CSC2556

Lecture 11

Game Theory 2: Prices of Anarchy and Stability, Cost Sharing Games, Braess' Paradox

Prices of Anarchy and Stability

Price of Anarchy and Stability

- If players play a Nash equilibrium instead of "socially optimum", how bad can it be?
- Objective function: sum of utilities/costs
- Price of Anarchy (PoA): compare the optimum to the worst Nash equilibrium
- Price of Stability (PoS): compare the optimum to the best Nash equilibrium

Price of Anarchy and Stability

• Price of Anarchy (PoA)

Max social utility Min social utility in any NE

• Price of Stability (PoS)

Costs → flip: Nash equilibrium divided by optimum

Max social utility

Max social utility in any NE

Revisiting Stag-Hunt

Hunter 1 Hunter 2	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1 , 1)

- Optimum social utility = 4+4 = 8
- Three equilibria:
 - > (Stag, Stag) : Social utility = 8
 - > (Hare, Hare) : Social utility = 2
 - Stag:1/3 Hare:2/3, Stag:1/3 Hare:2/3)

○ Social utility = $(1/3)^{*}(1/3)^{*8} + (1-(1/3)^{*}(1/3))^{*2}$ = Btw 2 and 8

• Price of stability? Price of anarchy?

Cost Sharing Game

- *n* players on directed weighted graph *G*
- Player *i*
 - > Wants to go from s_i to t_i
 - > Strategy set $S_i = \{ \text{directed } s_i \rightarrow t_i \text{ paths} \}$
 - > Denote his chosen path by $P_i \in S_i$
- Each edge *e* has cost *c_e* (weight)
 - Cost is split among all players taking edge e
 - > That is, among all players i with $e \in P_i$

Cost Sharing Game

- Given strategy profile \vec{P} , cost $c_i(\vec{P})$ to player *i* is sum of his costs for edges $e \in P_i$
- Social cost $C(\vec{P}) = \sum_{i} c_i(\vec{P})$
 - ▶ Note that $C(\vec{P}) = \sum_{e \in E(\vec{P})} c_e$, where $E(\vec{P})$ ={edges taken in \vec{P} by at least one player}
- In the example on the right:
 - > What if both players take the direct paths?
 - > What if both take the middle paths?
 - What if only one player takes the middle path while the other takes the direct path?

Cost Sharing: Simple Example

- Example on the right: n players
- Two pure NE
 - All taking the n-edge: social cost = n
 - > All taking the 1-edge: social cost = 1
 - $\,\circ\,$ Also the social optimum
- In this game, price of anarchy $\geq n$
- We can show that for all cost sharing games, price of anarchy $\leq n$

Cost Sharing: PoA

- Theorem: The price of anarchy of a cost sharing game is at most *n*.
- Proof:
 - > Suppose the social optimum is $(P_1^*, P_2^*, ..., P_n^*)$, in which the cost to player *i* is c_i^* .
 - > Take any NE with cost c_i to player *i*.
 - > Let c'_i be his cost if he switches to P_i^* .

> NE
$$\Rightarrow c'_i \ge c_i$$
 (Why?)

- > But : $c'_i \leq n \cdot c^*_i$ (Why?)
- > $c_i \le n \cdot c_i^*$ for each *i* ⇒ no worse than *n*× optimum

Cost Sharing

- Price of anarchy
 - \succ All cost-sharing games: PoA $\leq n$
 - > \exists example where PoA = n
- Price of stability? Later...
- Both examples we saw had pure Nash equilibria
 - What about more complex games, like the one on the right?

Good News

- Theorem: All cost sharing games admit a pure Nash equilibrium.
- Proof:
 - > Via a "potential function" argument.

