CSC2556

Lecture 7

Fair Division 1: Cake-Cutting

Cake-Cutting

Cake-Cutting

- A heterogeneous divisible good
 - Heterogeneous = same part may be valued differently by different agents
 - Divisible = can be divided between agents
- Cake C = [0,1]

> Almost without loss of generality

• Agents $N = \{1, \dots, n\}$

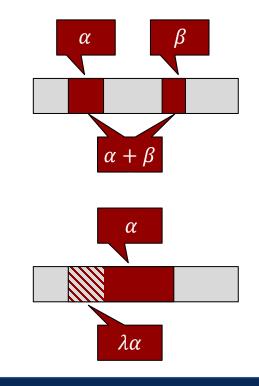
- Piece of cake $X \subseteq [0,1]$ = finite union of disjoint intervals
- Allocation $A = (A_1, \dots, A_n)$
 - > Partition of the cake where each A_i is a piece of the cake

Agent Valuations

• Valuation of agent *i* is given by an integrable value density function $f_i: [0,1] \rightarrow \mathbb{R}_+$

> Her value for a piece of cake X is $V_i(X) = \int_{x \in X} f_i(x) dx$

- Two key properties
 - > Additive: For $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
 - ▶ Divisible: $\forall \lambda \in [0,1]$ and X, ∃Y ⊆ X s.t. $V_i(Y) = \lambda V_i(X)$
- WLOG
 - > Normalized: $V_i([0,1]) = 1$



Fairness Goals

- What kind of fairness might we want from an allocation A?
- Proportionality (Prop):

$$\forall i \in N \colon V_i(A_i) \ge \frac{1}{n}$$

• Envy-Freeness (EF):

 $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$

• Equitability (EQ):

$$\forall i, j \in N: V_i(A_i) = V_j(A_j) -$$

Only makes sense with normalization

Fairness Goals

- Prop: $\forall i \in N$: $V_i(A_i) \ge 1/n$
- EF: $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$
- Question:

What is the relation between proportionality and EF?

- 1. **Prop** \Rightarrow EF
- 2. $EF \Rightarrow Prop$
- 3. Equivalent
- 4. Incomparable

CUT-AND-CHOOSE

- Algorithm for n = 2 agents
- Agent 1 divides the cake into two pieces X, Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Agent 2 chooses the piece she prefers.
- This is EF and therefore proportional.
 > Why?

Measuring Complexity

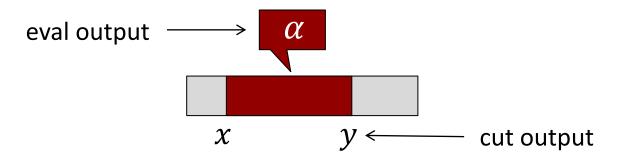
- Running time does not make sense
 - > Typically, we measure the running time as a function of the length of input encoded in binary
 - Our input consists of functions V_i, which requires infinitely many bits to encode
 - > We want running time just as a function of n.

Query models make sense

- > Allow specific types of queries to agents' valuation functions
- Measure the number of queries that need to be made in order to find an allocation satisfying the given properties

Robertson-Webb Model

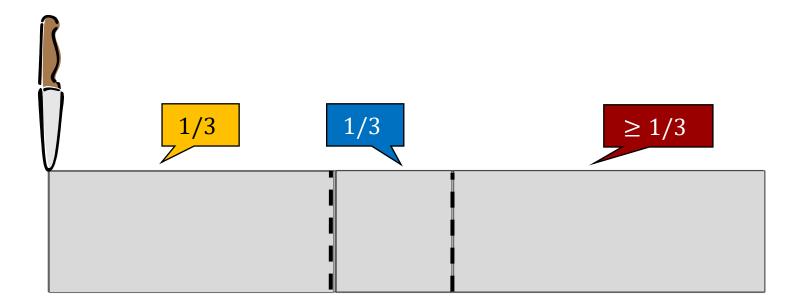
- Two types of queries to an agent's valuation function V_i
 - > $Eval_i(x, y)$ returns $V_i([x, y])$
 - Cut_i(x, α) returns the smallest y such that V_i([x, y]) = α
 If no such y exists, then it returns 1



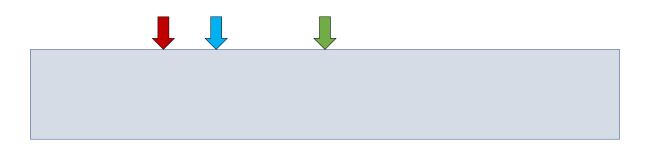
• Question:

> How many queries are needed to find an EF allocation when n = 2?

