CSC2556

Lecture 2

Voting II

Credit for many visuals: Ariel D. Procaccia

CSC2556 - Nisarg Shah

Which rule to use?

- We just introduced infinitely many rules
 - > (Recall positional scoring rules...)
- How do we know which is the "right" rule to use?
 - Various approaches
 - > Axiomatic, statistical, utilitarian, ...
- How do we ensure good incentives without using money?
 - > Bad luck! [Gibbard-Satterthwaite, next lecture]

Is Social Choice Practical?

- UK referendum: Choose between plurality and STV for electing MPs
- Academics agreed STV is better...
- ...but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!

CSC2556 - Nisarg Shah

Voting: For the People, By the People

- Voting can be useful in day-to-day activities
- On such a platform, easy to deploy the rules that we believe are the best

ROBOVOTE

AI-Driven Decisions

RoboVote is a free service that helps users combine their preferences or opinions into optimal decisions. To do so, RoboVote employs state-of-the-art voting methods developed in artificial intelligence research. Learn More

Poll Types

RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote which scenario best fits the problem at hand.

Objective Opinions

In this scenario, some alternatives are objectively better than others, and the opinion of a participant reflects an attempt to estimate the correct order. RoboVote's proposed outcome is guaranteed to be as close as possible — based on the available information — to the best outcome. Examples include deciding which product prototype to develop, or which company to invest in, based on a metric such as projected revenue or market share. Try the demo.

Subjective Preferences

In this scenario participants' preferences reflect their subjective taste; RoboVote proposes an outcome that mathematically makes participants as happy as possible overall. Common examples include deciding which restaurant or movie to go to as a group, which destination to choose for a family vacation, or whom to elect as class president. Try the demo.

Ready to get started?

CREATE A POLL

Incentives

- Can a voting rule incentivize voters to truthfully report their preferences?
- Strategyproofness
 - > A voting rule is strategyproof if a voter cannot submit a false preference and get a more preferred alternative (under her true preference) elected, irrespective of the preferences of other voters
 - > Formally, a voting rule f is strategyproof if for every preference profile $\overrightarrow{\succ}$, voter i, and preference \succ'_i , we have

$$f(\overrightarrow{\succ}) \geq_i f(\overrightarrow{\succ}_{-i},\succ_i')$$

▶ Question: What is the relation between $f(\overrightarrow{\succ})$ and $f(\overrightarrow{\succ}_{-i}, \succ'_i)$ according to \geq'_i ?

Strategyproofness

- None of the rules we saw are strategyproof!
- Example: Borda Count
 - > In the true profile, *b* wins
 - \succ Voter 3 can make a win by pushing b to the end

Borda's Response to Critics

My scheme is intended only for honest men!

Random 18th century French dude

Strategyproofness

Are there any strategyproof rules?

> Sure

- Dictatorial voting rule
 - The winner is always the most preferred alternative of voter i
- Constant voting rule
 - > The winner is always the same
- Not satisfactory (for most cases)

Dictatorship

Constant function

Three Properties

- Strategyproof: Already defined. No voter has an incentive to misreport.
- Onto: Every alternative can win under some preference profile.
- Nondictatorial: There is no voter *i* such that $f(\overrightarrow{\succ})$ is always the alternative most preferred by voter *i*.

- Theorem: For $m \ge 3$, no deterministic social choice function is strategyproof, onto, and nondictatorial simultaneously \mathfrak{S}
- **Proof:** We will prove this for n = 2 voters.
 - > Step 1: Show that SP \Rightarrow "strong monotonicity" [Assignment]
 - ▶ Strong Monotonicity (SM): If $f(\overrightarrow{\succ}) = a$, and $\overrightarrow{\succ}'$ is such that $\forall i \in N, x \in A$: $a \succ_i x \Rightarrow a \succ'_i x$, then $f(\overrightarrow{\succ}') = a$.
 - If, for each *i*, the set of alternatives defeated by *a* in \succ_i' is a superset of what it defeats in \succ_i , then if it was winning under $\overrightarrow{\succ}$, it should also win under $\overrightarrow{\succ}'$