Step 1: Define Potential Fn

- Potential function: $\Phi : \prod_i S_i \to \mathbb{R}_+$
 - > For all pure strategy profiles $\vec{P} = (P_1, ..., P_n) \in \prod_i S_i, ...$
 - > all players *i*, and ...
 - ≻ all alternative strategies $P'_i \in S_i$ for player *i*...

$$c_i(P'_i, \vec{P}_{-i}) - c_i(\vec{P}) = \Phi(P'_i, \vec{P}_{-i}) - \Phi(\vec{P})$$

- When a single player changes his strategy, the change in *his* cost is equal to the change in the potential function
 - Do not care about the changes in the costs to others

Step 2: Potential $F^n \rightarrow pure Nash Eq$

- All games that admit a potential function have a pure Nash equilibrium. Why?
 - > Think about \vec{P} that minimizes the potential function.
 - > What happens when a player deviates?
 - If his cost decreases, the potential function value must also decrease.
 - $\circ \vec{P}$ already minimizes the potential function value.
- Pure strategy profile minimizing potential function is a pure Nash equilibrium.

Step 3: Potential Fⁿ for Cost-Sharing

- Recall: $E(\vec{P}) = \{ edges taken in \vec{P} by at least one player \}$
- Let $n_e(\vec{P})$ be the number of players taking e in \vec{P}

$$\Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

• Note: The cost of edge *e* to each player taking *e* is $c_e/n_e(\vec{P})$. But the potential function includes all fractions: $c_e/1$, $c_e/2$, ..., $c_e/n_e(\vec{P})$.

Step 3: Potential Fⁿ for Cost-Sharing

$$\Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

- Why is this a potential function?
 - > If a player changes path, he pays $\frac{c_e}{n_e(\vec{P})+1}$ for each new edge e, gets back $\frac{c_f}{n_f(\vec{P})}$ for each old edge f.
 - > This is precisely the change in the potential function too.
 - > So $\Delta c_i = \Delta \Phi$.

Potential Minimizing Eq.

- There could be multiple pure Nash equilibria
 - > Pure Nash equilibria are "local minima" of the potential function.
 - > A single player deviating should not decrease the function value.
- Is the *global minimum* of the potential function a special pure Nash equilibrium?

Potential Minimizing Eq.

Potential Minimizing Eq.

- Potential minimizing equilibrium gives O(log n) approximation to the social optimum
 - > Price of stability is $O(\log n)$

• This is tight as there exists an example where the price of stability is $\Omega(\log n)$

 \succ Compare this to the price of anarchy, which can be n

Congestion Games & Braess' Paradox

Congestion Games

- Generalize cost sharing games
- *n* players, *m* resources (e.g., edges)
- Each player *i* chooses a set of resources P_i (e.g., $s_i \rightarrow t_i$ paths)
- When n_j player use resource j, each of them get a cost $f_j(n_j)$
- Cost to player is the sum of costs of resources used

Congestion Games

- Theorem [Rosenthal 1973]: Every congestion game is a potential game.
- Potential function:

$$\Phi(\vec{P}) = \sum_{j \in E(\vec{P})} \sum_{k=1}^{n_j(\vec{P})} f_j(k)$$

• Theorem [Monderer and Shapley 1996]: Every potential game is equivalent to a congestion game.

- In cost sharing, f_i is decreasing
 - > The more people use a resource, the less the cost to each.
- f_i can also be increasing
 - > Road network, each player going from home to work
 - > Uses a sequence of roads
 - The more people on a road, the greater the congestion, the greater the delay (cost)
- Can lead to unintuitive phenomena

- Due to Parkes and Seuken:
 - > 2000 players want to go from 1 to 4
 - > 1 \rightarrow 2 and 3 \rightarrow 4 are "congestible" roads
 - > 1 \rightarrow 3 and 2 \rightarrow 4 are "constant delay" roads

- Pure Nash equilibrium?
 - \succ 1000 take 1 \rightarrow 2 \rightarrow 4, 1000 take 1 \rightarrow 3 \rightarrow 4
 - > Each player has cost 10 + 25 = 35
 - > Anyone switching to the other creates a greater congestion on it, and faces a higher cost

- What if we add a zero-cost connection $2 \rightarrow 3$?
 - > Intuitively, adding more roads should only be helpful
 - In reality, it leads to a greater delay for everyone in the unique equilibrium!

- Nobody chooses $1 \rightarrow 3$ as $1 \rightarrow 2 \rightarrow 3$ is better irrespective of how many other players take it
- Similarly, nobody chooses $2 \rightarrow 4$
- Everyone takes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, faces delay = 40!

- In fact, what we showed is:
 - > In the new game, $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is a strictly dominant strategy for each firm!

