
CSC2556

Lecture 7

Fair Division 1:
Cake-Cutting

CSC2556 - Nisarg Shah 1

CSC2556 - Nisarg Shah 2

Cake-Cutting

Cake-Cutting

CSC2556 - Nisarg Shah 3

• A heterogeneous divisible good
➢ Heterogeneous = same part may be

valued differently by different agents

➢ Divisible = can be divided between agents

• Cake 𝐶 = [0,1]
➢ Almost without loss of generality

• Agents 𝑁 = {1,… , 𝑛}

• Piece of cake 𝑋 ⊆ [0,1] = finite union of disjoint intervals

• Allocation 𝐴 = (𝐴1, … , 𝐴𝑛)
➢ Partition of the cake where each 𝐴𝑖 is a piece of the cake

Agent Valuations

CSC2556 - Nisarg Shah 4

• Valuation of agent 𝑖 is given by an integrable value density
function 𝑓𝑖: 0,1 → ℝ+

➢ Her value for a piece of cake 𝑋 is 𝑉𝑖 𝑋 = 𝑥∈𝑋׬ 𝑓𝑖 𝑥 𝑑𝑥

• Two key properties
➢ Additive: For 𝑋 ∩ 𝑌 = ∅,
𝑉𝑖 𝑋 + 𝑉𝑖 𝑌 = 𝑉𝑖 𝑋 ∪ 𝑌

➢ Divisible: ∀𝜆 ∈ [0,1] and 𝑋,
∃𝑌 ⊆ 𝑋 s.t. 𝑉𝑖 𝑌 = 𝜆𝑉𝑖(𝑋)

• WLOG
➢ Normalized: 𝑉𝑖 0,1 = 1

β𝛼 + 𝛽

𝛼 𝛽

𝛼

𝜆𝛼

Fairness Goals

CSC2556 - Nisarg Shah 5

• What kind of fairness might we want from an allocation 𝐴?

• Proportionality (Prop):

∀𝑖 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥
1

𝑛

• Envy-Freeness (EF):

∀𝑖, 𝑗 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖(𝐴𝑗)

• Equitability (EQ):

∀𝑖, 𝑗 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 = 𝑉𝑗(𝐴𝑗) Only makes
sense with

normalization

Fairness Goals

CSC2556 - Nisarg Shah 6

• Prop: ∀𝑖 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥ Τ1 𝑛

• EF: ∀𝑖, 𝑗 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗

• Question:
What is the relation between proportionality and EF?

1. Prop ⇒ EF

2. EF ⇒ Prop

3. Equivalent

4. Incomparable

CUT-AND-CHOOSE

CSC2556 - Nisarg Shah 7

• Algorithm for 𝑛 = 2 agents

• Agent 1 divides the cake into two pieces 𝑋, 𝑌 s.t.
𝑉1 𝑋 = 𝑉1 𝑌 = Τ1 2

• Agent 2 chooses the piece she prefers.

• This is EF and therefore proportional.
➢ Why?

Measuring Complexity

CSC2556 - Nisarg Shah 8

• Running time does not make sense
➢ Typically, we measure the running time as a function of the length of

input encoded in binary

➢ Our input consists of functions 𝑉𝑖, which requires infinitely many bits
to encode

➢ We want running time just as a function of 𝑛.

• Query models make sense
➢ Allow specific types of queries to agents’ valuation functions

➢ Measure the number of queries that need to be made in order to
find an allocation satisfying the given properties

Robertson-Webb Model

CSC2556 - Nisarg Shah 9

• Two types of queries to an agent’s valuation function 𝑉𝑖
➢ Eval𝑖(𝑥, 𝑦) returns 𝑉𝑖 𝑥, 𝑦

➢ Cut𝑖(𝑥, 𝛼) returns the smallest 𝑦 such that 𝑉𝑖 𝑥, 𝑦 = 𝛼

o If no such 𝑦 exists, then it returns 1

• Question:
➢ How many queries are needed to find an EF allocation when 𝑛 = 2?

𝑥 𝑦

𝛼eval output

cut output

DUBINS-SPANIER

CSC2556 - Nisarg Shah 10

• Protocol for finding a proportional allocation for 𝑛 agents

• Referee starts with a knife at 0

• Referee continuously moves the knife to the right

• Repeat 𝑛 − 1 times: Whenever the piece to the left of knife
is worth 1/𝑛 to a agent, the agent shouts “stop”, gets the
piece, and exits.

• The last agent gets the remaining piece.

DUBINS-SPANIER

11

1/3 1/3 ≥ 1/3

CSC2556 - Nisarg Shah

DUBINS-SPANIER

CSC2556 - Nisarg Shah 12

• Moving a knife continuously is not really needed.

• At each stage, we can ask each remaining agent a cut query
to mark his 1/𝑛 point in the remaining cake.

• Move the knife to the leftmost mark.