- Theorem: For $m \ge 3$, no deterministic social choice function is strategyproof, onto, and nondictatorial simultaneously \mathfrak{S}
- **Proof:** We will prove this for n = 2 voters.
 - > Step 2: Show that SP + onto \Rightarrow "Pareto optimality" [Assignment]
 - ▶ Pareto Optimality (PO): If $a \succ_i b$ for all $i \in N$, then $f(\overrightarrow{\succ}) \neq b$.

If there is a different alternative a that everyone prefers to b, then
 b should not be the winner.

Proof for n=2: Consider problem instance I(a, b)

$$f(\succ_1,\succ_2) \in \{a,b\}$$

> PO

Say
$$f(\succ_1,\succ_2) = a$$

$$f(\succ_1,\succ_2') = a$$

• PO:
$$f(\succ_1, \succ'_2) \in \{a, b\}$$

• SP: $f(\succ_1, \succ'_2) \neq b$

$$f(\succ'') = a$$

> SM

• Proof for n=2:

If f outputs a on instance I(a, b), voter 1 can get a elected whenever she puts a first.

 \circ In other words, voter 1 becomes dictatorial for a.

 \circ Denote this property by the notation D(1, a).

> If f outputs b on I(a, b)

 \circ Voter 2 becomes dictatorial for *b*, i.e., we have D(2, b).

- For every (a, b), f either satisfies the property D(1, a) or the property D(2, b).
 - > We're not done! (Why?)

• Proof for n=2:

- > Fix a^* and b^* . Suppose $D(1, a^*)$ holds.
- > Then, we show that voter 1 is a dictator.

• That is, D(1, c) also holds for every $c \neq a^*$

- ≻ Take $c \neq a^*$. Because $|A| \geq 3$, there exists $d \in A \setminus \{a^*, c\}$
- > Consider I(c, d); f sastisifies either D(1, c) or D(2, d)
- > But D(2, d) is incompatible with $D(1, a^*)$

 \circ Who would win if voter 1 puts a^* first and voter 2 puts d first?

> Thus, we have D(1, c), as required

Circumventing G-S

- Restricted preferences (later in the course)
 - Not allowing all possible preference profiles
 - > Example: single-peaked preferences
 - Alternatives are on a line (say 1D political spectrum)
 - $\,\circ\,$ Voters are also on the same line
 - $\,\circ\,$ Voters prefer alternatives that are closer to them
- Use of money (later in the course)
 - Require payments from voters that depend on the preferences they submit
 - > Prevalent in auctions

Circumventing G-S

- Randomization (later in this lecture)
- Equilibrium analysis
 - How will strategic voters act under a voting rule that is not strategyproof?
 - Will they reach an "equilibrium" where each voter is happy with the (possibly false) preference she is submitting?
- Restricting information required for manipulation
 - Can voters successfully manipulate if they don't know the votes of the other voters?

Circumventing G-S

Computational complexity

- > We need to use a rule that is the rule is manipulable
- Can we make it NP-hard for voters to manipulate? [Bartholdi et al., SC&W 1989]
- > NP-hardness can be a good thing!
- f-MANIPULATION problem (for a given voting rule f)
 - Input: Manipulator *i*, alternative *p*, votes of other voters (nonmanipulators)
 - Output: Can the manipulator cast a vote that makes p uniquely win under f?

Example: Borda

• Can voter 3 make *a* win?

> Yes

1	2	3
b	b	
а	а	
С	С	
d	d	

A Greedy Algorithm

• Goal:

 \succ The manipulator wants to make alternative p win uniquely

• Algorithm:

- \succ Rank p in the first place
- > While there are unranked alternatives:
 - \circ If there is an alternative that can be placed in the next spot without preventing p from winning, place this alternative.
 - Otherwise, return false.

