wide family of voting rules called 

“generalized scoring rules”.

• Theorem [Conitzer-Xia ‘08]:

Coalition of Manipulators Θ 𝑛
Powerful

Powerless

Powerful = can manipulate with high probability



Interesting	Tidbit
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• Detecting a manipulable profile versus finding a beneficial 
manipulation

• Theorem [Hemaspaandra, Hemaspaandra, Menton ‘12]
If integer factoring is NP-hard, then there exists a 
generalized scoring rule for which:
Ø We can efficiently check if there exists a beneficial manipulation.
Ø But finding such a manipulation is NP-hard.
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Axiomatic Approach



Axiomatic	Approach
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• Axiom: 

Ø A requirement that the voting rule must behave in a certain way 

• Goal: 

Ø Define a set of reasonable axioms, and search for voting rules that 
satisfy them together

Ø Ultimate hope: a unique voting rule satisfies the set of axioms 
simultaneously!

Ø What often happens: no voting rule satisfies the axioms together L



We	have	already	seen	axioms!
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• Condorcet consistency
• Majority consistency
• Strategyproofness
• Ontoness
• Non-dictatorship
• Strong monotonicity
• Pareto optimality



Axiomatic	Approach
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• Some axioms are weak and satisfied by all natural rules
Ø Unanimity: 
o If all voters have the same top choice, that alternative is the winner. 

𝑡𝑜𝑝 ≻! = 𝑎 ∀𝑖 ∈ 𝑁 ⇒ 𝑓 ≻ = 𝑎

Ø Q: How does this compare to Pareto optimality?

Ø Pareto optimality is weak but still violated by natural voting methods 
like voting trees

𝑎 𝑐

𝑑

𝑒𝑏



Axiomatic	Approach
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• Anonymity: 
Ø Permuting the votes does not change the winner 
Ø In other words, voter identities don’t matter
Ø Example: these two profiles must have the same winner:

{voter 1: 𝑎 ≻ 𝑏 ≻ 𝑐, voter 2: 𝑏 ≻ 𝑐 ≻ 𝑎}
{voter 1: 𝑏 ≻ 𝑐 ≻ 𝑎, voter 2: 𝑎 ≻ 𝑏 ≻ 𝑐}

• Neutrality:
Ø Permuting alternative names just permutes the winner accordingly
Ø Example:
o Say 𝑎 wins on {voter 1: 𝑎 ≻ 𝑏 ≻ 𝑐, voter 2: 𝑏 ≻ 𝑐 ≻ 𝑎}
o We permute all names: 𝑎 → 𝑏, 𝑏 → 𝑐, and 𝑐 → 𝑎
o New profile: {voter 1: 𝑏 ≻ 𝑐 ≻ 𝑎, voter 2: 𝑐 ≻ 𝑎 ≻ 𝑏}
o Then, the new winner must be 𝑏



Axiomatic	Approach
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• Neutrality is tricky for deterministic rules
Ø Incompatible with anonymity
o Consider the profile {voter 1: 𝑎 ≻ 𝑏, voter 2: 𝑏 ≻ 𝑎}
o Without loss of generality, say 𝑎 wins
o Imagine a different profile: {voter 1: 𝑏 ≻ 𝑎, voter 2: 𝑎 ≻ 𝑏}
• Neutrality ⇒ we exchanged 𝑎 ↔ 𝑏, so winner must be 𝑏
• Anonymity ⇒ we exchanged the votes, so winner must be 𝑎

• We usually only require neutrality for…
Ø Randomized rules: E.g., a rule could satisfy both by choosing 𝑎 and 𝑏

as the winner with probability ½ each, on both profiles
Ø Deterministic rules that return a set of tied winners: E.g., a rule could 

return {𝑎, 𝑏} as tied winners on both profiles.
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• Consistency: If 𝑎 is the winner on two profiles, it must be the 
winner on their union.

𝑓 ≻, = 𝑎 ∧ 𝑓 ≻0 = 𝑎 ⇒ 𝑓 ≻,+≻0 = 𝑎

Ø Example: ≻$= 𝑎 ≻ 𝑏 ≻ 𝑐 , ≻%= 𝑎 ≻ 𝑐 ≻ 𝑏, 𝑏 ≻ 𝑐 ≻ 𝑎
Ø Then, ≻$+≻%= 𝑎 ≻ 𝑏 ≻ 𝑐, 𝑎 ≻ 𝑐 ≻ 𝑏, 𝑏 ≻ 𝑐 ≻ 𝑎

• Theorem [Young ’75]:
Ø Subject to mild requirements, a voting rule is consistent if and only if it 

is a positional scoring rule!
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• Weak monotonicity: If 𝑎 is the winner, and 𝑎 is “pushed up” 
in some votes, 𝑎 remains the winner.
Ø 𝑓 ≻ = 𝑎 ⇒ 𝑓 ≻" = 𝑎, where 
o 𝑏 ≻! 𝑐 ⇔ 𝑏 ≻!" 𝑐, ∀𝑖 ∈ 𝑁, 𝑏, 𝑐 ∈ 𝐴\{𝑎} (Order of others preserved)
o 𝑎 ≻! 𝑏 ⇒ 𝑎 ≻!" 𝑏, ∀𝑖 ∈ 𝑁, 𝑏 ∈ 𝐴\{𝑎} (𝑎 only improves)

• Contrast with strong monotonicity 
Ø SM requires 𝑓 ≻" = 𝑎 even if ≻" only satisfies the 2nd condition
Ø Too strong; only satisfied by dictatorial or non-onto rules [GS Theorem]
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• Weak monotonicity is satisfied by most voting rules
Ø Popular exceptions: STV, plurality with runoff

• But violation of weak monotonicity helps STV be hard to 
manipulate
Ø Theorem [Conitzer-Sandholm ‘06]: 

“Every weakly monotonic voting rule is easy to manipulate on 
average.”
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• STV violates weak monotonicity

7 voters 5 voters 2 voters 6 voters

a b b c

b c c a

c a a b

• First 𝑐, then 𝑏 eliminated
• Winner: 𝑎

7 voters 5 voters 2 voters 6 voters

a b a c

b c b a

c a c b

• First 𝑏, then 𝑎 eliminated
• Winner: 𝑐
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• Arrow’s Impossibility Theorem

Ø Applies to social welfare functions (profile → ranking) 

Ø Independence of Irrelevant Alternatives (IIA): If the preferences of all 
voters between 𝑎 and 𝑏 are unchanged, the social preference 
between 𝑎 and 𝑏 should not change

Ø Pareto optimality: If all prefer 𝑎 to 𝑏, then the social preference 
should be 𝑎 ≻ 𝑏

Ø Theorem: IIA + Pareto optimality ⇒ dictatorship

• Interestingly, automated theorem provers can also prove 
Arrow’s and GS impossibilities!
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• Polynomial-time computability

Ø Can be thought of as a desirable axiom

Ø Two popular rules which attempt to make the pairwise comparison 
graph acyclic by inverting edges are NP-hard to compute: 
o Kemeny’s rule: invert edges with minimum total weight
o Slater’s rule: invert minimum number of edges

Ø Both rules can be implemented by straightforward integer linear 
programs
o For small instances (say, up to 20 alternatives), NP-hardness isn’t a 

practical concern.


