CSC2556

Lecture 2

Voting II

Credit for many visuals: Ariel D. Procaccia

Which rule to use?

- We just introduced infinitely many rules
> (Recall positional scoring rules...)
- How do we know which is the "right" rule to use?
> Various approaches
> Axiomatic, statistical, utilitarian, ...
- How do we ensure good incentives without using money?
> Bad luck! [Gibbard-Satterthwaite, next lecture]

Is Social Choice Practical?

- UK referendum: Choose between plurality and STV for electing MPs
- Academics agreed STV is better...
- ...but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!

Voting:
 For the People, By the People

- Voting can be useful in day-to-day activities
- On such a platform, easy to deploy the rules that we believe are the best

AI-Driven Decisions

RoboVote is a free service that helps users combine their preferences or opinions into optimal decisions. To do so, RoboVote employs state-of-the-art voting methods developed in artificial intelligence research. Learn More

Poll Types

RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote which scenario best fits the problem at hand.

Objective Opinions

In this scenario, some alternatives are objectively better than others, and the opinion of a participant reflects an attempt to estimate the correct order. RoboVote's proposed outcome is guaranteed to be as close as possible - based on the available information - to the best outcome. Examples include deciding which product prototype to develop, or which company to invest in, based on a metric such as projected revenue or market share. Try the demo.

Subjective Preferences

In this scenario participants' preferences reflect their subjective taste; RoboVote proposes an outcome that mathematically makes participants as happy as possible overall. Common examples include deciding which restaurant or movie to go to as a group, which destination to choose for a family vacation, or whom to elect as class president. Try the demo

Ready to get started?

CREATE A POLL

Incentives

- Can a voting rule incentivize voters to truthfully report their preferences?
- Strategyproofness
> A voting rule is strategyproof if a voter cannot submit a false preference and get a more preferred alternative (under her true preference) elected, irrespective of the preferences of other voters
> Formally, a voting rule f is strategyproof if for every preference profile $\vec{\succ}$, voter i, and preference $>_{i}^{\prime}$, we have

$$
f(\vec{\succ}) \succcurlyeq_{i} f\left(\vec{\succ}_{-i}, \succ_{i}^{\prime}\right)
$$

> Question: What is the relation between $f(\overrightarrow{>})$ and $f\left(\vec{\succ}_{-i},>_{i}^{\prime}\right)$ according to $\succcurlyeq_{i}^{\prime}$?

Strategyproofness

- None of the rules we saw are strategyproof!
- Example: Borda Count
> In the true profile, b wins
> Voter 3 can make a win by pushing b to the end

	1	2	3	1	2	3	
	b	b	a	b	b	a	
Winner	a	a	b	a	a	C	Winner
b	c	c	c	C	C	d	a
	d	d	d	d	d	b	

Borda’s Response to Critics

My scheme is intended only for honest men!

Random $18^{\text {th }}$ century
French dude

Strategyproofness

- Are there any strategyproof rules?
> Sure
- Dictatorial voting rule
> The winner is always the most preferred alternative of voter i
- Constant voting rule
> The winner is always the same
- Not satisfactory (for most cases)

Three Properties

- Strategyproof: Already defined. No voter has an incentive to misreport.
- Onto: Every alternative can win under some preference profile.
- Nondictatorial: There is no voter i such that $f(\vec{\gamma})$ is always the alternative most preferred by voter i.

Gibbard-Satterthwaite

- Theorem: For $m \geq 3$, no deterministic social choice function is strategyproof, onto, and nondictatorial simultaneously $: \%$
- Proof: We will prove this for $n=2$ voters.
> Step 1: Show that SP \Rightarrow "strong monotonicity" [Assignment]
> Strong Monotonicity (SM): If $f(\vec{\succ})=a$, and $\vec{\succ}^{\prime}$ is such that $\forall i \in N, x \in A: a>_{i} x \Rightarrow a>_{i}^{\prime} x$, then $f\left(\overrightarrow{>}^{\prime}\right)=a$.
- If, for each i, the set of alternatives defeated by a in \succ_{i}^{\prime} is a superset of what it defeats in $>_{i}$, then if it was winning under \rangle, it should also win under $\overrightarrow{>}^{\prime}$

Gibbard-Satterthwaite

- Theorem: For $m \geq 3$, no deterministic social choice function is strategyproof, onto, and nondictatorial simultaneously $:+$
- Proof: We will prove this for $n=2$ voters.
> Step 2: Show that SP + onto \Rightarrow "Pareto optimality" [Assignment]
> Pareto Optimality (PO): If $a>_{i} b$ for all $i \in N$, then $f(\overrightarrow{>}) \neq b$.
- If there is a different alternative a that everyone prefers to b, then b should not be the winner.