Example: Borda

1	2	3	1	2	3	1	2	3
b	b	а	b	b	a	b	b	а
а	а		а	\times	b	а	а	С
С	С		c	с		С	С	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
1 b	2 b	3 a	1 b	2 b	3 a	1 b	2 b	3 a
1 b a	2 b	3 a c	1 b a	2 b a	З а с	1 b a	2 b a	3 a C
1 b a c	2 b c	3 a c b	1 b a c	2 b a c	3 a c d	1 b a c	2 b a c	3 a c d

1	2	3	4	5
а	b	е	е	а
b	а	С	С	
С	d	b	b	
d	е	а	а	
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	2	-	3	1
d	0	0	1	-	2
е	2	2	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	
d	е	а	а	
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	0	1	-	2
е	2	2	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	2	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	е
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	е
е	С	d	d	b

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

When does this work?

• Theorem [Bartholdi et al., SCW 89]:

Fix voter *i* and votes of other voters. Let *f* be a rule for which \exists function $s(\succ_i, x)$ such that:

- 1. For every \succ_i , f chooses candidates maximizing $s(\succ_i, \cdot)$
- 2. $\{y : x \succ_i y\} \subseteq \{y : x \succ'_i y\} \Rightarrow s(\succ_i, x) \le s(\succ'_i, x)$

Then the greedy algorithm solves f-MANIPULATION correctly.

• Question: What is the function *s* for the plurality rule?

Proof of the Theorem

- Suppose for contradiction:
 - > Algo creates a partial ranking \succ_i and then fails, i.e., every next choice prevents p from winning
 - > But \succ'_i could have made p uniquely win
- $U \leftarrow$ alternatives not ranked in \succ_i
- $u \leftarrow \text{highest ranked alternative in } U$ according to \succ'_i
- Complete \succ_i by adding u next, and then other alternatives arbitrarily

Proof of the Theorem

•
$$s(\succ_i, p) \ge s(\succ'_i, p)$$

> Property 2

•
$$s(\succ'_i, u) \ge s(\succ_i, u)$$

> Property 2

- Conclusion
 - Putting u in the next position wouldn't have prevented p from winning
 - So the algorithm should have continued

Hard-to-Manipulate Rules

• Natural rules

- Copeland with second-order tie breaking [Bartholdi et al. SCW 89]
 - In case of a tie, choose the alternative for which the sum of Copeland scores of defeated alternatives is *the largest*
- STV [Bartholdi & Orlin, SCW 91]
- Ranked Pairs [Xia et al., IJCAI 09]
 - Iteratively lock in pairwise comparisons by their margin of victory (largest first), ignoring any comparison that would form cycles.
 - \circ Winner is the top ranked candidate in the final order.
- Can also "tweak" easy to manipulate voting rules [Conitzer & Sandholm, IJCAI 03]

- Input: preference profile
- Output: distribution over alternatives
 - > To think about successful manipulations, we need numerical utilities
- u_i is consistent with \succ_i if $a \succ_i b \Rightarrow u_i(a) \ge u_i(b)$
- Strategyproofness:
 - > For all $i, \overrightarrow{\succ}_{-i}, \succ_i, \succ_i'$, and u_i consistent with \succ_i

$$\mathbb{E}\left[u_{i}\left(f\left(\overrightarrow{\succ}\right)\right)\right] \geq \mathbb{E}\left[u_{i}\left(f\left(\overrightarrow{\succ}_{-i},\succ_{i}'\right)\right)\right]$$

where \succ_i is consistent with u_i .

- A (deterministic) voting rule is
 - unilateral if it only depends on one voter
 - duple if its range contains at most two alternatives

• Question:

- > What is a unilateral rule that is not strategyproof?
- > What is a duple rule that is not strategyproof?

