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Abstract

The literature on algorithmic mechanism design is mostly concerned with game-theoretic
versions of optimization problems to which standard economic money-based mechanisms cannot
be applied efficiently. Recent years have seen the design of various truthful approximation
mechanisms that rely on payments. In this paper, we advocate the reconsideration of highly
structured optimization problems in the context of mechanism design. We explicitly argue
for the first time that, in such domains, approximation can be leveraged to obtain truthfulness
without resorting to payments. This stands in contrast to previous work where payments are
almost ubiquitous, and (more often than not) approximation is a necessary evil that is required
to circumvent computational complexity.

We present a case study in approximate mechanism design without money. In our basic
setting agents are located on the real line and the mechanism must select the location of a
public facility; the cost of an agent is its distance to the facility. We establish tight upper and
lower bounds for the approximation ratio given by strategyproof mechanisms without payments,
with respect to both deterministic and randomized mechanisms, under two objective functions:
the social cost, and the maximum cost. We then extend our results in two natural directions: a
domain where two facilities must be located, and a domain where each agent controls multiple
locations.

1 Introduction

We anticipate that most computer scientists and most economists will view our contribution differ-
ently, hence we initially cater to the two (complementary) points of view separately as we introduce
our work.

The Computer Science Perspective. The vibrant field of algorithmic mechanism design, which
originated in the work of Nisan and Ronen [46], deals with game-theoretic versions of (often Internet-
related) optimization problems such as task scheduling and resource allocation. In these settings
the problem input is distributed among selfish agents; the agents might lie about their private
information if this serves their own ends, resulting in a deterioration in the quality of the outcome.
A mechanism is a function that selects an outcome, and possibly also a payment scheme, given the
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reported types of the agents. The goal is then to design mechanisms that encourage truthfulness
while optimizing an objective function.1

It has been observed [17] that there are two major classes of problems in algorithmic mechanism
design. The first class contains problems for which there exist optimal truthful mechanisms, but the
problem is computationally intractable. Typical examples include the line of work on combinatorial
auctions (see, e.g., [37, 32, 35, 21]), where the objective function is usually the maximization of the
social welfare, that is, the sum of agents’ utilities. For this objective function a truthful optimal
mechanism is given by the well-known Vickrey-Clarke-Groves (VCG) mechanism [56, 18, 28]. VCG
uses payments in order to align the interests of individual agents with the interests of society.
Unfortunately, it turns out that an approximation of the social welfare is insufficient to guarantee
truthfulness using VCG. Therefore, researchers have focused on designing truthful yet efficient
approximation mechanisms; by approximation we refer to the standard multiplicative sense, that
is, an α-approximation mechanism always returns a solution that is within an α-factor of the
optimal solution. In other words, researchers circumvent the computational hardness by resorting
to approximation, and at the same time enforce tailor-made payments to guarantee truthfulness.
Papers about scheduling on related machines (see, e.g., [4, 3, 20]) also fall into the first class,
although in the scheduling domain the objective is usually to minimize the makespan.

The second (significantly smaller) class of problems involves optimization problems that are
not necessarily intractable, but for which there is no optimal truthful mechanism. The prominent
problem in this class is scheduling on unrelated machines (see, e.g., [46, 36, 17]). In such domains one
might investigate the optimal approximation ratio achievable by any truthful mechanism, regardless
of computational feasibility.

The assumption underlying essentially almost all previous work on truthful approximation mech-
anisms is the existence of money, or, in other words, the ability to make payments. This assumption
is explicit in Nisan and Ronen’s very definition of mechanism [46], but is easily challenged when it
comes to computational settings. In particular, in Internet domains payments are notoriously diffi-
cult to implement, mainly due to security and banking issues. Moreover, Schummer and Vohra [52]
note that “there are many important environments where money cannot be used as a medium of
compensation”, due to ethical considerations (for instance, in political decision making) or legal
considerations (e.g., in the context of organ donations). It is therefore natural to ask whether
it is possible to design truthful mechanisms without payments; such mechanisms are known as
strategyproof in the social choice literature.

To summarize, from the computer science viewpoint, the novel component of the eponymous
phrase “approximate mechanism design without money” is “without money”.

The Economics Perspective. A significant body of work studies mechanism design without
money. Prominent examples include strategyproof mechanisms for stable matchings [26, 49]; related
papers on mechanisms for kidney exchange (see, e.g., [8]); and papers at the interface of mechanism
design and social choice, some of which are discussed in detail below (see, e.g., [45, 44]). For more
details, see the survey by Schummer and Vohra [52].2

Economists typically gauge the quality of an outcome using Boolean properties such as Pareto
efficiency, which requires that there be no other outcome that is at least as good for all agents and

1Here we are taking a narrow view of algorithmic mechanism design.
2Some of the work by computer scientists can also be labeled as “mechanism design without money”, for example

work on interdomain routing by Levin et al. [39], as well as (arguably) some of the work on computational complexity
as a barrier to manipulation in elections [24].

2



strictly better for at least one agent. In particular, the existing literature on mechanism design
without money typically does not attempt to quantify the quality of an outcome. Without an
explicit optimization objective that measures the quality of outcomes, approximation cannot play
a role.

To summarize, from the economics viewpoint, the novel component of “approximate mecha-
nism design without money” is “approximate”, which also encapsulates our focus on optimization
problems.

All Together Now: What is Approximate Mechanism Design Without Money? We
consider game-theoretic optimization problems where returning the optimal solution is not strat-
egyproof. Our main conceptual contribution is the explicit suggestion that approximation can be
used to obtain strategyproofness without resorting to payments; in other words, we propose to sacri-
fice the optimality of the solution in order to achieve strategyproofness, and (crucially) to quantify
how much was sacrificed using the notion of approximation. In essence, this agenda is reminis-
cent of the second class of algorithmic mechanism design problems discussed above, in the sense
that approximation is seen to enable truthfulness rather than hinder it. However, our rejection of
money stands in contrast to the existing work in algorithmic mechanism design (again, narrowly
construed), where payments are almost ubiquitous.

The contrast with previous work in algorithmic mechanism design becomes even more striking
when one considers (as we do in this paper) computationally tractable optimization problems where
there is an optimal, computationally efficient, truthful, payment-based mechanism, but there is no
optimal truthful mechanism without money. Crucially, this type of problems does not fall into either
of the two classes mentioned above. We therefore have a new class of problems that has previously
been disregarded, and, we suggest, should be considered.

Importantly, our agenda only applies to optimization problems where there exist reasonable
strategyproof mechanisms without payments. In particular, we must escape social choice impos-
sibility results such as the Gibbard-Satterthwaite Theorem [27, 50] and its variations, e.g., the
important paper of Barberà and Peleg regarding continuous preferences [11]. Hence, we consider
highly structured domains where these results do not hold.

Our Results. This paper presents a case study in approximate mechanism design without money.
Our point of departure is the literature on single peaked preferences. Single peaked preferences are
induced by an ordering of the possible outcomes, or alternatives, on a line. For example, the
alternatives can represent different candidates in a political election, and their position can reflect
the position of the candidates on a political issue, from left-wing to right-wing. Each agent i is
assumed to have a peak, which is its most preferred alternative. The ordinal preferences of agents
must obey the following restriction: if an agent prefers alternative a to b, then either (i) a is the
agent’s peak, or (ii) a and b lie on opposite sides of the peak, or (iii) a and b lie on the same side
of the peak and a is closer to the peak than b. Single peaked preferences and their extensions have
been extensively studied in the social choice literature, starting with the work of Black [13] and
Moulin [45]; see the surveys by Barberà [10] and Sprumont [53], and the references therein.

Recall that we are interested in optimization problems, and hence we restrict agents’ preferences
further. In the basic domain that we study, each agent i has a location xi ∈ R. Given the locations
of all the agents, a mechanism selects the location y ∈ R of a facility. The cost of agent i is simply
the distance |y − xi|. For example, xi might be the location of the house of agent i on a street,
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and y might be the location of a grocery store or a public library. We use the terminology of
facility location problems, but the facility is simply an abstraction of a public good, and the same
domain can also be used to represent other settings. Indeed, returning to the political election
example and specializing it, xi may be the agent’s desired national income tax rate on a scale
between 50% (extreme left wing) and 0% (extreme right wing). Under these interpretations—and
others—payments may be infeasible, for the reasons discussed above.

We study the above, basic setting in Section 3. We observe that choosing the median location
is a group strategyproof (i.e., even coalitions of agents cannot gain by lying) mechanism that mini-
mizes the social cost, that is, the sum of the agents’ costs. However, if the goal is to minimize the
maximum cost, selecting the optimal facility location—the average of the leftmost and rightmost
locations—is no longer strategyproof. With respect to this objective function, we give a determin-
istic group strategyproof mechanism (without money) that yields an approximation ratio of 2, and
provide a matching lower bound that holds even against (individually) strategyproof deterministic
mechanisms (without money). Further, we give a group strategyproof randomized mechanism with
an approximation ratio of 3/2, and provide a matching strategyproof lower bound. These results
are summarized in Table 1.