Gibbard-Satterthwaite

- Proof for $\mathrm{n}=2$: Consider problem instance $I(a, b)$

Gibbard-Satterthwaite

- Proof for $\mathrm{n}=2$:
> If f outputs a on instance $I(a, b)$, voter 1 can get a elected whenever she puts a first.
- In other words, voter 1 becomes dictatorial for a.
- Denote this property by the notation $D(1, a)$.
> If f outputs b on $I(a, b)$
- Voter 2 becomes dictatorial for b, i.e., we have $D(2, b)$.
- For every $(a, b), f$ either satisfies the property $D(1, a)$ or the property $D(2, b)$.
> We're not done! (Why?)

Gibbard-Satterthwaite

- Proof for $\mathrm{n}=2$:
> Fix a^{*} and b^{*}. Suppose $D\left(1, a^{*}\right)$ holds.
> Then, we show that voter 1 is a dictator.
- That is, $D(1, c)$ also holds for every $c \neq a^{*}$
> Take $c \neq a^{*}$. Because $|A| \geq 3$, there exists $d \in A \backslash\left\{a^{*}, c\right\}$
> Consider $I(c, d) ; f$ sastisifies either $D(1, c)$ or $D(2, d)$
> But $D(2, d)$ is incompatible with $D\left(1, a^{*}\right)$
- Who would win if voter 1 puts a^{*} first and voter 2 puts d first?
> Thus, we have $D(1, c)$, as required

Circumventing G-S

- Restricted preferences (later in the course)
> Not allowing all possible preference profiles
> Example: single-peaked preferences
- Alternatives are on a line (say 1D political spectrum)
- Voters are also on the same line
- Voters prefer alternatives that are closer to them
- Use of money (later in the course)
> Require payments from voters that depend on the preferences they submit
> Prevalent in auctions

Circumventing G-S

- Randomization (later in this lecture)
- Equilibrium analysis
> How will strategic voters act under a voting rule that is not strategyproof?
> Will they reach an "equilibrium" where each voter is happy with the (possibly false) preference she is submitting?
- Restricting information required for manipulation
> Can voters successfully manipulate if they don't know the votes of the other voters?

Circumventing G-S

- Computational complexity
> We need to use a rule that is the rule is manipulable
> Can we make it NP-hard for voters to manipulate? [Bartholdi et al., SC\&W 1989]
> NP-hardness can be a good thing!
- f-Manipulation problem (for a given voting rule f)
> Input: Manipulator i, alternative p, votes of other voters (nonmanipulators)
> Output: Can the manipulator cast a vote that makes p uniquely win under f ?

Example: Borda

- Can voter 3 make a win?
> Yes

1	2	3
b	b	
a	a	
c	c	
d	d	

| a |
| :--- | | 1 | 2 | 3 |
| :---: | :---: | :---: |
| b | b | a |
| a | a | c |
| c | c | d |
| d | d | b |

A Greedy Algorithm

- Goal:
> The manipulator wants to make alternative p win uniquely
- Algorithm:
> Rank p in the first place
> While there are unranked alternatives:
- If there is an alternative that can be placed in the next spot without preventing p from winning, place this alternative.
- Otherwise, return false.

Example: Borda

1	2	3	1	2	3	1	2	3
b	b	a		b		b	b	a
a	a		a		b	a	a	C
C	C					C	C	
d	d			d		d	d	
	2	3	1	2	3	1	2	3
	b		b	b	a	b	b	a
a		C	a	a	C	a	a	C
			C	C	d	C	C	d
	d		d	d		d	d	b

Example: Copeland

1	2	3	4	5
a	b	e	e	a
b	a	c	c	
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	2	-	3	1
d	0	0	1	-	2
e	2	2	3	2	-

Pairwise elections

Example: Copeland

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
a	b	e	e	a
b	a	c	c	c
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	0	1	-	2
e	2	2	3	2	-

Pairwise elections

Example: Copeland

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	
e	c	d	d	

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	2	3	2	-

Pairwise elections

Example: Copeland

1	2	3	4	5
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	3	3	2	-

Pairwise elections

Example: Copeland

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	b

Preference profile

	a	b	c	d	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	3	3	2	-

Pairwise elections

When does this work?