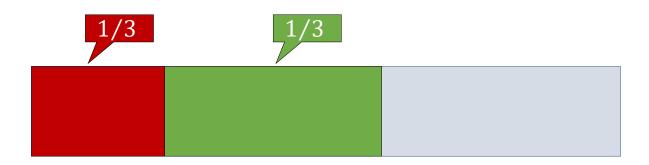
- Protocol for finding a proportional allocation for *n* agents
- Referee starts with a knife at 0
- Referee continuously moves the knife to the right
- Repeat n 1 times: Whenever the piece to the left of knife is worth 1/n to a agent, the agent shouts "stop", gets the piece, and exits.
- The last agent gets the remaining piece.

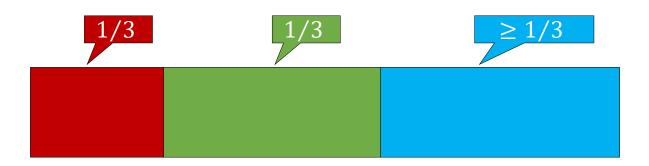


- Moving a knife continuously is not really needed.
- At each stage, we can ask each remaining agent a cut query to mark his 1/n point in the remaining cake.
- Move the knife to the leftmost mark.







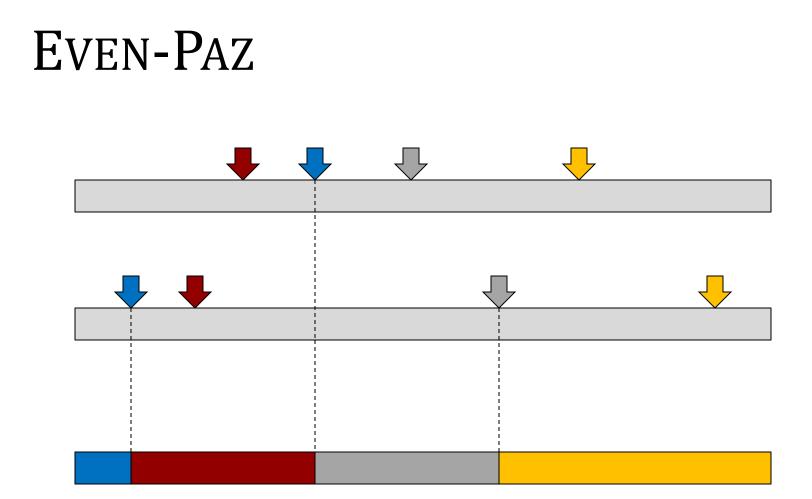


- Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$
 - 2. $\Theta(n \log n)$
 - 3. $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

Even-Paz

• Input: Interval [x, y], number of agents n

- > Assume $n = 2^k$ for some k
- If n = 1, give [x, y] to the single agent.
- Otherwise, let each agent i mark z_i s.t. $V_i([x, z_i]) = \frac{1}{2} V_i([x, y])$
- Let z^* be the n/2-th mark from the left.
- Recurse on [x, z*] with the left n/2 agents and on [z*, y] with the right n/2 agents.



Even-Paz

- Theorem: EVEN-PAZ returns a Prop allocation.
- Proof:
 - > Inductive proof. We want to prove that if agent *i* is allocated piece A_i when [x, y] is divided between *n* agents, $V_i(A_i) \ge (1/n)V_i([x, y])$ \circ Then Prop follows because initially $V_i([x, y]) = V_i([0,1]) = 1$
 - > Base case: n = 1 is trivial.
 - > Suppose it holds for $n = 2^{k-1}$. We prove for $n = 2^k$.
 - > Take the 2^{k-1} left agents.
 - Every left agent *i* has $V_i([x, z^*]) \ge (1/2) V_i([x, y])$

○ If it gets A_i , by induction, $V_i(A_i) \ge \frac{1}{2^{k-1}} V_i([x, z^*]) \ge \frac{1}{2^k} V_i([x, y])$

Even-Paz

- Question: What is the complexity of the Even-Paz protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$
 - 2. $\Theta(n \log n)$
 - 3. $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

Complexity of Proportionality

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs Ω(n log n) operations in the Robertson-Webb model.
- Thus, the EVEN-PAZ protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For *n*-agent EF cake-cutting:
 - > [Brams and Taylor, 1995] gave an unbounded EF protocol.
 - > [Procaccia 2009] proved $\Omega(n^2)$ lower bound for EF.
 - In 2016, the long-standing major open question of "bounded EF protocol" was resolved!
 - [Aziz and Mackenzie, 2016]: O(n<sup>n^{n^{nⁿn}}) protocol!
 Not a typo!
 </sup>

Other Desiderata

- There are two more properties that we often desire from an allocation.
- Pareto optimality (PO)
 - > Notion of efficiency
 - Informally, it says that there should be no "obviously better" allocation
- Strategyproofness (SP)
 - > No agent should be able to gain by misreporting her valuation

Strategyproofness (SP)

- Deterministic mechanisms
 - Strategyproof: No agent should be able to increase her utility by misreporting her valuation, irrespective of what other agents report.
- Randomized mechanisms
 - Strategyproof-in-expectation: Replace *utility* with *expected utility* in the above definition.
 - > For simplicity, we'll just call this strategyproofness too.