We subsequently study two natural extensions of the basic setting. In both settings, the optimal
solution is not strategyproof even with respect to the social cost, and we resort to strategyproof
approximation mechanisms, some straightforward and some nontrivial. Section 4 deals with a
setting where two facilities must be located; the cost of an agent is its distance to the nearest
one. Our main result of Section 4 is a randomized strategyproof 5/3-approximation mechanism for
the maximum cost objective function. This result is notable since the mechanism (Mechanism 2)
incorporates several new ideas in order to achieve strategyproofness, and, unlike other mechanisms,
the difficult part of its analysis (Theorem 4.5) is the proof of strategyproofness.

Section 5 is concerned with a setting where only one facility must be located, but each agent
is associated with multiple locations. For example, a real estate agent is responsible for multi-
ple properties, and in expressing preferences for a facility would take the location of all of these
properties into account. More generally, an agent is interested in optimizing the objective function
with respect to its own multiset of locations, whereas the designer is interested in optimizing over
the entire multiset of locations. In this section, our main results are a randomized strategyproof
mechanism that yields a 2-approximation to the social cost when there are two agents that control
the same number of locations, and a randomized group strategyproof mechanism that has a tight
approximation ratio of 3/2 for the maximum cost. Due to the sheer number of results we do not
list them all here, but rather refer the impatient reader to Tables 2 and 3.

2 Related Work

Previous and parallel work. The origins of the agenda of approximate mechanism design
without money can be traced to the paper of Dekel et al. [19] on incentive compatible learning, a
line of work that was followed up in recent papers [42, 43]. It turns out that the study of incentives in
general learning-theoretic domains reduces to simpler settings where strategyproof approximation
mechanisms without money can be designed. There are some mathematical connections between
our work and that of Dekel et al. [19], on which we elaborate in Section 5. One of the main
contributions of this paper is that we properly crystallize and explicitly advocate approximate
mechanism design without money.
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Our agenda is reminiscent of the line of work on the frugality of mechanisms (see, e.g., [5, 23] in
the context of buying an s-t path). This body of research deals with designing truthful mechanisms
that have to pay as little as possible. One way to see our work is as taking the concept of frugality
to the limit by requiring zero payments.

The domain that we study in Section 4, in which two facilities must be located on the real
line, was previously studied by Miyagawa [44]. He gave an interesting characterization of strate-
gyproof, Pareto-optimal, and continuous mechanisms in this setting. Unfortunately, continuity is
incompatible with approximation, hence we cannot technically utilize this result.

Incentives aside and taking an algorithmic point of view, the problems that we deal with are the
one-dimensional Euclidean k-median and k-center problems, when the objective functions are the
social cost and the maximum cost, respectively, and k = 1 (Section 3 and 5) or k = 2 (Section 4).
This may sound discouraging, but recall that we deliberately focus on relatively simple, structured
problems, and the domains that we deal with are extremely well-studied in the social choice litera-
ture [10, 53]. The k-median and k-center problems were extensively investigated, especially in the
context of clustering, and can be approximated using sophisticated algorithms (see, e.g., [12, 6]).

Some papers in Operations Research [31, 34, 9, 14] deal with the question: “How bad can
a Condorcet point be?”. A Condorcet point is a facility location that is preferred to any other
location by a majority of agents. The quality of a Condorcet point is measured by computing the
ratio between its social cost and the minimum social cost. This line of work deals with settings
where the agents are located on a graph; the approach is descriptive rather than algorithmic, and
game-theoretic considerations are not directly taken into account.

Finally, the rather large body of work on cost sharing includes papers on strategyproof mecha-
nisms for facility location problems that are related to ours (see, e.g., [38, 48]). Cost sharing deals
with groups of agents that agree to install a jointly used facility and split its cost, and thus this
setting inherently assumes the availability of money.

Subsequent work on Approximate Mechanism Design Without Money. Since an early
version of this paper became publicly available in November 2008, a considerable amount of work
has been devoted to improving and extending our facility location results; some published papers
include [1, 41, 40, 47, 25, 54, 55, 16]. For example, our basic setting was first extended by Alon et
al. [1], who considered facility location problems where one facility must be located (as in Section 3),
but the agents are located on a graph; the model is identical to the one investigated by Schummer
and Vohra [51]. Alon et al. provide a randomized algorithm that gives a 2-approximation to the
social cost on any graph. They also design a randomized mechanism that yields an approximation
ratio of 3/2 for the maximum cost when the agents are located on a circle; this mechanism builds
on our Mechanism 1.

Perhaps the two most technically relevant papers are those by Lu, Wang, and Zhou [41] and Lu
et al. [40]. Rather than outlining their results here, we discuss them in detail in Sections 4.3 and
5.3.

More importantly, the idea of approximate mechanism design without money, as first presented
in our work, has subsequently been applied to various domains that are fundamentally different
from the facility location setting studied here. These domains include:

1. Allocation of items [30, 29]. The agents have private additive valuation functions with respect
to a set of heterogeneous items. A mechanism maps the valuations of the agents to the
allocation of the items. The optimization target is the social welfare, i.e., the sum of utilities.
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2. Generalized assignment [22]. An instance is a bipartite graph, where the vertices on one side
correspond to jobs, and the vertices on the other correspond to machines; the agents are the
jobs. Machines have capacities and the edges have values and sizes. The edges incident to
an agent are the agent’s private information. A mechanism returns an assignment of jobs to
machines. The goal is to maximize the social welfare.

3. Approval voting [2]. The agents are the nodes of a directed graph, where an edge from agent
i to agent j means that agent i approves, trusts, or supports j. An agent’s outgoing edges
are its private information. A mechanism selects a subset of agents of fixed size. An agent’s
utility is 1 if it is a member of the selected subset and 0 otherwise. A mechanism is considered
SP if an agent cannot affect its chances of being selected by misreporting its outgoing edges.
The optimization target is the number of incoming edges to the selected subset. This setting
addresses realistic problems that arise in the context of directed social networks (such as
Twitter), reputation systems, and web search.

4. Matching [7, 15]. Each agent controls a private subset of vertices in an undirected graph. A
mechanism outputs a matching on the graph. An agent’s utility is the number of its vertices
that are matched. A mechanism is SP if an agent cannot benefit by hiding vertices, where
the assumption is that an agent can privately match hidden vertices among themselves. The
optimization target is the social welfare, that is, (twice) the size of the matching.

5. Scheduling [33]. The agents are (unrelated) machines, and there is a set of tasks such that
machine i requires time tij to execute task j. A mechanism maps the reported execution
times to an allocation of tasks to machines. The cost of an agent is the sum of execution
times of its assigned tasks, and the goal is to minimize the social cost or the maximum cost
(also known in this context as the makespan).

3 The Basic Setting

Let N = {1, . . . , n} be a set of agents. Each agent i ∈ N has a location xi ∈ R. We refer to the
collection x = 〈x1, . . . , xn〉 as the location profile.3

A (deterministic) mechanism in this simple setting is a function f : Rn → R, that is, a function
that maps a given location profile to a location of a facility. If the facility is located at y, the cost
of agent i ∈ N is cost(y, xi) = |y − xi|.

A randomized mechanism is a function f from Rn to probability distributions over R. In other
words, a randomized mechanism allows us to randomly specify the location of the facility for every
given location profile. If f(x) = P , where P is a probability distribution, the cost of agent i ∈ N
is defined as the expected distance from the location of i, i.e., cost(P, xi) = Ey∼P |y − xi|.

A mechanism f is strategyproof if an agent can never benefit from reporting a false location,
regardless of the strategies of the other agents. In the current setting, this means that for all
x ∈ Rn, for all i ∈ N , and for all x′i ∈ R, cost(f(x), xi) ≤ cost(f(x′i,x−i), xi), where x−i =
〈x1, . . . , xi−1, xi+1, . . . , xn〉 is the vector of the locations of all agents in N \ {i}.

A mechanism is group strategyproof if for any location profile x and any coalition S ⊆ N , there is
no joint deviation x′S of the agents in S such that all the agents in S gain, that is, for all x ∈ Rn, for

3Some papers on single peaked preferences restrict the locations to an interval; our results hold in that model as
well.
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all S ⊆ N , and for all xS ∈ R|S|, there exists i ∈ S such that cost(f(x), xi) ≤ cost(f(x′S ,x−S), xi).
Notice that it is possible to define (strong) group strategyproofness by asking that it cannot be
the case that all the deviating agents do not lose and at least one gains. Some of our group
strategyproofness results do not hold under this stronger definition. However, our (weaker) notion
of strategyproofness is very common in social choice, since in settings where payments (and in
particular, side payments) cannot be made, an agent that does not strictly gain has no incentive
to become a member of the deviating coalition.

In this paper, we shall be interested in strategyproof mechanisms that also do well with respect to
optimizing one of two objective functions: minimizing the social cost, or minimizing the maximum
cost.

The social cost of a facility location y ∈ Rn with respect to the profile x ∈ Rn is sc(y,x) =∑
i∈N cost(y, xi); the social cost of a distribution P with respect to x is sc(P,x) = Ey∼P [sc(y,x)].