- Theorem [Bartholdi et al., SCW 89]:

Fix voter i and votes of other voters. Let f be a rule for which \exists function $s\left(\succ_{i}, x\right)$ such that:

1. For every \succ_{i}, f chooses candidates maximizing $s\left(\succ_{i}, \cdot\right)$
2. $\left\{y: x>_{i} y\right\} \subseteq\left\{y: x>_{i}^{\prime} y\right\} \Rightarrow s\left(>_{i}, x\right) \leq s\left(>_{i}^{\prime}, x\right)$

Then the greedy algorithm solves f-MANIPULATION correctly.

- Question: What is the function s for the plurality rule?

Proof of the Theorem

- Suppose for contradiction:
> Algo creates a partial ranking $>_{i}$ and then fails, i.e., every next choice prevents p from winning
> But $>_{i}^{\prime}$ could have made p uniquely win
- $U \leftarrow$ alternatives not ranked in $>_{i}$
- $u \leftarrow$ highest ranked alternative in U according to $>_{i}^{\prime}$
- Complete $>_{i}$ by adding u next, and then other alternatives arbitrarily

Proof of the Theorem

- $s\left(\succ_{i}, p\right) \geq s\left(\succ_{i}^{\prime}, p\right)$
> Property 2
- $s\left(>_{i}^{\prime}, p\right)>s\left(>_{i}^{\prime}, u\right)$
> Property $1 \& p$ uniquely wins under $>_{i}^{\prime}$
- $s\left(\succ_{i}^{\prime}, u\right) \geq s\left(>_{i}, u\right)$
> Property 2
- Conclusion
> Putting u in the next position wouldn't have prevented p from winning
> So the algorithm should have continued

Hard-to-Manipulate Rules

- Natural rules
> Copeland with second-order tie breaking [Bartholdi et al. SCW 89]
- In case of a tie, choose the alternative for which the sum of Copeland scores of defeated alternatives is the largest
> STV [Bartholdi \& Orlin, SCW 91]
> Ranked Pairs [Xia et al., IJCAI 09]
- Iteratively lock in pairwise comparisons by their margin of victory (largest first), ignoring any comparison that would form cycles.
- Winner is the top ranked candidate in the final order.
> Can also "tweak" easy to manipulate voting rules [Conitzer \& Sandholm, IJCAI 03]

Example: Ranked Pairs

Randomized Voting Rules

- Input: preference profile
- Output: distribution over alternatives
> To think about successful manipulations, we need numerical utilities
- u_{i} is consistent with $>_{i}$ if

$$
a>_{i} b \Rightarrow u_{i}(a) \geq u_{i}(b)
$$

- Strategyproofness:
> For all $i, \overrightarrow{>}_{-i},>_{i},>_{i}^{\prime}$, and u_{i} consistent with $>_{i}$

$$
\left.\mathbb{E}\left[u_{i}(f(\overrightarrow{>}))\right] \geq \mathbb{E}\left[u_{i}\left(f\left(\overrightarrow{(}_{-i},\right\rangle_{i}^{\prime}\right)\right)\right]
$$

where $>_{i}$ is consistent with u_{i}.

Randomized Voting Rules

- A (deterministic) voting rule is
> unilateral if it only depends on one voter
> duple if its range contains at most two alternatives
- Question:
> What is a unilateral rule that is not strategyproof?
> What is a duple rule that is not strategyproof?

Randomized Voting Rules

- A probability mixture f over rules f_{1}, \ldots, f_{k} is a rule given by some probability distribution $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ s.t. on every profile $\vec{\succ}, f$ returns $f_{j}(\vec{\succ})$ w.p. α_{j}.
- Example:
> With probability 0.5 , output the top alternative of a randomly chosen voter
> With the remaining probability 0.5 , output the winner of the pairwise election between a^{*} and b^{*}
- Theorem [Gibbard 77]
> A randomized voting rule is strategyproof only if it is a probability mixture over unilaterals and duples.