- A probability mixture f over rules $f_1, ..., f_k$ is a rule given by some probability distribution $(\alpha_1, ..., \alpha_k)$ s.t. on every profile $\overrightarrow{\succ}$, f returns $f_j(\overrightarrow{\succ})$ w.p. α_j .
- Example:
 - With probability 0.5, output the top alternative of a randomly chosen voter
 - > With the remaining probability 0.5, output the winner of the pairwise election between a^* and b^*
- Theorem [Gibbard 77]
 - A randomized voting rule is strategyproof only if it is a probability mixture over unilaterals and duples.

Approximating Voting Rules

- Idea: Can we use strategyproof voting rules to approximate popular voting rules?
- Fix a rule (e.g., Borda) with a clear notion of score denoted $sc(\overrightarrow{>}, a)$
- A randomized voting rule *f* is a *c*-approximation to sc if for every profile *>*

$$\frac{\mathbb{E}[\operatorname{sc}\left(\overrightarrow{\succ}, f(\overrightarrow{\succ})\right)}{\max_{a}\operatorname{sc}\left(\overrightarrow{\succ}, a\right)} \ge c$$

Approximating Borda

- Question: How well does choosing a random alternative approximate Borda?
 - 1. $\Theta(1/n)$
 - 2. $\Theta(1/m)$
 - 3. $\Theta(1/\sqrt{m})$
 - 4. Θ(1)
- Theorem [Procaccia 10]:

No strategyproof voting rule gives $1/2 + \omega \left(1/\sqrt{m} \right)$ approximation to Borda.

Interlude: Zero-Sum Games

Interlude: Minimiax Strategies

- A minimax strategy for a player is
 - > a (possibly) randomized choice of action by the player
 - > that minimizes the expected loss (or maximizes the expected gain)
 - > in the *worst case* over the choice of action of the other player

Intuition

- Suppose I were to act first
- And the other player could observe my strategy and respond to it (thus picking a response that is the worst case for me)
- > Then, which randomized choice would I make?
- In the previous game, the minimax strategy for each player is (1/2, 1/2). Why?

Interlude: Minimiax Strategies

- In the game above, if the shooter uses (p, 1 p):
 - > If goalie jumps left: $p \cdot \left(-\frac{1}{2}\right) + (1-p) \cdot 1 = 1 \frac{3}{2}p$
 - > If goalie jumps right: $p \cdot 1 + (1-p) \cdot (-1) = 2p 1$
 - > Shooter chooses p to maximize min $\left\{1 \frac{3p}{2}, 2p 1\right\}$ $p^* = \frac{4}{7}$, reward of shooter = $+\frac{1}{7}$

Interlude: Minimax Theorem

- Theorem [von Neumann, 1928]:
 - Every 2-player zero-sum game has a unique value v such that
 - \succ Player 1 can guarantee value at least v
 - Player 2 can guarantee loss at most v
 - This value is achieved when each player plays their own minimax strategy.

Yao's Minimax Principle

- Rows as inputs
- Columns as deterministic algorithms
- Cell numbers = running times
- Best randomized algorithm
 - > Minimax strategy for the column player

 $\min_{rand \ algo} \ \max_{input} \ E[time] =$

 $\max_{dist over inputs det algo} \min_{det algo} E[time]$

Yao's Minimax Principle

- To show a lower bound *T* on the best worst-case running time achievable through randomized algorithms:
 - Show a "bad" distribution over inputs D such that every deterministic algorithm takes time at least T on average, when inputs are drawn according to D

$$\min_{rand algo} \max_{input} E[time] \ge \min_{det algo} E[time]$$

For any distribution over inputs

- Rows = unilaterals and duples
- Columns = preference profiles
- Cell numbers = approximation ratios
- Quantity of interest
 - Expected ratio of the best *distribution* over unilaterals and duples on the worst-case profile
- Equivalent quantity
 - Expected ratio of the best unilateral or duple rule when the profiles are drawn from the worst distribution D
 - > Any distribution *D* gives a lower bound on the quantity of interest