The maximum cost of a y with respect to x is mc(y,x) = maxi∈N cost(y, xi), whereas the maximum
cost of P with respect to x is mc(P,x) = Ey∼P [mc(y,x)].

3.1 Social Cost

We warm up by tackling an easy question: is there a strategyproof mechanism that minimizes the
social cost? The solution is very simple: choose the median location in x, which we shall denote
by med(x). Indeed, assume that n is odd, n = 2k + 1. Any point that is to the left of the median
has higher social cost than that of the median since it is further away from at least k+ 1 locations
and closer to at most k locations, and the same holds for any point to the right of the median. If
n is even, n = 2k, and without loss of generality x1 ≤ x2 ≤ · · · ≤ xn, then any point in the interval
[xk, xk+1] is an optimal facility location. In this case, when we refer to the median med(x) we mean
the leftmost point of the optimal interval, i.e., the kth order statistic.

As noted in Section 1, the structure of the preferences of our agents is known in the social choice
literature as single peaked : the peak, or bliss point, of agent i is at xi, and the closer a location is to
xi, the more preferred it is. It has long been known that, when agents have single peaked preferences,
the selection of the kth order statistic for some k ∈ {1, . . . , n} is group strategyproof [45]; this is
also very easy to verify. In particular, selecting the median peak is group strategyproof. Hence, in
our basic setting, the social cost can in fact be minimized using a group strategyproof mechanism.

3.2 Maximum Cost

The second objective function that we consider is minimizing the maximum cost. Here the situation
becomes nontrivial, even in the basic setting presented above. We will first investigate deterministic
mechanisms, and then turn our attention to randomized mechanisms.

Deterministic Mechanisms. For a location profile x ∈ Rn, denote the leftmost location in
x by lt(x) = mini∈N xi, and the rightmost location by rt(x) = maxi∈N xi. Furthermore, denote
the center of the interval [lt(x), rt(x)] by cen(x) = (lt(x) + rt(x))/2. Given x, the solution that
minimizes the maximum cost is cen(x). Unfortunately, this solution is not (even individually)
strategyproof. Indeed, if N = {1, 2}, x1 = 0 and x2 = 1, agent 2 can move the optimal solution to
its own location by reporting x′2 = 2.

A trivial, group strategyproof solution would be to choose any kth order statistic for some
k ∈ {1, . . . , n}. For reasons that will become apparent in the sequel, we choose the first order
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statistic, i.e., lt(x). Notice that any point in the interval [lt(x), rt(x)] would give a 2-approximation
to the maximum cost. We have therefore obtained the following straightforward result.

Theorem 3.1. f(x) = lt(x) is a group strategyproof 2-approximation mechanism for the maximum
cost.

Given the simplicity of our group strategyproof, 2-approximation mechanism, it may be some-
what surprising that no (even individually) strategyproof mechanism can do better, as the following
theorem asserts.

Theorem 3.2. Let N = {1, . . . , n}, n ≥ 2. Any deterministic strategyproof mechanism f : Rn → R
has an approximation ratio of at least 2 for the maximum cost.

Proof. We first deal with the case where N = {1, 2}, and subsequently touch on extending the
proof to an arbitrary n.

Assume for contradiction that f : Rn → R is a strategyproof mechanism and has an approxi-
mation ratio smaller than 2 for the maximum cost. Consider the location profile x where x1 = 0
and x2 = 1. Assume without loss of generality that f(x) = 1/2 + ε, ε ≥ 0. Now, consider the
profile x′ where x′1 = 0 and x′2 = 1/2 + ε. The optimum is the average of the two locations, namely
1/4+ε/2, which has a maximum cost of 1/4+ε/2. If the mechanism is to achieve an approximation
ratio better than 2, the facility must be placed in (0, 1/2 + ε). In that case, given the profile x′,
agent 2 can benefit by reporting x2 = 1, thus moving the solution to 1/2 + ε, in contradiction to
strategyproofness.

In order to extend this result to an arbitrary n, simply locate all the agents N \ {1, 2} at 1/2 in
each one of the profiles described above. All the arguments given above go through smoothly.

Randomized Mechanisms. We presently turn to randomized mechanisms; we shall demon-
strate that randomization allows us to break the deterministic lower bound of 2, given by Theo-
rem 3.2. Indeed, we focus on the following mechanism.

Mechanism 1. Given x, return lt(x) with probability 1/4, rt(x) with probability 1/4, and cen(x)
with probability 1/2.

It is possible to demonstrate that Mechanism 1 is group strategyproof. Moreover, the mechanism
gives a 3/2-approximation, well below the deterministic lower bound.

Theorem 3.3. Mechanism 1 is a group strategyproof 3/2-approximation mechanism for the maxi-
mum cost.

The proof of Theorem 3.3 is based on the observation that if there is a contraction of the interval
over which the mechanism randomizes, then the agents at the boundaries must be members of the
deviating coalition.

Proof of Theorem 3.3. By scaling the distances, we can assume without loss of generality that
lt(x) = 0 and rt(x) = 1. We shall first prove the claim about the approximation ratio.

The optimum cost is 1/2, whereas the expected cost of the algorithm is

1

4
· 1 +

1

4
· 1 +

1

2
· 1

2
=

3

4
.
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The approximation ratio is therefore 3/2.
We now turn to proving group strategyproofness. Let S ⊆ N be a coalition. We must demon-

strate that the agents in S cannot all gain by deviating.
A crucial observation is that, given x ∈ Rn, the only deviations that affect the outcome of

the mechanism are the ones that modify the locations of the extreme agents lt(x) and rt(x). The
location of lt(x) can always be pushed to the left and the location of rt(x) can always be pushed
to the right. However, lt(x) can be pushed to the right only if the leftmost agent is a member of
the deviating coalition S, that is, argmini∈Nxi ∩S 6= ∅. Similarly, rt(x) can be pushed to the right
only if the rightmost agent is a member of S.

Let x ∈ Rn, and let x′ ∈ Rn where, for every i 6= S, x′i = xi. Further, let ∆1 = lt(x) − lt(x′),
and ∆2 = rt(x′)− rt(x). We consider four cases.

Case 1: ∆1 ≥ 0 and ∆2 ≥ 0. Let i ∈ S; clearly xi ∈ [lt(x), rt(x)]. Denoting Mechanism 1 by f ,
we have:

cost(f(x′), xi) =
1

4
· (xi − lt(x) + ∆1) +

1

4
· (rt(x)− xi + ∆2)

+
1

2
·
∣∣∣∣xi − lt(x)−∆1 + rt(x) + ∆2

2

∣∣∣∣
≥ 1

4
· (xi − lt(x)) +

1

4
· (rt(x)− xi) +

1

2
·
∣∣∣∣xi − lt(x) + rt(x)

2

∣∣∣∣
= cost(f(x), xi) .

Case 2: ∆1 < 0 and ∆2 ≥ 0. In this case, it must be true that the leftmost agent, which is
located at 0, is a member of S. It is obvious that this agent cannot benefit from the deviation, and
in fact must strictly lose, since the leftmost point, the center, and possibly the rightmost point are
all moving further away from the agent’s location at 0.

Case 3: ∆1 ≥ 0 and ∆2 < 0. The case is symmetric to Case 2.
Case 4: ∆1 < 0 and ∆2 < 0. In this case, the leftmost agent, located at 0, and the rightmost

agent, located at 1, must both be members of S. We shall demonstrate that they cannot both gain
from the deviation.

cost(f(x′), 0) =
1

4
·∆1 +

1

4
· (1−∆2) +

1

2
· ∆1 + 1−∆2

2
= cost(f(x), 0) +

∆1 −∆2

2
.

Similarly,

cost(f(x′), 1) = cost(f(x), 1) +
∆2 −∆1

2
.

We conclude that

cost(f(x′), 0) + cost(f(x′), 1) = cost(f(x), 0) + cost(f(x), 1) ,

and hence either cost(f(x′), 0) ≥ cost(f(x), 0) or cost(f(x′), 1) ≥ cost(f(x), 1).

While the theorem implies that randomization allows us to drop the feasible strategyproof
approximation ratio from 2 to 3/2, we can also show that this is as far as randomization can take
us.

Theorem 3.4. Let N = {1, . . . , n}, n ≥ 2. Any randomized strategyproof mechanism has an
approximation ratio of at least 3/2 for the maximum cost.
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In order to prove the theorem, we require two straightforward lemmata.

Lemma 3.5. Let N = {1, 2}, and let x ∈ R2. Let P be a probability distribution over R such that

Ey∼P

[∣∣∣∣y − x1 + x2
2

∣∣∣∣] = ∆ .

Then the expected maximum cost is

∆ +
|x1 − x2|

2
.

Proof. For every y ∈ R, we have that the maximum cost is
∣∣y − x1+x2

2

∣∣ + |x1−x2|
2 . Therefore, the

expected maximum cost is

Ey∼P

[∣∣∣∣y − x1 + x2
2

∣∣∣∣+
|x1 − x2|

2

]
= ∆ +

|x1 − x2|
2

.

