CSC2556

Lecture 11

Game Theory 2:
 Prices of Anarchy and Stability, Cost Sharing Games, Braess' Paradox

Prices of Anarchy and Stability

Price of Anarchy and Stability

- If players play a Nash equilibrium instead of "socially optimum", how bad can it be?
- Objective function: sum of utilities/costs
- Price of Anarchy (PoA): compare the optimum to the worst Nash equilibrium
- Price of Stability (PoS): compare the optimum to the best Nash equilibrium

Price of Anarchy and Stability

- Price of Anarchy (PoA)

Max social utility
Min social utility in any NE

- Price of Stability (PoS)

Max social utility
Max social utility in any NE

Revisiting Stag-Hunt

Hunter 1	Stag	Hare
Stag	$\mathbf{(4 , 4)}$	$\mathbf{(0 , 2)}$
Hare	$\mathbf{(2 , 0)}$	$\mathbf{(1 , 1)}$

- Optimum social utility $=4+4=8$
- Three equilibria:
> (Stag, Stag) : Social utility = 8
> (Hare, Hare) : Social utility = 2
> (Stag:1/3 - Hare:2/3, Stag:1/3 - Hare:2/3)
- Social utility $=(1 / 3)^{*}(1 / 3)^{*} 8+\left(1-(1 / 3)^{*}(1 / 3)\right)^{*} 2=\operatorname{Btw} 2$ and 8
- Price of stability? Price of anarchy?

Cost Sharing Game

- n players on directed weighted graph G
- Player i
> Wants to go from s_{i} to t_{i}
> Strategy set $S_{i}=$ \{directed $s_{i} \rightarrow t_{i}$ paths $\}$
> Denote his chosen path by $P_{i} \in S_{i}$
- Each edge e has cost c_{e} (weight)
> Cost is split among all players taking edge e
$>$ That is, among all players i with $e \in P_{i}$

Cost Sharing Game

- Given strategy profile \vec{P}, cost $c_{i}(\vec{P})$ to player i is sum of his costs for edges $e \in P_{i}$
- Social $\operatorname{cost} C(\vec{P})=\sum_{i} c_{i}(\vec{P})$
- Note that $C(\vec{P})=\sum_{e \in E(\vec{P})} c_{e}$, where $E(\vec{P})=\{$ edges taken in \vec{P} by at least one player $\}$
- In the example on the right:
> What if both players take the direct paths?
$>$ What if both take the middle paths?
> What if only one player takes the middle path while the other takes the direct path?

Cost Sharing: Simple Example

- Example on the right: n players
- Two pure NE
> All taking the n -edge: social cost $=n$
> All taking the 1-edge: social cost = 1
- Also the social optimum
 price of anarchy $\leq n$

Cost Sharing: PoA

- Theorem: The price of anarchy of a cost sharing game is at most n.
- Proof:
> Suppose the social optimum is $\left(P_{1}^{*}, P_{2}^{*}, \ldots, P_{n}^{*}\right)$, in which the cost to player i is c_{i}^{*}.
> Take any NE with cost c_{i} to player i.
> Let c_{i}^{\prime} be his cost if he switches to P_{i}^{*}.
> $\mathrm{NE} \Rightarrow c_{i}^{\prime} \geq c_{i} \quad$ (Why?)
> But : $c_{i}^{\prime} \leq n \cdot c_{i}^{*}$ (Why?)
$\Rightarrow c_{i} \leq n \cdot c_{i}^{*}$ for each $i \Rightarrow$ no worse than $n \times$ optimum

Cost Sharing

- Price of anarchy
> All cost-sharing games: $\mathrm{PoA} \leq n$
> \exists example where PoA $=n$
- Price of stability? Later...
- Both examples we saw had pure Nash equilibria
> What about more complex games, like the one on the right?

10 players: $E \rightarrow C$
27 players: $B \rightarrow D$
19 players: $C \rightarrow D$

Good News

- Theorem: All cost sharing games admit a pure Nash equilibrium.
- Proof:
> Via a "potential function" argument.

Step 1: Define Potential Fn

- Potential function: $\Phi: \prod_{i} S_{i} \rightarrow \mathbb{R}_{+}$
$>$ For all pure strategy profiles $\vec{P}=\left(P_{1}, \ldots, P_{n}\right) \in \prod_{i} S_{i}, \ldots$
> all players i, and ...
> all alternative strategies $P_{i}^{\prime} \in S_{i}$ for player $i . .$.

$$
c_{i}\left(P_{i}^{\prime}, \vec{P}_{-i}\right)-c_{i}(\vec{P})=\Phi\left(P_{i}^{\prime}, \vec{P}_{-i}\right)-\Phi(\vec{P})
$$

- When a single player changes his strategy, the change in his cost is equal to the change in the potential function
> Do not care about the changes in the costs to others

Step 2: Potential $\mathrm{F}^{\mathrm{n}} \rightarrow$ pure Nash Eq

- All games that admit a potential function have a pure Nash equilibrium. Why?
$>$ Think about \vec{P} that minimizes the potential function.
> What happens when a player deviates?
- If his cost decreases, the potential function value must also decrease.
- \vec{P} already minimizes the potential function value.
- Pure strategy profile minimizing potential function is a pure Nash equilibrium.