Approximating Voting Rules

- Idea: Can we use strategyproof voting rules to approximate popular voting rules?
- Fix a rule (e.g., Borda) with a clear notion of score denoted $\operatorname{sc}(\vec{\succ}, a)$
- A randomized voting rule f is a c-approximation to sc if for every profile $\vec{\succ}$

$$
\frac{\mathbb{E}[\operatorname{sc}(\vec{\succ}, f(\vec{\succ}))}{\max _{a} \operatorname{sc}(\vec{\succ}, a)} \geq c
$$

Approximating Borda

- Question: How well does choosing a random alternative approximate Borda?

1. $\Theta(1 / n)$
2. $\Theta(1 / m)$
3. $\Theta(1 / \sqrt{m})$
4. $\Theta(1)$

- Theorem [Procaccia 10]:

No strategyproof voting rule gives $1 / 2+\omega(1 / \sqrt{m})$ approximation to Borda.

Interlude: Zero-Sum Games

Interlude: Minimiax Strategies

- A minimax strategy for a player is
> a (possibly) randomized choice of action by the player
$>$ that minimizes the expected loss (or maximizes the expected gain)
$>$ in the worst case over the choice of action of the other player
- Intuition
> Suppose I were to act first
> And the other player could observe my strategy and respond to it (thus picking a response that is the worst case for me)
> Then, which randomized choice would I make?
- In the previous game, the minimax strategy for each player is $(1 / 2,1 / 2)$. Why?

Interlude: Minimiax Strategies

- In the game above, if the shooter uses $(p, 1-p)$:
> If goalie jumps left: $p \cdot\left(-\frac{1}{2}\right)+(1-p) \cdot 1=1-\frac{3}{2} p$
> If goalie jumps right: $p \cdot 1+(1-p) \cdot(-1)=2 p-1$
$>$ Shooter chooses p to maximize $\min \left\{1-\frac{3 p}{2}, 2 p-1\right\}$
- $p^{*}=4 / 7$, reward of shooter $=+1 / 7$

Interlude: Minimax Theorem

- Theorem
[von Neumann, 1928]:
Every 2-player zero-sum game has a unique value v such that
> Player 1 can guarantee value at least v
> Player 2 can guarantee loss at most v
> This value is achieved when each player plays their own minimax strategy.

Yao's Minimax Principle

- Rows as inputs
- Columns as deterministic algorithms
- Cell numbers = running times
- Best randomized algorithm
> Minimax strategy for the column player

$$
\begin{gathered}
\min _{\text {rand algo input }} \max E[\text { time }]= \\
\max _{\text {dist over inputs det algo }} E[\text { time }]
\end{gathered}
$$

Yao’s Minimax Principle

- To show a lower bound T on the best worst-case running time achievable through randomized algorithms:
> Show a "bad" distribution over inputs D such that every deterministic algorithm takes time at least T on average, when inputs are drawn according to D

$$
\min _{\text {rand algo input }} E[\text { time }] \geq \min _{\text {det algo }} E[\text { time }]
$$

For any distribution over inputs

Randomized Voting Rules

	$<^{1}$	\ldots	\ldots	\ldots	\ldots	$<^{t}$
U_{1}	$\frac{1}{15}$	\ldots	\ldots	\ldots	\ldots	$\frac{2}{21}$
\ldots						
U_{k}	$\frac{7}{15}$	Approximation ratio		$\frac{5}{21}$		
D_{1}	$\frac{4}{15}$	\ldots	\ldots	\ldots	\ldots	$\frac{8}{21}$
\ldots						
D_{S}	$\frac{13}{15}$	\ldots	\ldots	\ldots	\ldots	$\frac{17}{21}$

Randomized Voting Rules

- Rows = unilaterals and duples
- Columns = preference profiles
- Cell numbers = approximation ratios
- Quantity of interest
> Expected ratio of the best distribution over unilaterals and duples on the worst-case profile
- Equivalent quantity
> Expected ratio of the best unilateral or duple rule when the profiles are drawn from the worst distribution D
> Any distribution D gives a lower bound on the quantity of interest