Lemma 3.6. Let N = {1, 2}, and let x1, x2 ∈ R. Let P be a probability distribution over R. Then
there exists i ∈ N such that

Ey∼P [|y − xi|] ≥
|x1 − x2|

2
.

Proof. Let Y be a random variable distributed according to P , and let X1 and X2 be random
variables defined by X1 = |Y − x1|, X2 = |Y − x2|. Then

E[X1] + E[X2] = E[X1 +X2] ≥ |x1 − x2| .

The lemma directly follows.

We are now ready to prove the theorem.

Proof of Theorem 3.4. As in the proof of Theorem 3.2, we first deal with the case N = {1, 2}, and
then extend the proof to more agents.

Let f be a randomized mechanism. Consider the profile x ∈ R2 where x1 = 0 and x2 = 1. We
have that f(x) = P , where P is a distribution over R. By Lemma 3.6, there exists i ∈ N , without
loss of generality x2, such that cost(P, x2) ≥ 1/2.

Now, consider the profile where x1 = 0, x′2 = 2. By strategyproofness, the expected distance
from 1 must still be at least 1/2, otherwise agent 2 gains from deviating from x2 to x′2. By
Lemma 3.5 (with ∆ = 1/2), the expected maximum cost is therefore at least 3/2, whereas the
optimum has a cost of 1; it follows that the approximation ratio of f is at least 3/2.

In order to extend the proof to an arbitrary number of agents n, we simply set the locations of
the additional agents to be 1/2; the proof works as before.

3.3 Discussion

Table 1 summarizes the results of Section 3. Our results in this section are completely tight. As we
move on to significantly more involved settings, obtaining tight bounds inevitably becomes much
more difficult.

Interestingly, if payments are allowed, it is possible to obtain a truthful optimal solution even for
the maximum cost, by using VCG-like payments: each agent i ∈ N pays the distance between the
optimal facility location when x is reported and the optimal facility location when x−i is reported.
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Objective Function Deterministic Randomized

Social Cost
UB: 1 GSP
LB: 1 SP

Maximum Cost
UB: 2 GSP (Thm 3.1)
LB: 2 SP (Thm 3.2)

UB: 3/2 GSP (Thm 3.3)
LB: 3/2 SP (Thm 3.4)

Table 1: A summary of the results of Section 3. UB and LB stand for upper bound and lower
bound, respectively. SP and GSP stand for strategyproof and group strategyproof, respectively.

4 Extension I: Two Facilities

In this section we investigate a first natural extension to the setting examined in Section 3: locating
two facilities instead of just one. A deterministic mechanism is now a function f : Rn → R2, that is,
the mechanism returns the locations y ∈ R2 of both facilities given a location profile. If y = 〈y1, y2〉,
the cost of an agent is its distance to the nearest facility: cost(y, xi) = min{|y1−xi|, |y2−xi|}. We
usually assume that y1 ≤ y2.

Similarly, a randomized mechanism returns a probability distribution P over R2, and the cost
of an agent is its expected distance to the nearest facility. We redefine sc(y,x) and mc(y,x) in the
obvious way according to the new definition of cost given above.

4.1 Social Cost

As before, we shall first look into minimizing the social cost in a strategyproof way. Let us first
consider the algorithmic problem of locating two facilities in a way that minimizes the social cost,
disregarding incentives. This problem is quite simple, although this may not be immediately
apparent. Indeed, given a location profile x ∈ Rn, let the optimal facility locations be y1, y2 ∈ R,
y1 ≤ y2. Informally, we can associate with y1 a multiset of locations L(x) ( {x1, . . . , xn} (for
“left”) whose cost is computed with respect to y1, and similarly associate with y2 a multiset of
locations R(x) ( {x1, . . . , xn} (for “right”) whose cost is computed with respect to y2, such that
for all xi ∈ L, xj ∈ R, xi ≤ xj . Now, y1 is the median of L(x) and y2 is the median of R(x). Hence,
it is sufficient to optimize over the n− 1 possible choices of L(x) and R(x).

Despite the algorithmic simplicity of the problem, and in contrast to the single facility setting,
minimizing the social cost in the two facility setting is not strategyproof. Intuitively, the reason is
that it is impossible to elicit the structure of L and R in a strategyproof way. The next theorem
in fact establishes a lower bound of 3/2−O(1/n).

Theorem 4.1. Let N = {1, . . . , n}, n ≥ 3. In the two facility setting, any deterministic strate-
gyproof mechanism f : Rn → R2 has an approximation ratio of at least 3/2−O(1/n) for the social
cost.

Proof. Let n ≥ 3. We construct a location profile x ∈ Rn as follows: x1 = −1, x2 = 1, and xi = 0
for all i ∈ N \ {1, 2}. The optimal solution has a social cost of 1. Let f be a mechanism, and let
f(x) = 〈y1, y2〉 ∈ R2. If |y1| ≥ 2

n−2 , and |y2| ≥ 2
n−2 , then sc(f(x),x) ≥ 2, hence the mechanism’s

approximation ratio is at least 2.
By the above, we can assume without loss of generality that |y1| ≤ 2

n−2 . Furthermore, assume
without loss of generality that y2 ≤ 0. We consider a deviation of agent 2 to x′2 = 3/2. Let

11



f(x′2,x−2) = 〈y′1, y′2〉. The optimal solution 〈0, 3/2〉 has a social cost of 1, therefore we can assume
once again that |y′1| ≤ 2

n−2 . In addition, cost(〈y1, y2〉, x2) ≥ 1 − 2
n−2 , hence by strategyproofness

we have that |y′2 − x2| ≥ 1− 2
n−2 . It follows that either y′2 ≥ 2− 2

n−2 , or y′2 ≤ 2
n−2 . In both cases,

we get that

sc(〈y′1, y′2〉, 〈x′2,x−2〉) ≥
3

2
− 2

n− 2
=

3

2
−O

(
1

n

)
,

hence the approximation ratio is at least 3/2−O(1/n).

It can be verified that a group strategy proof (n − 1)-approximation mechanism is given by
choosing lt(x) and rt(x) given the location profile x ∈ Rn. In brief, the reason is that lt(x) ∈ L(x)
and rt(x) ∈ R(x). The gap between this result and the lower bound given by Theorem 4.1 is still
huge; this gap was very recently closed by Lu et al. [40] (see Section 4.3).

4.2 Maximum Cost

Let us now turn to strategyproof mechanisms that approximate the maximum cost. Similarly to the
social cost objective, the problem of locating two facilities in a way that minimizes the maximum
cost is computationally straightforward. Moreover, we can give a very accurate characterization of
the structure of the optimal solution. We shall first require some notations.

Given x ∈ Rn, let the left boundary location be lb(x) = max {xi : i ∈ N, xi ≤ cen(x)}, and
the right boundary location be rb(x) = min {xi : i ∈ N, xi ≥ cen(x)}. Now, denote dist(x) =
max{lb(x)− lt(x), rt(x)− rb(x)}. The following lemma is the foundation of the positive results in
this subsection.

Lemma 4.2. Given x ∈ Rn, the optimal placement of two facilities has a maximum cost of
dist(x)/2.

Proof. As usual, we can assume without loss of generality (by scaling the distances) that lt(x) = 0,
rt(x) = 1; further, assume without loss of generality that lb(x) ≥ 1 − rb(x), that is, dist(x) is
defined by lb(x). We shall first show that there is a solution with the announced cost. Indeed, let
y∗ with y∗1 = lb(x)/2, y∗2 = (rb(x) + 1)/2. It holds that mc(y∗,x) = lb(x)/2 ≤ 1/4.

We argue that any solution must have a cost of at least lb(x)/2. Indeed, consider first a solution
y where y1 ≤ 1/2 and y2 ≤ 1/2, or y1 ≥ 1/2 and y2 ≥ 1/2; then mc(y,x) ≥ 1/2, making this
solution inferior to y∗. Now, Given that the solution only locates one facility y1 to the left of
1/2, we can assume that y2 ≥ 3/4, otherwise the cost is at least 1/4. Any location such that
|y1− lb(x)/2| = ε > 0 has a cost of at least lb(x)/2+ ε, incurred by its distance to either 0 or lb(x).
We conclude that the maximum cost is at least lb(x)/2.

Deterministic Mechanisms. Given our experience with the single facility case and Lemma 4.2,
obtaining a 2-approximation, group strategyproof, deterministic mechanism is quite straightfor-
ward: given x ∈ Rn, simply select the leftmost location lt(x) and the rightmost location rt(x).
Indeed, the maximum cost of our solution is dist(x), whereas the maximum cost of the optimal
solution, by Lemma 4.2, is dist(x)/2. We have obtained the following theorem.

Theorem 4.3. f(x) = 〈lt(x), rt(x)〉 is a group strategyproof 2-approximation mechanism for the
maximum cost in the two facility setting.
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As for lower bounds, notice that, when there are two agents it is possible to obtain an optimal
strategyproof solution by selecting the locations of the two agents. When n ≥ 3, however, we can
use a variation on the construction in the proof of Theorem 3.2.