Strategyproofness (SP)

• Deterministic

- > Bad news!
- Theorem [Menon & Larson '17]: No deterministic SP mechanism is (even approximately) proportional.

Randomized

- Good news!
- Theorem [Chen et al. '13, Mossel & Tamuz '10]: There is a randomized SP mechanism that always returns an envy-free allocation.

Perfect Partition

- Theorem [Lyapunov '40]:
 - > There always exists a "perfect partition" $(B_1, ..., B_n)$ of the cake such that $V_i(B_j) = 1/n$ for every $i, j \in [n]$
 - \succ Every agent values every piece at exactly 1/n

• Theorem [Alon '87]:

- There exists a perfect partition that only cuts the cake at poly(n) points
- In contrast, Lyapunov's proof is non-constructive and might need an unbounded number of cuts
- Unfortunately, computing a perfect partition needs an unbounded number of RW queries

Perfect Partition

- If you're given an algorithm for finding a perfect partition...
 - Can you use it to design a randomized protocol that *always* returns an EF allocation and is SP-in-expectation?
 - Yes! Compute a perfect partition and assign the n bundles to the n agents uniformly at random
 - > Why is this *always* EF?

 \circ Every agent values every bundle at $^{1}/_{n}$

- > Why is this SP-in-expectation?
 - Because an agent is assigned a random bundle, her expected utility is 1/n, irrespective of what she reports

Pareto Optimality (PO)

Definition

- > We say that an allocation $A = (A_1, ..., A_n)$ is PO if there is no alternative allocation $B = (B_1, ..., B_n)$ such that
- 1. Every agent is at least as happy: $V_i(B_i) \ge V_i(A_i), \forall i \in N$
- 2. Some agent is strictly happier: $V_i(B_i) > V_i(A_i)$, $\exists i \in N$
- Q: Is it PO to give the entire cake to agent 1?
 - A: Not necessarily. But yes, if agent 1 values every part of the cake positively.
 - > But a "sequential dictatorship" is always Pareto optimal
 - $\,\circ\,$ Let agent 1 take whatever she values positively
 - From the rest, let agent 2 take whatever she values positively
 - \circ And so on...

PO + EF

- Theorem [Weller '85]:
 - There always exists an allocation of the cake that is both envy-free and Pareto optimal.
- One way to achieve PO+EF:
 - > Nash-optimal allocation: $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$
 - > Obviously, this is PO. The fact that it is EF is somewhat non-trivial.
 - Named after John Nash
 - Nash social welfare = product of utilities
 - Different from utilitarian social welfare = sum of utilities

Nash-Optimal Allocation

• Example:

- > Green agent has value 1 distributed over [0, 2/3]
- > Blue agent has value 1 distributed over [0,1]
- > Without loss of generality (why?) suppose:
 - Green agent gets x fraction of [0, 2/3]
 - Blue agent gets the remaining 1 x fraction of [0, 2/3] AND all of [2/3, 1].
- > Green's utility = x, blue's utility = $(1 x) \cdot \frac{2}{3} + \frac{1}{3} = \frac{3-2x}{3}$
- > Maximize: $x \cdot \frac{3-2x}{3} \Rightarrow x = \frac{3}{4}$ ($\frac{3}{4}$ fraction of $\frac{2}{3}$ is $\frac{1}{2}$).

Allocation 0 1/2 Green has utility
$$\frac{3}{4}$$

Blue has utility $\frac{1}{2}$

Problem with Nash Solution

- Computing any Pareto optimal allocation already requires an unbounded number of queries
- Theorem [Aziz & Ye '14]:
 - For *piecewise constant* valuations, the Nash-optimal solution can be computed in polynomial time.

Homogeneous Divisible Goods

- Suppose there are m homogeneous divisible goods
 - > Each good can be divided fractionally between the agents
- Let x_{i,g} = fraction of good g that agent i gets
 Homogeneous = agent doesn't care which "part"
 E.g., CPU or RAM
- Special case of cake-cutting
 - > Line up the goods on $[0,1] \rightarrow$ piecewise uniform valuations

Homogeneous Divisible Goods

- Nash-optimal solution:
 - Maximize $\sum_i \log U_i$
 - $U_i = \Sigma_g x_{i,g} * v_{i,g} \quad \forall i$
 - $\Sigma_i x_{i,g} = 1 \qquad \forall g$
 - $x_{i,g} \in [0,1] \qquad \forall i,g$
- This is known as the Gale-Eisenberg convex program
 - > Can be solved *exactly* in strongly polynomial time