Back to Borda

- Assume $m=n+1$
- A bad distribution:
> Choose a random alternative X^{*}
> Each voter i chooses a random number $k_{i} \in$ $\{1, \ldots, \sqrt{m}\}$ and places x^{*} in position k_{i}
> The other alternatives are ranked cyclically

1	2	3
c	b	d
b	a	b
a	d	c
d	c	a

$$
\begin{aligned}
& x^{*}=b \\
& k_{1}=2 \\
& k_{2}=1 \\
& k_{3}=2
\end{aligned}
$$

Back to Borda

- Question: What is the best lower bound on $\operatorname{sc}\left(\vec{\succ}, x^{*}\right)$ that holds for every profile $\overrightarrow{>}$ generated under this distribution?
$\begin{array}{ll}\text { 1. } & \sqrt{n} \\ \text { 2. } & \sqrt{m} \\ \text { 3. } & n \cdot(m-\sqrt{m}) \\ \text { 4. } & n \cdot m\end{array}$

Back to Borda

- How bad are other alternatives?
> For every other alternative $x, \operatorname{sc}(\vec{\succ}, x) \sim \frac{n(m-1)}{2}$
- How surely can a unilateral/duple rule return x^{*} ?
> Unilateral: By only looking at a single vote, the rule is essentially guessing x^{*} among the first \sqrt{m} positions and captures it with probability at most $1 / \sqrt{m}$.
> Duple: By fixing two alternatives, the rule captures x^{*} with probability at most $2 / \mathrm{m}$.
- Putting everything together...

Quantitative GS Theorem

- Regarding the use of NP-hardness to circumvent GS
> NP-hardness is hardness in the worst case
> What happens in the average case?
- Theorem [Mossel-Racz '12]:
> For every voting rule that is at least ϵ-far from being a dictatorship or having range of size 2 ...
> ...the probability that a uniformly random profile admits a manipulation is at least $p(n, m, 1 / \epsilon)$ for some polynomial p

Coalitional Manipulations

- What if multiple voters collude to manipulate?
> The following result applies to a wide family of voting rules called "generalized scoring rules".
- Theorem [Conitzer-Xia ‘08]:

Powerful = can manipulate with high probability

Interesting Tidbit

- Detecting a manipulable profile versus finding a beneficial manipulation
- Theorem [Hemaspaandra, Hemaspaandra, Menton '12] If integer factoring is NP-hard, then there exists a generalized scoring rule for which:
> We can efficiently check if there exists a beneficial manipulation.
> But finding such a manipulation is NP-hard.

Axiomatic Approach

Axiomatic Approach

- Axiom:
> A requirement that the voting rule must behave in a certain way
- Goal:
> Define a set of reasonable axioms, and search for voting rules that satisfy them together
> Ultimate hope: a unique voting rule satisfies the set of axioms simultaneously!
> What often happens: no voting rule satisfies the axioms together $*$

We have already seen axioms!

- Condorcet consistency
- Majority consistency
- Strategyproofness
- Ontoness
- Non-dictatorship
- Strong monotonicity
- Pareto optimality

Axiomatic Approach

- Some axioms are weak and satisfied by all natural rules
> Unanimity:
- If all voters have the same top choice, that alternative is the winner.

$$
\left(\operatorname{top}\left(\succ_{i}\right)=a \forall i \in N\right) \Rightarrow f(\vec{\succ})=a
$$

> Q : How does this compare to Pareto optimality?
> Pareto optimality is weak but still violated by natural voting methods like voting trees

Axiomatic Approach

- Anonymity:
> Permuting the votes does not change the winner
> In other words, voter identities don't matter
> Example: these two profiles must have the same winner:
\{voter 1: $a>b>c$, voter 2: $b>c>a\}$ \{voter 1: $b>c>a$, voter 2: $a>b>c$ \}
- Neutrality:
> Permuting alternative names just permutes the winner accordingly
> Example:
- Say a wins on $\{$ voter 1: $a>b>c$, voter $2: b \succ c>a\}$
- We permute all names: $a \rightarrow b, b \rightarrow c$, and $c \rightarrow a$
- New profile: \{voter 1: $b>c>a$, voter $2: c>a>b\}$
- Then, the new winner must be b