Corollary 4.4. Let N = {1, . . . , n}, n ≥ 3. Any deterministic strategyproof mechanism f : Rn →
R2 has an approximation ratio of at least 2 for the maximum cost in the two facility setting.

Proof sketch. Use the same construction as in the proof of Theorem 3.2 for n−1 agents, and locate
an additional agent at, say, 10 in all the location profiles used in the proof. In order to get a
2-approximation, one of the two facilities must always be close to 10, whereas the same arguments
as before apply to the second facility and the rest of the agents.

Randomized Mechanisms. Above we saw that, with respect to deterministic mechanisms, the
results from Section 3 carry over quite smoothly to the two facility setting. This is no longer true
with respect to randomized mechanisms, for a variety of reasons.

We consider the following mechanism. It is inspired by Mechanism 1, but requires several
additional new ideas: randomizing over two equal intervals, unbalanced weights at the edges, and
correlation between the two facilities. These “tricks” play a crucial role in satisfying the delicate
strategyproofness constraints associated with the two facility setting.

Mechanism 2. Given x ∈ Rn, compute dist(x). Return y according to the following probability
distribution: 〈lt(x), rt(x)〉 with probability 1/2, 〈lt(x) + dist(x), rt(x) − dist(x)〉 with probability
1/6, and 〈lt(x) + dist(x)/2, rt(x)− dist(x)/2〉 with probability 1/3.

The unbalanced weights inevitably harm the mechanism’s approximation performance. Never-
theless, we shall demonstrate that Mechanism 2 succeeds in breaking the deterministic lower bound
of 2 by a significant margin.

Theorem 4.5. Mechanism 2 is a strategyproof 5/3-approximation mechanism for the maximum
cost in the two facility setting.

Proof. Let us first tackle the easy claim about the approximation ratio of the mechanism. Given
x, With probability 1/3, the output of the mechanism has a maximum cost of dist(x)/2. With
probability 2/3, the output has a maximum cost of dist(x). Hence, the expected maximum cost
of the mechanism of (5/6) · dist(x). By Lemma 4.2, the optimal solution has a maximum cost of
dist(x)/2. The ratio of the two expressions is 5/3.

Let us now turn to proving strategyproofness. Let x ∈ Rn be a location profile. Consider some
agent i ∈ N . We have that either xi ∈ [lt(x), lt(x) + dist(x)] or xi ∈ [rt(x)− dist(x), rt(x)]; assume
without loss of generality that xi ∈ [lt(x), lt(x) + dist(x)]. Denoting Mechanism 2 by f , let us
compute the cost of agent i when x is reported.

cost(f(x), xi) =
1

2
· (xi − lt(x)) +

1

6
· ((lt(x) + dist(x))− xi) +

1

3
· |(lt(x) + dist(x)/2)− xi| . (1)

We analyze a deviation x′i 6= xi of agent i ∈ N . Define a location profile x′ ∈ Rn such that
x′j = xj for every agent j 6= i. The proof proceeds by a case analysis.
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lt(x) rt(x)xi rb(x)

cen(x)dist(x) dist(x)

(a) Truthful location profile x.

lt(x′) rt(x′)x′i xi rb(x′)

cen(x′)dist(x′) dist(x′)

(b) Manipulated location profile x′.

Figure 1: An Illustration of Subsubcase 1.2.2 in the proof of Theorem 4.5.

Case 1: x′i ∈ [lt(x),∞). In this case, xi is at least as close to lt(x′), lt(x′) + dist(x′)/2, and
lt(x′)+dist(x′) as to rt(x′), rt(x′)−dist(x′)/2 and rt(x′)−dist(x′), respectively. Therefore, we can
ignore the location the mechanism selects for the right facility y2, and concentrate on the location
of the left facility y1. We examine two subcases.

Subcase 1.1: lt(x) < lt(x′). Crucially, in this case xi = lt(x). We wish to claim that

lt(x) + dist(x) ≤ lt(x′) + dist(x′) . (2)

This is trivial if lt(x′) ≥ lt(x) + dist(x), so we can assume that lt(x′) < lt(x) + dist(x). Now,
if lt(x) + dist(x) = lb(x), and since we have that cen(x) < cen(x′), it must hold that lb(x′) ≥
lt(x) + dist(x), hence (2) holds. If rt(x) − dist(x) = rb(x) and rb(x) ≤ cen(x′), then (2) trivially
holds since then lb(x′) ≥ rb(x). Finally, assume that rt(x)− dist(x) = rb(x) and rb(x) > cen(x′);
then dist(x′) ≥ rt(x′) − rb(x) ≥ dist(x), where the second inequality holds since rt(x′) ≥ rt(x).
Therefore, (2) follows from the fact that lt(x) < lt(x′).

Using (2), we have that lt(x) < lt(x′), lt(x)+dist(x) ≤ lt(x′)+dist(x′), hence lt(x)+dist(x)/2 <
lt(x′) + dist(x′)/2. Since xi = lt(x), this means that

0 = lt(x)− xi < lt(x′)− xi ,

(lt(x) + dist(x))− xi ≤ (lt(x′) + dist(x′))− xi ,

and
(lt(x) + dist(x)/2)− xi ≤ (lt(x′) + dist(x′))− xi .

In other words, the distance between xi and the locations that the mechanism randomizes over
only increases as a result of the deviation. Hence, the cost of agent i can only increase from the
deviation.

Subcase 1.2: lt(x) = lt(x′). We examine three subsubcases.
Subsubcase 1.2.1: dist(x′) = dist(x). In this subsubcase, the probability distribution over the

location of y1 does not change as a result of the deviation, so i does not benefit.4

Subcase 1.2.2: dist(x′) < dist(x). An important observation in the current subsubcase is
that xi = lt(x) + dist(x), that is, xi defines the border of the interval over which the mechanism
randomizes. Indeed, we have assumed that xi ∈ [lt(x), lt(x) + dist(x)], so xi ≤ lt(x) + dist(x).
If xi < lt(x) + dist(x), then either there is an agent j 6= i such that xj = lt(x) + dist(x) or
xj = rt(x) − dist(x); notice that in the latter case it also holds that xj ≥ lt(x) + dist(x). Since
x′j = xj , it must be the case that dist(x′) ≥ dist(x). See Figure 1 for an illustration.

4Note that the probability distribution over the location of y2 might change, since, if x′i > rt(x) then rt(x′) = x′i.
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It follows from the observation and from the fact that lt(x) = lt(x′) (since we are in Case 1.2)
that in our current subsubcase,

0 = xi − (lt(x) + dist(x)) < xi − (lt(x′) + dist(x′)) ,

xi − (lt(x) + dist(x)/2) < xi − (lt(x′) + dist(x′)/2) ,

and xi − lt(x) = xi − lt(x′). As in Subcase 1.1, the distance between xi and the locations that
the mechanism randomizes over only increases as a result of the deviation, so the cost of agent i
increases from the deviation.

Subsubcase 1.2.3: dist(x′) > dist(x). Let dist(x′) = dist(x) + ∆. Observe that lt(x) +
dist(x′)/2 = lt(x) + dist(x) + ∆/2. Since xi ∈ [lt(x), lt(x) + dist(x)], it holds that

cost(f(x′), xi) =
1

2
· (xi − lt(x)) +

1

6
· ((lt(x) + dist(x′))− xi) +

1

3
· |(lt(x) + dist(x′)/2)− xi|

≥ 1

2
(xi − lt(x)) +

1

6
((lt(x) + dist(x) + ∆)− xi) +

1

3

(
|lt(x) + dist(x)/2− xi| −

∆

2

)
= cost(f(x), xi) ,

where the last transition follows from (1).

Case 2: x′i ∈ (−∞, lt(x)). Let x′i = lt(x)−∆, ∆ > 0. We examine two subcases.
Subcase 2.1: xi ≤ cen(x′). Informally, the deviation in Case 2 affects the location of cen(x′).

However, as long as xi ≤ cen(x′)), xi must be at least as close to lt(x′), lt(x′) + dist(x′)/2, and
lt(x′) + dist(x′) as to rt(x′), rt(x′)− dist(x′)/2 and rt(x′)− dist(x′), respectively. Therefore, as in
Case 1, in Subcase 2.1 we can focus on the distance of xi from y1 when we calculate the cost of
agent i.

We claim that in Subcase 2.1,

dist(x′) ≤ dist(x) + ∆ . (3)

Indeed, assume first that dist(x′) = lb(x′) − lt(x′). Since cen(x) > cen(x′), we have that
lb(x′) < cen(x), and hence

dist(x) ≥ lb(x′)− lt(x) = lb(x′)− lt(x′)−∆ = dist(x′)−∆ .

Now assume that dist(x′) = rt(x′) − rb(x′). If rb(x′) ≥ cen(x) then dist(x) ≥ dist(x′), so we can
assume that rb(x′) < cen(x). By definition, rb(x′) ≥ cen(x′). We have that cen(x′) = cen(x)−∆/2,
therefore cen(x)− rb(x′) ≤ ∆/2. It follows that rb(x′)− lt(x) ≥ rt(x)− rb(x′)−∆. Hence,

dist(x) ≥ rb(x′)− lt(x) ≥ rt(x)− rb(x′)−∆ = rt(x′)− rb(x′)−∆ = dist(x′)−∆ .

