CSC2556

Lecture 5

Impartial Selection

Announcements

• Reminder

- > Assignment 1 is due on the 18th (next Thursday) by 11:59pm ET
- No lecture on the 18th (next Thursday)
 - > We will observe the reading week

• Project

- > You can use the free time next week to think about project ideas
- If you want to discuss the feasibility of some idea or want help shaping the idea, email me to set up a meeting
- Proposals will be due in early March

Impartial Selection

Impartial Selection

- "How can we select k people out of n people?"
 - > Applications: electing a student representation committee, selecting k out of n grant applications to fund using peer review, ...

Model

- > Input: a *directed* graph G = (V, E)
- > Nodes $V = \{v_1, \dots, v_n\}$ are the *n* people
- ≻ Edge $e = (v_i, v_j) \in E: v_i$ supports/approves of v_j

 \circ We do not allow or ignore self-edges (v_i , v_i)

- > Output: a subset $V' \subseteq V$ with |V'| = k
- \succ k ∈ {1, ..., n − 1} is given

Impartial Selection

- Impartiality: A k-selection rule f is *impartial* if whether or not $v_i \in f(G)$ does not depend on the outgoing edges of v_i
 - > v_i cannot manipulate his outgoing edges to get selected
 - ▶ **Q**: But the definition says v_i can neither go from $v_i \notin f(G)$ to $v_i \in f(G)$, nor from $v_i \in f(G)$ to $v_i \notin f(G)$. Why?
- Societal goal: maximize the sum of in-degrees of selected agents $\sum_{v \in f(G)} |in(v)|$
 - > in(v) = set of nodes that have an edge to v
 - > out(v) = set of nodes that v has an edge to
 - Note: OPT will pick the k nodes with the highest indegrees

Optimal \neq Impartial

- An optimal 1-selecton rule must select v_1 or v_2
- The other node can remove his edge to the winner, and make sure the optimal rule selects him instead
- This violates impartiality

Goal: Approximately Optimal

- α-approximation: We want a k-selection system that always returns a set with total indegree at least α times the total indegree of the optimal set
- Q: For k = 1, what about the following rule? Rule: "Select the lowest index vertex in out(v₁). If out(v₁) = Ø, select v₂."
 - > A. Impartial + constant approximation
 - B. Impartial + bad approximation
 - > C. Not impartial + constant approximation
 - > D. Not impartial + bad approximation

No Finite Approximation $\ensuremath{\mathfrak{S}}$

Theorem [Alon et al. 2011]
 For every k ∈ {1, ..., n − 1}, there is no impartial k-selection rule with a finite approximation ratio.

• Proof:

- > For small k, this is trivial. E.g., consider k = 1.
 - \circ What if G has two nodes v_1 and v_2 that point to each other, and there are no other edges?
 - $_{\odot}$ For finite approximation, the rule must choose either v_1 or v_2
 - \circ Say it chooses v_1 . If v_2 now removes his edge to v_1 , the rule must choose v_2 for any finite approximation.
 - Same argument as before. But applies to any "finite approximation rule", and not just the optimal rule.

No Finite Approximation $\ensuremath{\mathfrak{S}}$

Theorem [Alon et al. 2011]
 For every k ∈ {1, ..., n − 1}, there is no impartial k-selection rule with a finite approximation ratio.

• Proof:

- Proof is more intricate for larger k. Let's do k = n 1. 0 k = n 1: given a graph, "eliminate" a node.
- > Suppose for contradiction that there is such a rule f.
- > W.I.o.g., say v_n is eliminated in the empty graph.
- > Consider a family of graphs in which a subset of $\{v_1, \dots, v_{n-1}\}$ have edges to v_n .

No Finite Approximation 🟵

- Proof (k = n 1 continued):
 - Consider star graphs
 - A non-empty subset of $\{v_1, \dots, v_{n-1}\}$ has an edge to v_n and there are no other edges
 - \circ Represented by bit strings $\{0,1\}^{n-1} \setminus \{\vec{0}\}$
 - > v_n cannot be eliminated in any star graph (Why?)
 - > f: {0,1}ⁿ⁻¹\{ $\vec{0}$ } → {1, ..., n − 1}
 ° "Who will be eliminated?"

