CSC2556

Algorithms for Collective Decision Making

Nisarg Shah

Introduction

- People
> Instructor: Nisarg Shah (/~nisarg, nisarg@cs)
> TA: Evi Micha (emicha@cs), Soroush Ebadian (soroush@cs)
- Info
> Course Page: cs.toronto.edu/~nisarg/teaching/2556s22/
> Discussion Board: piazza.com/utoronto.ca/winter2022/csc2556
- Meeting
> Lectures: Online (Zoom) until at least Jan 31
> Questions? Schedule 1-1 meeting by emailing me

What?

- Collective decision making by groups of agents
> Literature of computational social choice at the intersection of computer science and economics
- Single-agent problems
> E.g., the traveling salesman problem
> A single agent wants to find the optimal route
- Multi-agent problems
> What if multiple traveling salesmen want to share a bus?
> Each agent has a different optimal route
> Tradeoff \rightarrow fairness, efficiency, strategic manipulations, ...

What?

- Models will differ in various considerations, e.g.:
> Can agents form binding contracts?
o Entering in contracts allows agents to hedge uncertainties
> Can agents exchange/pay/receive money?
- Maybe we make a decision that is less preferable to an agent but pay the agent to compensate
> What is the structure of the outcome space?
- Is there a common decision that affects everyone (e.g., voting) or does each agent receive something (e.g., resource allocation)?

Logistics

Optional Reference Textbooks

- Handbook of Computational Social Choice
> By Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D. Procaccia
- Algorithmic Game Theory
> By Noam Nisan, Tom Roughgarden, Eva Tardos and Vijay Vazirani
- Networks, Crowds and Markets
> By David Easley and Jon Kleinberg
- Online versions available on the course web page

Grading Policy

- 2 assignments: 40\%
- Final project: 50\%
- Embedded Ethics Module: 5\%
> Pre-module survey: 1%
> Post-module survey: 1%
> Post-module assignment: 3\%
- Class participation: 5\%

Assignments

- Theoretical
> They will require deriving intricate proofs
- We will assume...
> Strong familiarity with abstract reasoning and proof techniques
> Adequate familiarity of CS concepts (e.g., algorithm design, worstcase approximation, NP-hardness)
> Adequate familiarity of math concepts (e.g., probability, statistics, linear algebra, calculus)
> No prior background in economics

Assignments

- Individual assignments
> Free to discuss with classmates or read online material
> Must write solutions in your own words
o Easier if you do not take any pictures/notes from the discussions
> Plagiarism will be dealt with strictly!
- Citation
> For each question, you must cite the peer (write the name) or the online sources (provide links) referred, if any
> Failing to do this is also plagiarism!

Other Policies

- "No Garbage" Policy
> Borrowed from: Prof. Allan Borodin (citation!)

1. Partial marks for viable approaches
2. Zero marks if the answer makes no sense
3. 20% marks if you admit to not knowing how to solve

- $20 \%>0 \%$!

Course Timeline

- (Approximate dates)
- \approx Feb 1: HW1 posted
- \approx Feb 15: HW1 due
- \approx Mar 1: HW2 posted, project proposal due
- \approx Mar 15: HW2 due
- \approx Week of Mar 15: Mid-project check-in
- Last 1.5-2 lectures: Project presentations
- \approx April 10: Project reports due

Course Project

- How?
> Groups of 1-3
- Larger groups are better
- Find partners early, but maybe after the enrollment stabilizes
- What?
> Empirical: Quantitative analysis of algorithms presented in class (or your own) using simulations or real data
> Theoretical: Prove new observations about the algorithms or design new algorithms for a problem
> Ideal: A bit of both

Project Topic

- From your own research area of interest
> We'll introduce broad concepts that you may be able to apply to your own research area in order to find a project topic
> E.g., fairness, allocation efficiency, preference elicitation, ...
- From the course
> I'll mention some open problems as we go along
> Later, I'll also post sample projects from previous years as well as sample project ideas for this year
> You can also study realistic variants of problems that we see in class

Course Project: Timeline

- Find partners and think about a project idea
- Submission 1: Project proposal
> Ideally 1 page but up to 2 pages excluding references
> Outline of the idea, prior work, reasonable goals
- Mid-project meetings
> Optional, 1-1 with me, 30-minute
- Class presentations
- Submission 2: Final project report
> Up to 5 pages excluding references and appendix
> Focus on quality academic writing

Introductions

Brief Introductions

- What to say?
> Which program?
> Which year?
> Who are you working with (if any)?
> What is your area of interest (if any)?
> Anything else you'd like to share

Overview of the Course

Social Choice, Mechanism Design

- Social choice
> Given the preferences of the agents, which collective decision is the most desirable?
> Fairness, welfare, ethics, resource utilization, ...
- Mechanism design
> Agents have private information, which they may lie about
> How to design the "rules of the game" such that selfish agent behavior results in desirable outcomes
> We call this "implementing" the social choice rule

Mechanism Design

- With money
> Principal can "charge" the agents (require payments)
> Helps significantly
> Example: auctions
- Without money
> Monetary transfers are not allowed
> Incentives must be balanced otherwise
> Often impossible without sacrificing the objective a little
> Example: elections, kidney exchange

Example: Auction

Objective: The one who really needs it more should have it.
Rule 1: Each would tell me his/her value. I'll give it to the one with the higher value.