This concludes the proof of Equation (3). We break the rest of the analysis of Case 2.1 into two
subsubcases.

Subsubcase 2.1.1: There exists j 6= i such that |xj−cen(x′)| ≤ |xi−cen(x′)|; see Figure 2 for an
illustration. Informally, in this subsubcase agent i was not “supposed” to affect the value of dist(x′).
We claim that in this subsubcase, dist(x′) ≥ dist(x). Indeed, if dist(x) = rt(x) − rb(x), then the
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lt(x) rt(x)xi rb(x)lb(x)

cen(x)dist(x) dist(x)

(a) Truthful location profile x.

lt(x) rt(x′)xix′i rb(x′)lb(x′)

cen(x′)dist(x′) dist(x′)

∆

(b) Manipulated location profile x′.

Figure 2: An Illustration of Subsubcase 2.1.1 in the proof of Theorem 4.5.

claim follows from the facts that cen(x′) < cen(x) and rt(x) = rt(x′). If dist(x) = lb(x) − lt(x),
with xk located at lb(x), then the claim follows from the fact that both

xk − lt(x′) ≥ xk − lt(x) ≥ dist(x)

and
rt(x′)− xk = rt(x)− xk ≥ xk − lt(x) = dist(x) .

We are using the assumption of Subsubcase 2.1.1 about xj in the following way: it might be true
that k = i in the arguments above, but in that case we are guaranteed that there exists j 6= i such
xj is at least as close as xk to cen(x′), therefore we can use the location of xj to bound dist(x′).

It holds that lt(x′) = lt(x) − ∆. Further, since dist(x′) ≥ dist(x), and by (3) also dist(x′) ≤
dist(x) + ∆, we have the following inequalities:

lt(x) + dist(x)−∆ ≤ lt(x′) + dist(x′) ≤ lt(x) + dist(x) ,

and
lt(x) + dist(x)/2−∆ ≤ lt(x′) + dist(x′)/2 ≤ lt(x′) + dist(x)/2−∆/2 .

Hence,

cost(f(x′), xi) =
1

2
· (xi − lt(x′)) +

1

6
· (lt(x′) + dist(x′)− xi) +

1

3
· |lt(x′) + dist(x′)/2− xi|

≥ 1

2
(xi − lt(x) + ∆) +

1

6
((lt(x) + dist(x)− xi)−∆) +

1

3
(|lt(x) + dist(x)/2− xi| −∆)

= cost(f(x), xi) .

Subsubcase 2.1.2: |xj − cen(x′)| > |xi − cen(x′)| for all agents j 6= i. In this subsubcase it may
not be true that dist(x′) ≥ dist(x). Rather than relying on this inequality, we must rely on the
location of agent i.

First, we notice that by the arguments in Subsubcase 2.1.1, it must hold that

lt(x) + dist(x)− xi ≤ ∆ . (4)

Now, if dist(x) ≤ dist(x′) we can use the same arguments we used above, so let us assume that
dist(x) = dist(x′) + ∆′ for some ∆′ > 0. We have that lt(x′) + dist(x′) = lt(x) + dist(x)− (∆ + ∆′),
and hence, by (4),

|lt(x′) + dist(x′)− xi| ≥ (lt(x) + dist(x)− xi)−∆ + ∆′ .
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Furthermore, we have that

lt(x′) + dist(x′)/2 = lt(x)−∆ + (dist(x)−∆′)/2 .

Hence, in particular,

|(lt(x′) + dist(x′)/2)− xi| ≥ |(lt(x) + dist(x)/2)− xi| −∆−∆′/2 .

It follows that

cost(f(x′), xi) ≥
1

2
· (xi − lt(x) + ∆) +

1

6
· (lt(x) + dist(x)− xi −∆ + ∆′)

+
1

3
·
(
|lt(x) + dist(x)/2− xi| −∆− ∆′

2

)
= cost(f(x), xi) .

Subcase 2.2: xi > cen(x′). Let x′′i ∈ R, x′′i < lt(x), such that cen(x′′i ,x−i) = xi. Define x′′ such
that x′′j = xj for all j 6= i. Then:

cost(f(x′), xi)− cost(f(x), xi) = (cost(f(x′), xi)− cost(f(x′′), xi))

+ (cost(f(x′′), xi)− cost(f(x), xi)) .

By Subcase 2.1, cost(f(x′′), xi)− cost(f(x), xi) ≥ 0. The reader is encouraged to verify that, using
the arguments of Subcase 2.1, it is sufficient to show that

cost(f(x′), xi)− cost(f(x′′), xi) ≥ 0 ,

under the assumption that

rt(x′′)− dist(x′′) = rt(x′)− dist(x′′) = xi ,

and rt(x′)− dist(x′) < xi. We let ∆′ = dist(x′)− dist(x′′).
Notice that, since xi > cen(x′) and xi = cen(x′′), we may measure the cost of agent i with

respect to the location of the right facility y2. We have that

(rt(x′)− dist(x′))− xi = (rt(x′′)− dist(x′′)− xi) + ∆′ .

On the other hand,

|(rt(x′)− dist(x′)/2)− xi| ≥ |(rt(x′′)− dist(x′′)/2− xi| −∆′/2 .

By similar calculations as before, we get that

cost(f(x′), xi)− cost(f(x′′), xi) ≥
1

6
·∆′ + 1

3
·
(
−∆′

2

)
= 0 .

As in the deterministic case, we observe that the lower bound of 3/2 given in Theorem 3.4 also
holds, up to an additive term of ε, in our current setting, as long as n ≥ 3.
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Objective Function Deterministic Randomized

Social Cost
UB: n− 1 GSP

LB: 3/2−O(1/n) SP (Thm 4.1)
N/A

Maximum Cost
UB: 2 GSP (Thm 4.3)

LB: 2 SP (Cor 4.4)
UB: 5/3 SP (Thm 4.5)
LB: 3/2 SP (Cor 4.6)

Table 2: A summary of the results of Section 4. UB and LB stand for upper bound and lower
bound, respectively. SP and GSP stand for strategyproof and group strategyproof, respectively.

Corollary 4.6. Let N = {1, . . . , n}, and let ε > 0. Any randomized strategyproof mechanism has
an approximation ratio of at least 3/2− ε for the maximum cost in the two facility setting.

Proof sketch. We use the same construction as in the proof of Theorem 3.4 for n − 1 agents, and
add an additional agent located at a large enough value v(ε) that depends on ε. Now, in order to
obtain a small approximation ratio, the expected distance of the right facility y2 from v(ε) must
be small, hence the probability that y2 is relevant to the first n− 1 agents can be made arbitrarily
small. We conclude that the arguments of the proof of Theorem 3.4 work here as well, up to an
arbitrarily small additive term.

4.3 Discussion and Subsequent Work

Table 2 summarizes the results of Section 4. A truly intriguing gap is the one between the trivial
n− 1 strategyproof upper bound for the social cost, and the lower bound of 3/2. Our lower bound
was improved to 2 by Lu, Wang, and Zhou [41], and was very recently improved again to (n− 1)/2
by Lu et al. [40]. This last result is asymptotically tight, and implies that there are no nontrivial
deterministic SP mechanisms for the social cost. Lu et al. [40] complement their deterministic SP
lower bound with a surprising randomized SP upper bound of 4, which is obtained via a natural
mechanism. Currently the best randomized SP lower bound is 1.045 [41].

An open problem is the gap between our randomized upper bound of 5/3 for the maximum cost,
and the lower bound of 3/2. Moreover, it is unclear whether Mechanism 2 is group strategyproof.

A natural way to further extend the results of this section is to consider a setting with more
than two facilities. The computational problems involved are still tractable when the number of
facilities is constant. However, the intuitions behind the positive results given in this section (that
is, Theorems 4.3 and 4.5), as well as the randomized mechanism of Lu et al. [40], already collapse
even with respect to three facilities.

5 Extension II: Multiple Locations Per Agent

Another natural extension of the setting of Section 3 is the one in which each agent controls
multiple locations. Let wi be the number of locations controlled by agent i ∈ N . We denote
the set of locations that agent i controls by xi = 〈xi1, . . . , xiwi〉, and the location profile is now
x = 〈x1, . . . ,xn〉.

A deterministic mechanism in the multiple locations setting is a function f : Rw1×· · ·Rwn → R,
that locates a single facility given the multiple locations reported by each agent. As in Section 3,
a randomized mechanism returns a probability distribution over R.
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As before, we will be interested in minimizing the social cost or the maximum cost, but now
we make different assumptions about an agent’s cost depending on the objective function we are
considering. If the objective function is minimizing the social cost, given a facility location y, the
cost of an agent is the sum of distances to its locations: cost(y,xi) = sc(y,xi) =

∑wi
j=1 |y − xij |. If

the goal is minimizing the maximum cost, then the cost of an agent is the maximum distance to
its locations: cost(y,xi) = mc(y,xi) = maxj∈{1,...,wi} |y − xij |.