Step 3: Potential F^{n} for Cost-Sharing

- Recall: $E(\vec{P})=\{$ edges taken in \vec{P} by at least one player $\}$
- Let $n_{e}(\vec{P})$ be the number of players taking e in \vec{P}

$$
\Phi(\vec{P})=\sum_{e \in E(\vec{P})} \sum_{k=1}^{n_{e}(\vec{P})} \frac{c_{e}}{k}
$$

- Note: The cost of edge e to each player taking e is $c_{e} / n_{e}(\vec{P})$. But the potential function includes all fractions: $c_{e} / 1, c_{e} / 2, \ldots, c_{e} / n_{e}(\vec{P})$.

Step 3: Potential F^{n} for Cost-Sharing

$$
\Phi(\vec{P})=\sum_{e \in E(\vec{P})} \sum_{k=1}^{n_{e}(\vec{P})} \frac{c_{e}}{k}
$$

- Why is this a potential function?
> If a player changes path, he pays $\frac{c_{e}}{n_{e}(\vec{P})+1}$ for each new edge e, gets back $\frac{c_{f}}{n_{f}(\vec{P})}$ for each old edge f.
> This is precisely the change in the potential function too.
$>$ So $\Delta c_{i}=\Delta \Phi$.

Potential Minimizing Eq.

- There could be multiple pure Nash equilibria > Pure Nash equilibria are "local minima" of the potential function.
$>$ A single player deviating should not decrease the function value.
- Is the global minimum of the potential function a special pure Nash equilibrium?

Potential Minimizing Eq.

$$
\forall \vec{P}, C(\vec{P}) \leq \Phi(\vec{P}) \leq C(\vec{P}) * H(n) \quad \longleftarrow \quad \begin{gathered}
\text { Harmonic function } H(n) \\
=\sum_{k=1}^{n} 1 / k=O(\log n)
\end{gathered}
$$

$$
C\left(\vec{P}^{*}\right) \leq \Phi\left(\vec{P}^{*}\right) \leq \Phi(O P T) \leq C(O P T) * H(n)
$$

Potential Minimizing Eq.

- Potential minimizing equilibrium gives $O(\log n)$ approximation to the social optimum
> Price of stability is $O(\log n)$
- This is tight as there exists an example where the price of stability is $\Omega(\log n)$
> Compare this to the price of anarchy, which can be n

Congestion Games \& Braess' Paradox

Congestion Games

- Generalize cost sharing games
- n players, m resources (e.g., edges)
- Each player i chooses a set of resources P_{i} (e.g., $s_{i} \rightarrow t_{i}$ paths)
- When n_{j} player use resource j, each of them get a cost $f_{j}\left(n_{j}\right)$
- Cost to player is the sum of costs of resources used

Congestion Games

- Theorem [Rosenthal 1973]: Every congestion game is a potential game.
- Potential function:

$$
\Phi(\vec{P})=\sum_{j \in E(\vec{P})} \sum_{k=1}^{n_{j}(\vec{P})} f_{j}(k)
$$

- Theorem [Monderer and Shapley 1996]: Every potential game is equivalent to a congestion game.

The Braess' Paradox

- In cost sharing, f_{j} is decreasing
> The more people use a resource, the less the cost to each.
- f_{j} can also be increasing
> Road network, each player going from home to work
> Uses a sequence of roads
$>$ The more people on a road, the greater the congestion, the greater the delay (cost)
- Can lead to unintuitive phenomena

The Braess' Paradox

- Due to Parkes and Seuken:
> 2000 players want to go from 1 to 4
$>1 \rightarrow 2$ and $3 \rightarrow 4$ are "congestible" roads
$>1 \rightarrow 3$ and $2 \rightarrow 4$ are "constant delay" roads

The Braess' Paradox

- Pure Nash equilibrium?
> 1000 take $1 \rightarrow 2 \rightarrow 4,1000$ take $1 \rightarrow 3 \rightarrow 4$
> Each player has cost $10+25=35$
> Anyone switching to the other creates a greater congestion on it, and faces a higher cost

The Braess' Paradox

- What if we add a zero-cost connection $2 \rightarrow 3$?
> Intuitively, adding more roads should only be helpful
> In reality, it leads to a greater delay for everyone in the unique equilibrium!

The Braess' Paradox

- Nobody chooses $1 \rightarrow 3$ as $1 \rightarrow 2 \rightarrow 3$ is better irrespective of how many other players take it
- Similarly, nobody chooses $2 \rightarrow 4$
- Everyone takes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, faces delay $=40$!

The Braess' Paradox

- In fact, what we showed is:
> In the new game, $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is a strictly dominant strategy for each firm!