Axiomatic Approach

- Neutrality is tricky for deterministic rules
> Incompatible with anonymity
- Consider the profile \{voter 1: $a>b$, voter 2: $b>a\}$
- Without loss of generality, say a wins
- Imagine a different profile: \{voter 1: $b>a$, voter 2: $a>b\}$
- Neutrality \Rightarrow we exchanged $a \leftrightarrow b$, so winner must be b
- Anonymity \Rightarrow we exchanged the votes, so winner must be a
- We usually only require neutrality for...
> Randomized rules: E.g., a rule could satisfy both by choosing a and b as the winner with probability $1 / 2$ each, on both profiles
> Deterministic rules that return a set of tied winners: E.g., a rule could return $\{a, b\}$ as tied winners on both profiles.

Axiomatic Approach

- Consistency: If a is the winner on two profiles, it must be the winner on their union.

$$
f\left(\overrightarrow{>}_{1}\right)=a \wedge f\left(\overrightarrow{>}_{2}\right)=a \Rightarrow f\left(\overrightarrow{>}_{1}+\overrightarrow{>}_{2}\right)=a
$$

> Example: $\overrightarrow{>}_{1}=\{a \succ b \succ c\}, \overrightarrow{>}_{2}=\{a>c>b, b \succ c>a\}$
> Then, $\overrightarrow{>}_{1}+\overrightarrow{>}_{2}=\{a \succ b \succ c, a>c>b, b \succ c>a\}$

- Theorem [Young '75]:
> Subject to mild requirements, a voting rule is consistent if and only if it is a positional scoring rule!

Axiomatic Approach

- Weak monotonicity: If a is the winner, and a is "pushed up" in some votes, a remains the winner.
$>f(\vec{\succ})=a \Rightarrow f\left(\vec{\succ}^{\prime}\right)=a$, where
$\circ b \succ_{i} c \Leftrightarrow b \succ_{i}^{\prime} c, \forall i \in N, b, c \in A \backslash\{a\}$ (Order of others preserved)
$\circ a>_{i} b \Rightarrow a>_{i}^{\prime} b, \forall i \in N, b \in A \backslash\{a\} \quad$ (a only improves)
- Contrast with strong monotonicity
> SM requires $f\left(\overrightarrow{>}^{\prime}\right)=a$ even if $\overrightarrow{>}^{\prime}$ only satisfies the $2^{\text {nd }}$ condition
> Too strong; only satisfied by dictatorial or non-onto rules [GS Theorem]

Axiomatic Approach

- Weak monotonicity is satisfied by most voting rules
> Popular exceptions: STV, plurality with runoff
- But violation of weak monotonicity helps STV be hard to manipulate
> Theorem [Conitzer-Sandholm '06]:
"Every weakly monotonic voting rule is easy to manipulate on average."

Axiomatic Approach

- STV violates weak monotonicity

7 voters	$\mathbf{5}$ voters	2 voters	$\mathbf{6}$ voters
a	b	b	c
b	c	c	a
c	a	a	b

- First c, then b eliminated
- Winner: a

$\mathbf{7}$ voters	$\mathbf{5}$ voters	$\mathbf{2}$ voters	$\mathbf{6}$ voters
a	b	a	c
b	c	b	a
c	a	c	b

- First b, then a eliminated
- Winner: c

Axiomatic Approach

- Arrow's Impossibility Theorem
> Applies to social welfare functions (profile \rightarrow ranking)
> Independence of Irrelevant Alternatives (IIA): If the preferences of all voters between a and b are unchanged, the social preference between a and b should not change
> Pareto optimality: If all prefer a to b, then the social preference should be $a>b$
> Theorem: IIA + Pareto optimality \Rightarrow dictatorship
- Interestingly, automated theorem provers can also prove Arrow's and GS impossibilities!

Axiomatic Approach

- Polynomial-time computability
> Can be thought of as a desirable axiom
> Two popular rules which attempt to make the pairwise comparison graph acyclic by inverting edges are NP-hard to compute:
- Kemeny's rule: invert edges with minimum total weight
- Slater's rule: invert minimum number of edges
> Both rules can be implemented by straightforward integer linear programs
- For small instances (say, up to 20 alternatives), NP-hardness isn't a practical concern.

