CSC2556

Lecture 4

Voting IV

CSC2556 - Nisarg Shah

Approaches to Voting

Approaches to Voting

- What does an approach give us?
 - > A way to compare voting rules
 - > Hopefully find a uniquely "optimal" voting rule
- Various approaches in the literature
 - > Axiomatic approach
 - > Distance rationalizability approach
 - Statistical approach
 - > Implicit utilitarian approach

≻ ...

- Axiom:
 - > A requirement that the voting rule must behave in a certain way
- Goal:
 - Define a set of reasonable axioms, and search for voting rules that satisfy them together
 - Ultimate hope: a unique voting rule satisfies the set of axioms simultaneously!
 - ➤ What often happens: no voting rule satisfies the axioms together ☺

We have already seen axioms!

- Condorcet consistency
- Majority consistency
- Strategyproofness
- Ontoness
- Non-dictatorship
- Strong monotonicity
- Pareto optimality

- Some axioms are weak and satisfied by all natural rules
 - > Unanimity:

○ If all voters have the same top choice, that alternative is the winner. $(top(\succ_i) = a \forall i \in N) \Rightarrow f(\overrightarrow{\succ}) = a$

- Q: How does this compare to Pareto optimality?
- Pareto optimality is weak but still violated by natural voting methods like voting trees

• Anonymity:

- Permuting the votes does not change the winner
- In other words, voter identities don't matter
- Example: these two profiles must have the same winner: {voter 1: a > b > c, voter 2: b > c > a} {voter 1: b > c > a, voter 2: a > b > c}

• Neutrality:

- Permuting alternative names just permutes the winner accordingly
- > Example:
 - Say *a* wins on {voter 1: a > b > c, voter 2: b > c > a}
 - We permute all names: $a \rightarrow b$, $b \rightarrow c$, and $c \rightarrow a$
 - New profile: {voter 1: b > c > a, voter 2: c > a > b}
 - Then, the new winner must be **b**

- Neutrality is tricky for deterministic rules
 - > Incompatible with anonymity
 - \circ Consider the profile {voter 1: a > b, voter 2: b > a}
 - \circ Without loss of generality, say a wins
 - Imagine a different profile: {voter 1: b > a, voter 2: a > b}
 - Neutrality \Rightarrow we exchanged $a \leftrightarrow b$, so winner must be b
 - Anonymity \Rightarrow we exchanged the votes, so winner must be a
- We usually only require neutrality for...
 - Randomized rules: E.g., a rule could satisfy both by choosing a and b as the winner with probability ½ each, on both profiles
 - Deterministic rules that return a set of tied winners: E.g., a rule could return {a, b} as tied winners on both profiles.

• Consistency: If *a* is the winner on two profiles, it must be the winner on their union.

$$f(\overrightarrow{\succ}_1) = a \land f(\overrightarrow{\succ}_2) = a \Rightarrow f(\overrightarrow{\succ}_1 + \overrightarrow{\succ}_2) = a$$

- $\succ \text{Example:} \overrightarrow{\succ}_1 = \{ a \succ b \succ c \}, \ \overrightarrow{\succ}_2 = \{ a \succ c \succ b, b \succ c \succ a \}$
- > Then, $\overrightarrow{\succ}_1 + \overrightarrow{\succ}_2 = \{ a > b > c, a > c > b, b > c > a \}$
- Theorem [Young '75]:
 - Subject to mild requirements, a voting rule is consistent if and only if it is a positional scoring rule!

- Weak monotonicity: If *a* is the winner, and *a* is "pushed up" in some votes, *a* remains the winner.
 - $\begin{array}{l} \succ f(\overrightarrow{\succ}) = a \Rightarrow f(\overrightarrow{\succ'}) = a, \text{ where} \\ \circ b \succ_i c \Leftrightarrow b \succ'_i c, \forall i \in N, \ b, c \in A \setminus \{a\} \text{ (Order of others preserved)} \\ \circ a \succ_i b \Rightarrow a \succ'_i b, \forall i \in N, \ b \in A \setminus \{a\} \text{ (a only improves)} \end{array}$
- Contrast with strong monotonicity
 - > SM requires $f(\overrightarrow{\succ}') = a$ even if $\overrightarrow{\succ}'$ only satisfies the 2nd condition
 - > Too strong; only satisfied by dictatorial or non-onto rules [GS Theorem]

- Weak monotonicity is satisfied by most voting rules
 - Popular exceptions: STV, plurality with runoff
- But violation of weak monotonicity helps STV be hard to manipulate
 - > Theorem [Conitzer-Sandholm '06]:

"Every weakly monotonic voting rule is easy to manipulate on average."