The same goes for randomized mechanisms, with respect to expected costs. Notice that, when
the individual costs are defined as above, optimizing the social cost is in fact equivalent to min-
imizing the sum of distances to all the locations controlled by all the agents, that is, choosing y
that minimizes

∑
i∈N

∑
j∈{1,...,wi} |y − xij |. Optimizing the maximum cost implies minimizing the

maximum distance with respect to all the locations controlled by all the agents, i.e., minimizing
maxi∈N maxj∈{1,...,wi} |y − xij |.

5.1 Social Cost

As in Section 4, when moving from the basic setting to this more elaborate setting, optimization of
the social cost is no longer strategyproof. To see this, consider a simple example with two agents.
Let x1 = 〈0, 1, 1〉 and x2 = 〈0, 0〉. The optimal solution is the median of all the locations, which is
0; we have that cost(0,x1) = 2. However, by reporting x′1 = 〈1, 1, 1〉, agent 1 can move the median
of all the locations to 1; notice that cost(1,x1) = 1, hence agent 1 benefits from misreporting its
locations.

Deterministic Mechanisms. Dekel, Fischer and Procaccia [19] have in fact investigated our
current setting (that is, optimizing the social cost when each agent controls multiple locations)
with respect to deterministic mechanisms, in the context of incentive compatible regression learning.
Some of their results (Section 4 of [19]) deal with a discrete setting where one wishes to optimize
the social cost under the absolute loss function, when the function class is the class of constant
functions; it can be verified, although it is not immediately obvious, that the two settings are
equivalent. Note that the results of Dekel et al. are stated under the assumption that the agents
all control the same number of points, that is, wi = wj for all i, j ∈ N , but they also hold when
this is not the case.

The following mechanism (essentially) was suggested by Dekel et al.

Mechanism 3. Given x, create a location profile x′ where for all i ∈ N , x′i = 〈med(xi), . . . ,med(xi)〉.
Return med(x′).

In other words, Mechanism 3 projects the wi locations of agent i onto its median, and then
selects the median among the modified locations. In essence, Mechanism 3 simply lies optimally
for the agents, given that the median location is being selected. Dekel et al. proved the following
theorem.

Theorem 5.1 (Dekel et al. [19], Theorem 4.1). Mechanism 3 is a group strategyproof 3-approximation
mechanism for the social cost in the multiple locations setting.

Furthermore, Dekel et al. provided a matching lower bound for deterministic mechanisms.
Their lower bound holds even when there are only two agents that control the same number of
locations.
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Theorem 5.2 (Dekel et al. [19], Theorem 4.2). Let N = {1, 2} and ε > 0. There is w ∈ N such
that, even when w1 = w2 = w, any strategyproof deterministic mechanism f : Rw × Rw → R has
an approximation ratio of at least 3− ε for the social cost in the multiple locations setting.

Randomized Mechanisms. Dekel et al. [19] did not discuss randomized mechanisms. We design
a simple randomized mechanism that succeeds in breaking the deterministic lower bound given by
Dekel et al. [19].

Mechanism 4. Given x, return med(xi) with probability wi/(
∑

j∈N wj).

This mechanism is strategyproof. Indeed, for each agent i ∈ N , agent i has single peaked
preferences with a peak at med(xi). Consider a situation where i lies; if it is not selected by the
mechanism, the lie does not make a difference; if i is selected, then it can only be worse off.

However, somewhat counterintuitively and in contrast to the group strategyproof mechanism
given by Dekel et al., Mechanism 4 is not group strategyproof; this is demonstrated by the following
example.

Example 5.3 (Mechanism 4 is not group strategyproof). Let N = {1, 2}, and set x1 = 〈−3,−2, 1〉
and x2 = 〈−1, 2, 3〉. The medians are med(x1) = −2, med(x2) = 2, and each is selected by
Mechanism 4 with probability 1/2. Hence, denoting Mechanism 4 by f , we have that for both
agents i ∈ N ,

cost(f(x),xi) =
1

2
· (1 + 3) +

1

2
· (1 + 4 + 5) = 7 .

On the other hand, consider the location profile x′ where both agents report all their locations
to be at 0. Then f(x′) selects 0 with probability one. Hence, for all i ∈ N , cost(xi, f(x′)) = 6.
This means that both agents strictly benefit from the deviation from x to x′.

We now turn to establishing the approximation guarantees provided by Mechanism 4.

Theorem 5.4. Mechanism 4 is a strategyproof mechanism in the multiple locations setting. More-
over, if n = 2, the mechanism yields an approximation ratio of 2 + |w1−w2|

w1+w2
for the social cost.

Proof. For a multiset A of points in R and y ∈ R, denote

sc(y,A) =
∑
x∈A
|y − x| .

If med(x1) = med(x2), then the algorithm always selects the median med(x). Hence, we
can assume without loss of generality that x1 < x2. Slightly abusing notation, denote A = x ∩
(−∞,med(x1)], |A| = a, B = x∩ (med(x1),med(x2)), |B| = b, and C = x∩ [med(x2),∞), |C| = c.
Since med(x1) is the median of x1 and med(x2) is the median of x2, we have that

|x ∩ (−∞,med(x1))| ≤
w1

2
+
w2

2
,

that is, at most half the points are to the left of med(x1). Similarly, at most half the points are to
the right of med(x2). Hence, we can choose med(x) (breaking ties in case of an even w1 +w2) such
that med(x) ∈ [med(x1),med(x2)]. Let ∆1 = med(x)−med(x1) be the distance between med(x1)
and med(x), let ∆2 = med(x2)−med(x), and let ∆ = ∆1 + ∆2 = med(x2)−med(x1) (see Figure 3
for an illustration).
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med(x1) med(x) med(x2)

∆1 ∆2

A B C

Figure 3: An illustration of the construction in the proof of Theorem 5.4. Agent 1 controls the
black locations, whereas Agent 2 controls the white locations.

Let us calculate the cost of choosing med(x1) or med(x2). It holds that

sc(med(x1),x) = sc(med(x1), A) + sc(med(x1), B) + sc(med(x1), C)

= sc(med(x1), A) + sc(med(x1), B) +
∑
x∈C

[x−med(x1)]

= sc(med(x1), A) + sc(med(x1), B) +
∑
x∈C

[∆ + (x−med(x2))]

= sc(med(x1), A) + sc(med(x1), B) + (∆ · c+ sc(med(x2), C)) .

Similarly,

sc(med(x2),x) = (∆ · a+ sc(med(x1), A)) + sc(med(x2), B) + sc(med(x2), C) .

Hence, denoting Mechanism 4 by f , the expected cost of the mechanism is:

sc(f(x),x) =
1

w1 + w2
[w1(sc(med(x1), A) + sc(med(x1), B) + ∆ · c+ sc(med(x2), C))

+ w2(∆ · a+ sc(med(x1), A) + sc(med(x2), B) + sc(med(x2), C))]

= sc(med(x1), A) + sc(med(x2), C)

+
1

w1 + w2
[w1(sc(med(x1), B) + ∆ · c) + w2(∆ · a+ sc(med(x2), B))]

(5)

It holds that
sc(med(x1), B) + sc(med(x2), B) = ∆ · b ,

and a + b + c = w1 + w2. Applying these two equalities to (5), and assuming without loss of
generality that w1 ≤ w2, we get the first transition below.

sc(f(x),x) = sc(med(x1), A) + sc(med(x2), C) + ∆ · w1 +
w2 − w1

w1 + w2
(∆ · a+ sc(med(x2), B))

≤ sc(med(x1), A) + sc(med(x2), C) + ∆ · w1 +
w2 − w1

w1 + w2
(∆ · a+ (∆2 · b+ sc(med(x), B)))

≤ sc(med(x1), A) + sc(med(x2), C) + sc(med(x), B) + ∆ · w1

+
w2 − w1

w1 + w2
(∆ · a+ ∆2 · ((w1 + w2)− a− c))

≤ sc(med(x1), A) + sc(med(x2), C) + sc(med(x), B) + ∆1w1 + ∆2w2 +
w2 − w1

w1 + w2
∆1 · a

(6)
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We presently calculate the cost of the optimal solution.

sc(med(x),x) = (∆1 · a+ sc(med(x1), A)) + sc(med(x), B) + (∆2 · c+ sc(med(x2), C)) . (7)

We upper-bound the ratio sc(f(x),x)/sc(med(x),x) by dropping common terms from both the
numerator and the denominator, that is, dropping the common terms of (6) and (7). Therefore,

sc(f(x),x)

sc(med(x),x)
≤

∆1 · w1 + ∆2 · w2 + w2−w1
w1+w2

·∆1 · a
∆1 · a+ ∆2 · c

≤ ∆1 · w1 + ∆2 · w2

∆1 · a+ ∆2 · c
+

w2−w1
w1+w2

·∆1 · a
∆1 · a

≤ ∆1 · w1 + ∆2 · w2

∆1 · w1
2 + ∆2 · w2

2

+
w2 − w1

w1 + w2
= 2 +

w2 − w1

w1 + w2
,

where the third transition follows from the fact that med(x1) is the median of x1 and med(x2) is
the median of x2.