Example: Auction

Objective: The one who really needs it more should have it.
Rule 2: Each would tell me his/her value. l'll give it to the one with the higher value, but they must pay me that value.

Example: Auction

Objective: The one who really needs it more should have it.
Question: Can I make it easier so that each can just truthfully tell me how much they value it?

Real-World Applications

- Auctions form a significant part of mechanism design with money
- Auctions are ubiquitous in the real world!
> A significant source of revenue for many large organizations (including Facebook and Google)
> Often run billions of tiny auctions everyday
> Need the algorithms to be fast

Example: Facility Location

Cost to each agent: Distance from the hospital
Objective: Minimize the sum of costs
Constraint: No money

Example: Facility Location

Q: What is the optimal hospital location?
Q: If we decide to choose the optimal location, will the agents really tell us where they live?

Example: Facility Location

Cost to each agent: Distance from the hospital
Objective: Minimize the maximum cost
Constraint: No money

Example: Facility Location

Q: What is the optimal hospital location?
Q: If we decide to choose the optimal location, will the agents really tell us where they live?

Real-World Applications

Roth

Gale

Shapley

Matching

- National Resident Matching Program (NRMP)
- School Choice (New York, Boston)

Fair Division splíddít

Voting
(2) ROBOVOTE

Voting Theory

Social Choice Theory

- Mathematical theory for aggregating individual preferences into collective decisions

Voting Theory

- Originated in ancient Greece
- Formal foundations
> $13^{\text {th }}$ Century (Ramon Llull)
$>18^{\text {th }}$ Century (Marquis de Condorcet and Jean-Charles de Borda)
> 19th Century: Charles Dodgson (a.k.a. Lewis Carroll)
> $20^{\text {th }}$ Century: Nobel prizes to Kenneth Arrow and Amartya Sen

Voting Theory

- We want to select a collective decision based on (possibly different) individual preferences
> Presidential election, restaurant/movie selection for group activity, committee selection, facility location, ...
- Resource allocation is a special case
> You can think of all possible allocations as the different "outcomes"
- A very restricted case due to lots of ties
- An agent is indifferent among all allocations in which the resources she gets are the same
> We want to study the general case

Voting Framework

- Set of voters $N=\{1, \ldots, n\}$
- Set of alternatives $A,|A|=m$
- Voter i has a preference ranking $>_{i}$ over the alternatives
- Preference profile \gg is the collection of all voters' rankings

Voting Framework

- Social choice function f
> Takes as input a preference profile $\overrightarrow{>}$
> Returns an alternative $a \in A$
- Social welfare function f
> Takes as input a preference profile $\overrightarrow{>}$
> Returns a societal preference $>^{*}$
- For now, voting rule = social choice function

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
a	c	b
b	a	a
c	b	c

Voting Rules

- Plurality
> Each voter awards one point to her top alternative
> Alternative with the most point wins
> Most frequently used voting rule
> Almost all political elections use plurality
- Problem?

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	a	a	b	b
b	b	b	c	c
c	c	c	d	d
d	d	d	e	e
e	e	e	a	a

Winner
a

Voting Rules

- Borda Count
> Each voter awards $m-k$ points to alternative at rank k
> Alternative with the most points wins
> Proposed by Ramon Llull in the $13^{\text {th }}$ Century but named after $18^{\text {th }}$ Century work by Jean-Charles de Borda
> Used for elections to the national assembly of Slovenia

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathrm{a}(2)$	$\mathrm{c}(2)$	$\mathrm{b}(2)$
$\mathrm{b}(1)$	$\mathrm{a}(1)$	$\mathrm{a}(1)$
$\mathrm{c}(0)$	$\mathrm{b}(0)$	$\mathrm{c}(0)$

Total
a: $2+1+1=4$
b: $1+0+2=3$
c: $0+2+0=2$

Winner
a

Current uses [edit

Political uses [edit]

 1991, tactical voting has been an important feature of the nominating process.

The modified Borda count has been used by the Green Party of Ireland to elect its chairperson. ${ }^{\text {(5IIT] }}$
 UDA.

Other uses [edit]

The Borda count is used in elections by some educational institutions in the United States.

- University of Michigan
- Central Student Government
- Student Government of the College of Literature, Science and the Arts (LSASG)
- University of Missouri: officers of the Graduate-Professional Council
- University of California Los Angeles: officers of the Graduate Student Association
- Harvard University: officers of the Civil Liberties Union
- Southern Illinois University at Carbondale: officers of the Faculty Senate,
- Arizona State University: officers of the Department of Mathematics and Statistics assembly.
- Wheaton College, Massachusetts: faculty members of committees.
- College of William and Mary: members of the faculty personnel committee of the School of Business Administration (tie-breaker)

Borda count in real life

The Borda count is used in elections by some professional and technical societies.