Back to Borda

- Assume m = n + 1
- A bad distribution:
 - > Choose a random alternative x^*
 - ➤ Each voter i chooses a random number $k_i \in \{1, ..., \sqrt{m}\}$ and places x^* in position k_i
 - > The other alternatives are ranked cyclically

1	2	3
С	b	d
b	а	b
а	d	С
d	С	а

 $x^* = b$ $k_1 = 2$ $k_2 = 1$ $k_3 = 2$

Back to Borda

- Question: What is the best lower bound on $sc(\overrightarrow{>}, x^*)$ that holds for every profile $\overrightarrow{>}$ generated under this distribution?
 - 1. \sqrt{n}
 - 2. \sqrt{m}
 - 3. $n \cdot (m \sqrt{m})$
 - 4. $n \cdot m$

Back to Borda

• How bad are other alternatives?

> For every other alternative x, $\operatorname{sc}(\overrightarrow{\succ}, x) \sim \frac{n(m-1)}{2}$

- How surely can a unilateral/duple rule return x*?
 - > Unilateral: By only looking at a single vote, the rule is essentially guessing x^* among the first \sqrt{m} positions and captures it with probability at most $1/\sqrt{m}$.
 - Duple: By fixing two alternatives, the rule captures x* with probability at most 2/m.
- Putting everything together...

Quantitative GS Theorem

- Regarding the use of NP-hardness to circumvent GS
 - > NP-hardness is hardness in the worst case
 - > What happens in the average case?
- Theorem [Mossel-Racz '12]:
 - For every voting rule that is at least
 east
 east for being a dictatorship or having range of size 2...
 - > ...the probability that a uniformly random profile admits a manipulation is at least $p(n, m, 1/\epsilon)$ for some polynomial p

Coalitional Manipulations

- What if multiple voters collude to manipulate?
 - The following result applies to a wide family of voting rules called "generalized scoring rules".
- Theorem [Conitzer-Xia '08]:

Coalition of Manipulators Powerful $\Theta(\sqrt{n})$ Powerless

Powerful = can manipulate with high probability

Interesting Tidbit

- Detecting a manipulable profile versus finding a beneficial manipulation
- Theorem [Hemaspaandra, Hemaspaandra, Menton '12] If integer factoring is NP-hard, then there exists a generalized scoring rule for which:
 - > We can efficiently check if there exists a beneficial manipulation.
 - > But finding such a manipulation is NP-hard.

- Axiom:
 - > A requirement that the voting rule must behave in a certain way
- Goal:
 - Define a set of reasonable axioms, and search for voting rules that satisfy them together
 - Ultimate hope: a unique voting rule satisfies the set of axioms simultaneously!
 - ➤ What often happens: no voting rule satisfies the axioms together ☺

We have already seen axioms!

- Condorcet consistency
- Majority consistency
- Strategyproofness
- Ontoness
- Non-dictatorship
- Strong monotonicity
- Pareto optimality

- Some axioms are weak and satisfied by all natural rules
 - > Unanimity:

○ If all voters have the same top choice, that alternative is the winner. $(top(\succ_i) = a \forall i \in N) \Rightarrow f(\overrightarrow{\succ}) = a$

- Q: How does this compare to Pareto optimality?
- Pareto optimality is weak but still violated by natural voting methods like voting trees

• Anonymity:

- Permuting the votes does not change the winner
- In other words, voter identities don't matter
- Example: these two profiles must have the same winner: {voter 1: a > b > c, voter 2: b > c > a} {voter 1: b > c > a, voter 2: a > b > c}

• Neutrality:

- Permuting alternative names just permutes the winner accordingly
- > Example:
 - Say *a* wins on {voter 1: a > b > c, voter 2: b > c > a}
 - We permute all names: $a \rightarrow b$, $b \rightarrow c$, and $c \rightarrow a$
 - New profile: {voter 1: b > c > a, voter 2: c > a > b}
 - \circ Then, the new winner must be b