In particular, the theorem implies that Mechanism 4 gives a 2-approximation when there are
two agents that control the same number of points, which is a setting where the deterministic lower
bound of 3 (given in [19]) holds. The theorem was extended beyond two agents by Lu, Wang, and
Zhou [41] (see Section 5.3).

We now construct an example that serves two purposes. First, the example shows that Mecha-
nism 4 does not provide an approximation ratio better than 3− 2/n when there are n agents, even
when the agents control the same number of locations, and thus does not significantly beat the de-
terministic lower bound of 3 when the number of agents is large. Second, the example demonstrates
the tightness of the upper bound given in Theorem 5.4, that is, when there are two agents with w1

and w2 points, the mechanism does not obtain an approximation ratio better than 2 + |w1−w2|
w1+w2

.

Example 5.5 (Lower bounds for the approximation ratio of Mechanism 4). We first establish that,
when N = {1, . . . , n}, given ε > 0 there is w ∈ N large enough such that even when each agent
controls exactly w locations, the approximation ratio given by Mechanism 4 is at least 3− 2

n − ε.
Let w = 2k + 1, where k is to be chosen later. Construct a location profile x as follows. For

agent 1, we have x1, . . . , xk+1 = 0, and xk+2, . . . , x2k+1 = 1. For all j 6= i and all l = 1, . . . , w,
xjl = 1. Notice that med(x1) = 0. With probability 1/n the algorithm returns 0, and has a social
cost of (n− 1)(2k+ 1) + k. With probability (n− 1)/n the algorithm selects 1 and has a social cost
of k + 1. The ratio is

1
n · ((n− 1)(2k + 1) + k) + n−1

n · (k + 1)

k + 1
= 3− 2

n
− 1

k + 1
.

To prove the claim, choose k > 1/ε− 1.

Interestingly, the same example also shows a lower bound of 2 + |w1−w2|
w1+w2

− ε in the setting of
Theorem 5.4, by choosing w1 = 2k+ 1, w2 = (n− 1)(2k+ 1). The analysis is as above with respect
to agent 1, whereas agent 2 replaces agents 2, . . . , n above. In this case,

2 +
|w1 − w2|
w1 + w2

= 2 +
n− 2

n
= 3− 2

n
.

22



5.2 Maximum Cost

Our last object of interest is mechanisms for minimizing the maximum cost, in the setting where
each agent i ∈ N controls wi locations. Similarly to Section 4, we shall demonstrate that the results
of Section 3 can be leveraged to obtain tight or nearly tight results in the current setting.

A crucial observation is that, given an agent i ∈ N , its location profile xi ∈ Rwi , and a facility
location y ∈ R,

mc(y,xi) = |y − cen(xi)|+
rt(xi)− lt(xi)

2
. (8)

Hence, when cost(y,xi) = mc(y,xi), the preferences of the agents are single peaked with the peak
at cen(xi), and, moreover, their utility depends only on the distance |y − cen(xi)|.

Deterministic Mechanisms. In previous settings we have seen that it is straightforward to
obtain a deterministic strategyproof 2-approximation mechanism for the maximum cost. The reason
(implicitly underlying the result of Section 4) was that returning any location between lt(x) and
rt(x) yields a 2-approximation. The same logic also delivers in our current setting.

Given x ∈ Rw1×· · ·×Rwn , we define the vector multicen(x) = 〈cen(x1), . . . , cen(xn)〉. This is the
vector of the centers of the agents’ location profiles, or, in other words, the vector of the peaks of the
agents’ preferences. Hence, choosing the leftmost center, lt(multicen(x)), is a group strategyproof
solution. Moreover, we have that lt(x) ≤ lt(multicen(x)) ≤ rt(x), so mc(lt(multicen(x),x) ≤
rt(x) − lt(x), whereas the optimal solution has a maximum cost of at least (rt(x) − lt(x))/2. We
have proved:

Theorem 5.6. f(x) = lt(multicen(x)) is a group strategyproof 2-approximation mechanism for the
maximum cost in the multiple location setting.

Since in the current setting we can have that wi = 1 for all i ∈ N , any lower bound from
Section 3 holds here as well. In particular, Theorem 3.2 provides a tight lower bound of 2.

Randomized Mechanisms. In order to obtain randomized mechanisms for the maximum cost
in the multiple location setting we once again leverage the techniques of Section 3. Consider the
following Mechanism, which is an extension of Mechanism 1.

Mechanism 5. Given x ∈ Rw1×· · ·Rwn , return lt(multicen(x)) with probability 1/4, rt(multicen(x))
with probability 1/4, and cen(multicen(x)) = (lt(multicen(x))+rt(multicen(x)))/2 with probability
1/2.

The following theorem establishes that the mechanism has some very desirable properties.

Theorem 5.7. Mechanism 5 is a group strategyproof 3/2-approximation mechanism for the maxi-
mum cost in the multiple location setting.

Proof. It can easily be verified that, using (8), the group strategyproofness of the mechanism follows
from exactly the same arguments as in the proof of Theorem 3.3. Therefore, we concentrate on
establishing the announced approximation ratio.

Let x ∈ Rn. Without loss of generality (by scaling the distances) we assume that lt(x) = 0,
rt(x) = 1. We first claim that lt(multicen(x)) ≤ 1/2. Indeed, let i ∈ N be the agent that controls
0. Then lt(xi) = 0, rt(xi) ≤ 1, hence cen(xi) ≤ 1/2. The claim directly follows. Similarly, we have
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Objective Function Deterministic Randomized

Social Cost
UB: 3 GSP (Dekel et al. [19])
LB: 3 SP (Dekel et al. [19])

UB: 2 + |w1−w2|
w1+w2

SP (n = 2, Thm 5.4)
LB: N/A

Maximum Cost
UB: 2 GSP (Thm 5.6)
LB: 2 SP (Thm 3.2)

UB: 3/2 GSP (Thm 5.7)
LB: 3/2 SP (Thm 3.4)

Table 3: A summary of the results of Section 5. UB and LB stand for upper bound and lower
bound, respectively. SP and GSP stand for strategyproof and group strategyproof, respectively.

that rt(multicen(x)) ≥ 1/2. In other words, it holds that lt(multicen(x)) is at least as close to 0 as
to 1, whereas rt(multicen(x)) is at least as close to 1 as to 0. Therefore, denoting Mechanism 5 by
f , we have:

mc(f(x),x) =
1

4
· (1− lt(multicen(x))) +

1

4
· rt(multicen(x))

+
1

2
·max

{
lt(multicen(x)) + rt(multicen(x))

2
, 1− lt(multicen(x)) + rt(multicen(x))

2

}
= max

{
1

4
+

rt(multicen(x))

2
,
3

4
− lt(multicen(x))

2

}
≤ 3

4
,

where the last inequality follows from the fact that lt(multicen(x)) ≥ 0 and rt(multicen(x)) ≤ 1.
The optimal solution has a cost of 1/2. Therefore, we get an approximation ratio of 3/2.

Finally, we remark that the randomized lower bound of 3/2 given by Theorem 3.4 holds here
as well. We find it quite surprising that the upper bound yielded by the seemingly “generous”
Mechanism 5 is tight.

5.3 Discussion and Subsequent Work

Table 3 summarizes the results of Section 5. The most interesting question is how the analysis of
Mechanism 4 extends to n > 2. In the conference version of this paper we conjectured that for
any number of agents n, if wi = wj for all i, j ∈ N , then the mechanism yields an approximation
ratio of 3 − 2/n. Such a result is tight by the Example 5.5. This conjecture was in fact recently
confirmed by Lu, Wang, and Zhou [41]. Moreover, these authors established a randomized lower
bound of 1.33 with respect to the social cost by solving a related linear program.

The setting investigated in this section has many applications, but we note that, in particular,
any results about randomized strategyproof mechanisms for the social cost can be directly applied
in the incentive compatible regression learning setting of Dekel et al. [19].

6 Open Problems and Future Work

Subsequent papers have considered some of the natural extensions of our model, including the
setting where the agents are located on a graph or even a general metric space [1, 40]. We suggest
additionally considering allotment rules, namely rules that assign a point ai ∈ [0, 1] to each agent,
such that

∑
i∈N ai = 1; this setting models the division of a task or a good among the agents [10,

Section 4.1]. Furthermore, it is possible to consider almost any combination of the extensions, e.g.,
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a domain in which agents control multiple locations (as in Section 5) and two facilities must be
located (as in Section 4). However, in our opinion the most important technical open problem is
the extension of the results of Section 4, as well as the subsequent results of [41, 40], to settings
with three facilities and beyond.

As noted in Section 2, the conceptual ideas that were first presented in this work have already
been applied to at least five other, fundamentally different, domains. We believe that the most
influential future work would unify some of the mechanisms that were developed for these domains.
Indeed, some of the basic ideas, such as choosing the optimal solution with certain probability
and a suboptimal solution with the complement probability (as realized by Mechanism 1) are used
again and again. We are therefore hopeful that it would prove feasible to develop approximate
mechanisms without money that provide general guarantees across domains.
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