No Finite Approximation $\ensuremath{\mathfrak{S}}$

- Proof (k = n 1 continued):
 - > Impartiality: $f(\vec{x}) = i \Leftrightarrow f(\operatorname{flip}_i(\vec{x})) = i$
 - \circ flip_i flips the i^{th} coordinate
 - \circ "*i* cannot add/remove his edge to v_n to change whether he is eliminated"
 - For each *i*, strings on which *f* outputs *i* are paired
 So for each *i*, the number of strings on which *f* outputs *i* is even
 - o But this is impossible (Why?)
 - > So impartiality must be violated for some pair of \vec{x} and $\vec{x} + \vec{e}_i$

Back to Impartial Selection

- So what *can* we do to select impartially? Randomize!
- Impartiality for randomized mechanisms
 - An agent cannot change the probability of her getting selected by changing her outgoing edges

• Example

- > Choose k nodes uniformly at random
- > Impartial by design
- Question: What is its approximation ratio?
- > Good when $k \approx n$ but bad when $k \ll n$

Random Partition

• Idea

- Partition V into V₁ and V₂ and select k nodes from V₁ based only on edges coming to from V₂
- > For impartiality, agents shouldn't be able to affect whether they end up in V_1
- > But a deterministic partition would be bad in the worst case

Mechanism

- > Assign each node to V_1 or V_2 i.i.d. with probability $\frac{1}{2}$
- Choose k nodes from V₁ that have most incoming edges from nodes in V₂

Random Partition

- Analysis:
 - > OPT = optimal set of k nodes
 - > We pick X = k nodes in V_1 with most incoming edges from V_2
 - > $I = \# V \rightarrow OPT$ edges
 - > $I' = #V_2 → OPT \cap V_1$ edges
 - > Note: E[I'] = I/4 (Why?)
 - > # incoming edges to $X \ge I'$

○ E[#incoming edges to X] ≥ $E[I'] = \frac{I}{4}$

Random Partition

Generalization

> Divide into ℓ parts, pick k/ℓ nodes from each part based on incoming edges from all other parts

• Theorem [Alon et al. 2011]:

> $\ell = 2$ gives a 4-approximation

> For
$$k \ge 2$$
, $\ell \sim k^{1/3}$ gives $1 + O\left(\frac{1}{k^{1/3}}\right)$ approximation

Better Approximations

• Alon et al. [2011]'s conjecture

- There should be a randomized 1-selection mechanism that achieves 2-approximation
- Settled by Fischer & Klimm [2014]
- Permutation mechanism:
 - \circ Select a random permutation ($\pi_1, \pi_2, ..., \pi_n$) of the vertices
 - $_{\odot}$ Start by selecting $y=\pi_{1}$ as the "current answer"
 - At any iteration *t*, let *y* ∈ { π_1 , ..., π_t } be the current answer
 - From $\{\pi_1, ..., \pi_t\} \setminus \{y\}$, if there are more edges to π_{t+1} than to y, change the current answer to $y = \pi_{t+1}$

Better Approximations

2-approximation is tight

- In an n-node graph, fix u and v, and suppose no other nodes have any incoming/outgoing edges
- > Three cases: only $u \rightarrow v$ edge, only $v \rightarrow u$, or both.
 - \circ The best impartial mechanism selects u and v with probability $\frac{1}{2}$ in every case, and achieves 2-approximation

• Worst case is a bit eccentric

- > n-2 nodes are not voting.
- > What if every node must have an outgoing edge?
- Fischer & Klimm [2014]
 - $_{\odot}$ In that case, permutation mechanism gives between $^{12}/_{7}$ and $^{3}/_{2}$ approximation, and no mechanism can do better than $^{4}/_{3}$