- Neutrality is tricky for deterministic rules
 - > Incompatible with anonymity
 - \circ Consider the profile {voter 1: a > b, voter 2: b > a}
 - \circ Without loss of generality, say a wins
 - Imagine a different profile: {voter 1: b > a, voter 2: a > b}
 - Neutrality \Rightarrow we exchanged $a \leftrightarrow b$, so winner must be b
 - Anonymity \Rightarrow we exchanged the votes, so winner must be a
- We usually only require neutrality for...
 - Randomized rules: E.g., a rule could satisfy both by choosing a and b as the winner with probability ½ each, on both profiles
 - Deterministic rules that return a set of tied winners: E.g., a rule could return {a, b} as tied winners on both profiles.

• Consistency: If *a* is the winner on two profiles, it must be the winner on their union.

$$f(\overrightarrow{\succ}_1) = a \land f(\overrightarrow{\succ}_2) = a \Rightarrow f(\overrightarrow{\succ}_1 + \overrightarrow{\succ}_2) = a$$

 $\succ \text{Example:} \overrightarrow{\succ}_1 = \{ a \succ b \succ c \}, \ \overrightarrow{\succ}_2 = \{ a \succ c \succ b, b \succ c \succ a \}$

> Then, $\overrightarrow{\succ}_1 + \overrightarrow{\succ}_2 = \{ a > b > c, a > c > b, b > c > a \}$

- Theorem [Young '75]:
 - Subject to mild requirements, a voting rule is consistent if and only if it is a positional scoring rule!

- Weak monotonicity: If *a* is the winner, and *a* is "pushed up" in some votes, *a* remains the winner.
 - $\begin{array}{l} \succ f(\overrightarrow{\succ}) = a \Rightarrow f(\overrightarrow{\succ'}) = a, \text{ where} \\ \circ b \succ_i c \Leftrightarrow b \succ'_i c, \forall i \in N, \ b, c \in A \setminus \{a\} \text{ (Order of others preserved)} \\ \circ a \succ_i b \Rightarrow a \succ'_i b, \forall i \in N, \ b \in A \setminus \{a\} \text{ (a only improves)} \end{array}$
- Contrast with strong monotonicity
 - > SM requires $f(\overrightarrow{\succ}') = a$ even if $\overrightarrow{\succ}'$ only satisfies the 2nd condition
 - > Too strong; only satisfied by dictatorial or non-onto rules [GS Theorem]

- Weak monotonicity is satisfied by most voting rules
 - > Popular exceptions: STV, plurality with runoff
- But violation of weak monotonicity helps STV be hard to manipulate
 - > Theorem [Conitzer-Sandholm '06]:

"Every weakly monotonic voting rule is easy to manipulate on average."

• STV violates weak monotonicity

7 voters	5 voters	2 voters	6 voters
а	b	b	С
b	С	С	а
С	а	а	b

7 voters	5 voters	2 voters	6 voters
а	b	а	С
b	С	b	а
С	а	С	b

- First *c*, then *b* eliminated
- Winner: *a*

- First *b*, then *a* eliminated
- Winner: *c*

- Arrow's Impossibility Theorem
 - > Applies to social welfare functions (profile \rightarrow ranking)
 - Independence of Irrelevant Alternatives (IIA): If the preferences of all voters between a and b are unchanged, the social preference between a and b should not change
 - Pareto optimality: If all prefer a to b, then the social preference should be a > b
 - > Theorem: IIA + Pareto optimality \Rightarrow dictatorship
- Interestingly, automated theorem provers can also prove Arrow's and GS impossibilities!

- Polynomial-time computability
 - > Can be thought of as a desirable axiom
 - Two popular rules which attempt to make the pairwise comparison graph acyclic by inverting edges are NP-hard to compute:
 Kemeny's rule: invert edges with minimum total weight
 - Slater's rule: invert minimum number of edges
 - Both rules can be implemented by straightforward integer linear programs
 - For small instances (say, up to 20 alternatives), NP-hardness isn't a practical concern.