DUBINS-SPANIER

CSC2556 - Nisarg Shah 13

DUBINS-SPANIER

CSC2556 - Nisarg Shah 14

Τ1 3

DUBINS-SPANIER

CSC2556 - Nisarg Shah 15

Τ1 3 Τ1 3

DUBINS-SPANIER

CSC2556 - Nisarg Shah 16

Τ1 3 Τ1 3 ≥ Τ1 3

DUBINS-SPANIER

CSC2556 - Nisarg Shah 17

• Question: What is the complexity of the Dubins-Spanier
protocol in the Robertson-Webb model?

1. Θ 𝑛

2. Θ 𝑛 log𝑛

3. Θ 𝑛2

4. Θ 𝑛2 log 𝑛

EVEN-PAZ

CSC2556 - Nisarg Shah 18

• Input: Interval [𝑥, 𝑦], number of agents 𝑛
➢ Assume 𝑛 = 2𝑘 for some 𝑘

• If 𝑛 = 1, give [𝑥, 𝑦] to the single agent.

• Otherwise, let each agent 𝑖 mark 𝑧𝑖 s.t.

𝑉𝑖 𝑥, 𝑧𝑖 =
1

2
𝑉𝑖 𝑥, 𝑦

• Let 𝑧∗ be the 𝑛/2-th mark from the left.

• Recurse on [𝑥, 𝑧∗] with the left 𝑛/2 agents and on [𝑧∗, 𝑦]
with the right 𝑛/2 agents.

EVEN-PAZ

CSC2556 - Nisarg Shah 19

EVEN-PAZ

CSC2556 - Nisarg Shah 20

• Theorem: EVEN-PAZ returns a Prop allocation.

• Proof:
➢ Inductive proof. We want to prove that if agent 𝑖 is allocated piece 𝐴𝑖

when [𝑥, 𝑦] is divided between 𝑛 agents, 𝑉𝑖 𝐴𝑖 ≥ Τ1 𝑛 𝑉𝑖 𝑥, 𝑦

o Then Prop follows because initially 𝑉𝑖 𝑥, 𝑦 = 𝑉𝑖 0,1 = 1

➢ Base case: 𝑛 = 1 is trivial.

➢ Suppose it holds for 𝑛 = 2𝑘−1. We prove for 𝑛 = 2𝑘.

➢ Take the 2𝑘−1 left agents.

o Every left agent 𝑖 has 𝑉𝑖 𝑥, 𝑧∗ ≥ Τ1 2 𝑉𝑖 𝑥, 𝑦

o If it gets 𝐴𝑖, by induction, 𝑉𝑖 𝐴𝑖 ≥
1

2𝑘−1
𝑉𝑖 𝑥, 𝑧∗ ≥

1

2𝑘
𝑉𝑖 𝑥, 𝑦

EVEN-PAZ

CSC2556 - Nisarg Shah 21

• Question: What is the complexity of the Even-Paz protocol
in the Robertson-Webb model?

1. Θ 𝑛

2. Θ 𝑛 log𝑛

3. Θ 𝑛2

4. Θ 𝑛2 log 𝑛

Complexity of Proportionality

CSC2556 - Nisarg Shah 22

• Theorem [Edmonds and Pruhs, 2006]: Any proportional
protocol needs Ω(𝑛 log 𝑛) operations in the Robertson-
Webb model.

• Thus, the EVEN-PAZ protocol is (asymptotically) provably
optimal!

Envy-Freeness?

CSC2556 - Nisarg Shah 23

• “I suppose you are also going to give such cute algorithms
for finding envy-free allocations?”

• Bad luck. For 𝑛-agent EF cake-cutting:
➢ [Brams and Taylor, 1995] gave an unbounded EF protocol.

➢ [Procaccia 2009] proved Ω 𝑛2 lower bound for EF.

➢ In 2016, the long-standing major open question of “bounded EF
protocol” was resolved!

➢ [Aziz and Mackenzie, 2016]: 𝑂(𝑛𝑛
𝑛𝑛

𝑛𝑛

) protocol!

o Not a typo!

Other Desiderata

CSC2556 - Nisarg Shah 24

• There are two more properties that we often desire from an
allocation.

• Pareto optimality (PO)
➢ Notion of efficiency

➢ Informally, it says that there should be no “obviously better”
allocation

• Strategyproofness (SP)
➢ No agent should be able to gain by misreporting her valuation

Strategyproofness (SP)

CSC2556 - Nisarg Shah 25

• Deterministic mechanisms
➢ Strategyproof: No agent should be able to increase her utility by

misreporting her valuation, irrespective of what other agents report.

• Randomized mechanisms
➢ Strategyproof-in-expectation: Replace utility with expected utility in

the above definition.

➢ For simplicity, we’ll just call this strategyproofness too.

Strategyproofness (SP)

CSC2556 - Nisarg Shah 26

• Deterministic
➢ Bad news!

➢ Theorem [Menon & Larson ‘17]: No deterministic SP mechanism is
(even approximately) proportional.

• Randomized
➢ Good news!

➢ Theorem [Chen et al. ‘13, Mossel & Tamuz ‘10]: There is a
randomized SP mechanism that always returns an envy-free
allocation.