- International Society for Cryobiology: Board of Governors.
- Tempo sustainable design network: management committee.
- U.S. Wheat and Barley Scab Initiative: members of Research Area Committees.
- X.Org Foundation: Board of Directors

The OpenGL Architecture Review Board uses the Borda count as one of the feature-selection methods

The modified Borda count is used to elect the President for the United States member committee of AIESEC.
The Borda count, and points-based systems similar to it, are often used to determine awards in competitions.
The Borda count is a popular method for granting sports awards in the United States. Uses include:

- MLB Most Valuable Player Award (baseball)
- Heisman Trophy (college football) ${ }^{[3]}$
- Ranking of NCAA college teams
 the other eight entries getting points from 8 to 1 . Although designed to favor a clear winner, it has produced very close races and even a tie.
The People's Remix Competition uses a Borda variant where each voter ranks only the top three contestants.

Voting Rules

- Positional Scoring Rules
> Defined by a score vector $\vec{s}=\left(s_{1}, \ldots, s_{m}\right)$
> Each voter gives s_{k} points to alternative at rank k
- A family containing many important rules
> Plurality $=(1,0, \ldots, 0)$
$>$ Borda $=(m-1, m-2, \ldots, 0)$
$>k$-approval $=(1, \ldots, 1,0, \ldots, 0) \leftarrow$ top k get 1 point each
$>$ Veto $=(0, \ldots, 0,-1)$
> ...

Voting Rules

- Plurality with runoff
> First round: two alternatives with the highest plurality scores survive
> Second round: between these two alternatives, select the one that majority of voters prefer
- Similar to the French presidential election system
> Problem: vote division
> Happened in the 2002 French presidential election

Voting Rules

- Single Transferable Vote (STV)
> $m-1$ rounds
$>$ In each round, the alternative with the least plurality votes is eliminated
> Alternative left standing is the winner
> Used in Ireland, Malta, Australia, New Zealand, ...
- STV has been strongly advocated for due to various reasons

STV Example

2 voters	$\mathbf{2}$ voters	$\mathbf{1}$ voter
a	b	c
b	a	d
c	d	b
d	c	a

2 voters	$\mathbf{2}$ voters	$\mathbf{1}$ voter
a	b	c
b	a	b
c	c	a

2 voters	$\mathbf{2}$ voters	$\mathbf{1}$ voter
b	b	b

2 voters	$\mathbf{2}$ voters	$\mathbf{1}$ voter
a	b	b
b	a	a

Voting Rules

- Kemeny’s Rule
> Social welfare function (selects a ranking)
> Let $n_{a>b}$ be the number of voters who prefer a to b
> Select a ranking σ of alternatives $=$ for every pair (a, b) where $a>_{\sigma} b$, we make $n_{b>a}$ voters unhappy
> Total unhappiness $K(\sigma)=\sum_{(a, b): a>_{\sigma} b} n_{b>a}$
> Select the ranking σ^{*} with minimum total unhappiness
- Social choice function
> Choose the top alternative in the Kemeny ranking

Kemeny Example

2 voters	$\mathbf{2}$ voters	$\mathbf{1}$ voter
a	b	c
b	a	d
c	d	b
d	c	a

- $K(a>b>c>d)$
$>0 \times$ first 2 voters
$>2 x$ next 2 voters
$>5 \times$ last voter
>9 in total
- $K(b>a>c>d)$
$>1 \times$ first 2 voters
$>1 \times$ next 2 voters
$>4 x$ last voter
>8 in total

Condorcet Winner

- Definition
- Alternative x defeats y in a pairwise election if a strict majority of voters prefer x to y
> Alternative x is a Condorcet winner if it defeats every other alternative in a pairwise election
- Question
> Can there be two Condorcet winners?
- Condorcet paradox
> No Condorcet winner when the majority

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
a	b	c
b	c	a
c	a	b

Majority Preference

$$
a \succ b
$$

$b>c$ preference is cyclic

Condorcet Consistency

- Condorcet consistency
> A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists
> On preference profiles where there is no Condorcet winner, it is free to output any winner
- Among the rules we saw so far...
> NOT Condorcet consistent: all positional scoring rules (plurality, Borda, ...), plurality with runoff, STV
> Condorcet consistent: Kemeny (Why?)

Majority Consistency

- Majority consistency
> If a strict majority of voters rank alternative x first, then x must be the winner.
- Question: What is the relation between majority consistency and Condorcet consistency?

1. Majority consistency \Rightarrow Condorcet consistency
2. Condorcet consistency \Rightarrow Majority consistency
3. Equivalent
4. Incomparable

Condorcet Consistency

- Copeland
> Score $(x)=$ \# alternatives x beats in pairwise elections
> Select x^{*} with the maximum score
> Condorcet consistent (Why?)
- Maximin
$>\operatorname{Score}(x)=\min _{y} n_{x>y}$
> Select x^{*} with the maximum score
> Also Condorcet consistent (Why?)