Perfect Partition

CSC2556 - Nisarg Shah 27

• Theorem [Lyapunov ’40]:
➢ There always exists a “perfect partition” (𝐵1, … , 𝐵𝑛) of the cake such

that 𝑉𝑖 𝐵𝑗 = Τ1 𝑛 for every 𝑖, 𝑗 ∈ [𝑛]

➢ Every agent values every piece at exactly 1/𝑛

• Theorem [Alon ‘87]:
➢ There exists a perfect partition that only cuts the cake at 𝑝𝑜𝑙𝑦(𝑛)

points

➢ In contrast, Lyapunov’s proof is non-constructive and might need an
unbounded number of cuts

• Unfortunately, computing a perfect partition needs an
unbounded number of RW queries

Perfect Partition

CSC2556 - Nisarg Shah 28

• If you’re given an algorithm for finding a perfect partition…
➢ Can you use it to design a randomized protocol that always returns

an EF allocation and is SP-in-expectation?

➢ Yes! Compute a perfect partition and assign the 𝑛 bundles to the 𝑛
agents uniformly at random

➢ Why is this always EF?

o Every agent values every bundle at Τ1 𝑛

➢ Why is this SP-in-expectation?

o Because an agent is assigned a random bundle, her expected
utility is Τ1 𝑛, irrespective of what she reports

Pareto Optimality (PO)

CSC2556 - Nisarg Shah 29

• Definition
➢ We say that an allocation 𝐴 = (𝐴1, … , 𝐴𝑛) is PO if there is no

alternative allocation 𝐵 = (𝐵1, … , 𝐵𝑛) such that

1. Every agent is at least as happy: 𝑉𝑖 𝐵𝑖 ≥ 𝑉𝑖(𝐴𝑖), ∀𝑖 ∈ 𝑁

2. Some agent is strictly happier: 𝑉𝑖 𝐵𝑖 > 𝑉𝑖(𝐴𝑖), ∃𝑖 ∈ 𝑁

• Q: Is it PO to give the entire cake to agent 1?
➢ A: Not necessarily. But yes, if agent 1 values every part of the cake

positively.

➢ But a “sequential dictatorship” is always Pareto optimal

o Let agent 1 take whatever she values positively

o From the rest, let agent 2 take whatever she values positively

o And so on…

PO + EF

CSC2556 - Nisarg Shah 30

• Theorem [Weller ‘85]:
➢ There always exists an allocation of the cake that is both envy-free

and Pareto optimal.

• One way to achieve PO+EF:
➢ Nash-optimal allocation: argmax𝐴 ς𝑖∈𝑁𝑉𝑖 𝐴𝑖
➢ Obviously, this is PO. The fact that it is EF is somewhat non-trivial.

➢ Named after John Nash

o Nash social welfare = product of utilities

o Different from utilitarian social welfare = sum of utilities

Nash-Optimal Allocation

CSC2556 - Nisarg Shah 31

• Example:
➢ Green agent has value 1 distributed over 0, Τ2 3

➢ Blue agent has value 1 distributed over [0,1]

➢ Without loss of generality (why?) suppose:
o Green agent gets 𝑥 fraction of [0, Τ2 3]

o Blue agent gets the remaining 1 − 𝑥 fraction of [0, Τ2 3] AND all of [Τ2 3 , 1].

➢ Green’s utility = 𝑥, blue’s utility = 1 − x ⋅
2

3
+

1

3
=

3−2𝑥

3

➢ Maximize: 𝑥 ⋅
3−2𝑥

3
⇒ 𝑥 = Τ3 4 (Τ3 4 fraction of Τ2 3 is Τ1 2).

0 1
ൗ2 3

Allocation 0 1

ൗ1 2 Green has utility
3

4

Blue has utility
1

2

Problem with Nash Solution

CSC2556 - Nisarg Shah 32

• Computing any Pareto optimal allocation already requires
an unbounded number of queries

• Theorem [Aziz & Ye ‘14]:
➢ For piecewise constant valuations, the Nash-optimal solution can be

computed in polynomial time.

0 1

The density function of a
piecewise constant
valuation looks like this

Homogeneous Divisible Goods

CSC2556 - Nisarg Shah 33

• Suppose there are 𝑚 homogeneous divisible goods
➢ Each good can be divided fractionally between the agents

• Let 𝑥𝑖,𝑔 = fraction of good 𝑔 that agent 𝑖 gets
➢ Homogeneous = agent doesn’t care which “part”

o E.g., CPU or RAM

• Special case of cake-cutting
➢ Line up the goods on [0,1] → piecewise uniform valuations

Homogeneous Divisible Goods

CSC2556 - Nisarg Shah 34

• Nash-optimal solution:

Maximize σ𝑖 log 𝑈𝑖

𝑈𝑖 = Σ𝑔 𝑥𝑖,𝑔 ∗ 𝑣𝑖,𝑔 ∀𝑖

Σ𝑖 𝑥𝑖,𝑔 = 1 ∀𝑔

𝑥𝑖,𝑔 ∈ [0,1] ∀𝑖, 𝑔

• This is known as the Gale-Eisenberg convex program

➢ Can be solved exactly in strongly polynomial time