• STV violates weak monotonicity

7 voters	5 voters	2 voters	6 voters
а	b	b	С
b	С	С	а
С	а	а	b

7 voters	5 voters	2 voters	6 voters
а	b	а	С
b	С	b	а
С	а	С	b

- First *c*, then *b* eliminated
- Winner: *a*

- First *b*, then *a* eliminated
- Winner: *c*

- Arrow's Impossibility Theorem
 - > Applies to social welfare functions (profile \rightarrow ranking)
 - Independence of Irrelevant Alternatives (IIA): If the preferences of all voters between a and b are unchanged, the social preference between a and b should not change
 - Pareto optimality: If all prefer a to b, then the social preference should be a > b
 - > Theorem: IIA + Pareto optimality \Rightarrow dictatorship
- Interestingly, automated theorem provers can also prove Arrow's and GS impossibilities!

- Polynomial-time computability
 - > Can be thought of as a desirable axiom
 - Two popular rules which attempt to make the pairwise comparison graph acyclic by inverting edges are NP-hard to compute:
 Kemeny's rule: invert edges with minimum total weight
 - Slater's rule: invert minimum number of edges
 - Both rules can be implemented by straightforward integer linear programs
 - For small instances (say, up to 20 alternatives), NP-hardness isn't a practical concern.

Distortion Approach

Distortion Approach

- A quantitative approach to voting
- Three key steps:
 - 1. Assume that voters' *ranked* preferences are induced by their *underlying numerical utilities/costs* for the alternatives
 - 2. Set the goal (e.g. choose the alternative maximizing the sum of voters' utilities a.k.a. the social welfare)
 - 3. Select an alternative that *approximately optimizes* the goal as best as possible (the approximation ratio is called *distortion*)
- Increasingly popular in recent years

Distortion Approach

• Pros:

- > Uses minimal subjective assumptions
 - $\,\circ\,$ Need to assume underlying cardinal utilities/costs
 - $\,\circ\,$ Need to set a goal, which can be a subjective choice
- > Yields a uniquely optimal voting rule

• Cons:

- Optimal rule often doesn't have an intuitive formula that humans can comprehend
- > Optimal rule can sometimes be difficult to compute

Utilitarian Framework

- Underlying utility profile $\vec{u} = (u_1, ..., u_n)$
 - > $u_i(a) =$ utility of voter *i* for alternative *a*
 - > Normalization: $\sum_{a} u_i(a) = 1$ for all voters *i*
- Social welfare $sw(a, \vec{u}) = \sum_i u_i(a)$
- Ideal goal: choose $a^* \in \operatorname{argmax}_a sw(a, \vec{u})$
 - > If we observe \vec{u} , then we can compute a^* easily
 - > However, we do not get to observe \vec{u} directly

Utilitarian Framework

- Observed preference profile $\overrightarrow{\succ} = (\succ_1, ..., \succ_n)$
 - > Each voter *i* reports \succ_i consistent with u_i $\circ u_i(a) > u_i(b) \Rightarrow a \succ_i b$
 - $\,\circ\,$ The voter can break ties arbitrarily
- Realistic goal: approximately maximize social welfare
 - Distortion of voting rule f

dist(f) =
$$\sup_{\vec{u}} \frac{\max_a \operatorname{sw}(a, \vec{u})}{\operatorname{sw}(f(\overrightarrow{\succ}), \vec{u})}$$

○ Implicit max over all possible $\overrightarrow{\succ}$ that can be induced from \vec{u} ○ If f is randomized, we need $E[sw(f(\overrightarrow{\succ}), \vec{u})]$

- Theorem [Caragiannis et al. '16]: Given ranked preferences, the optimal deterministic voting rule has $\Theta(m^2)$ distortion.
- Proof (lower bound):
 - > High-level approach:
 - \circ Take an arbitrary voting rule f
 - \circ Construct a preference profile $\overrightarrow{\succ}$
 - \circ Let f choose a winner a on $\overrightarrow{\succ}$
 - Reveal a utility profile \vec{u} which could have induced $\overrightarrow{\succ}$ but on which *a* is Ω(*m*²) times worse than the optimal alternative

- Proof (lower bound):
 - Let f be any voting rule
 - ➤ Consider the preference profile given on the right
 - ≻ Case 1: $f(\overrightarrow{\succ}) = a_m$:
 Infinite distortion. WHY?

≻ Case 2:
$$f(\overrightarrow{\succ}) = a_i$$
 for some $i < m$:

 \circ Bad utility profile \vec{u} consistent with $\overrightarrow{\succ}$:

- Voters in column i have utility 1/m for every alternative
- All other voters have utility 1/2 for their top two alternatives

$$\circ$$
 sw(a_i , \vec{u}) = $\frac{n}{m-1} \cdot \frac{1}{m}$, sw(a_m , \vec{u}) ≥ $\frac{n-n/(m-1)}{2}$
 \circ Distortion = Ω(m^2)

n/(m-1) voters per column			
a_1	a_2		a_{m-1}
a_m	a_m		a_m
•	•	:	:

- Proof (upper bound):
 - > Claim: Plurality achieves $O(m^2)$ distortion
 - > Suppose plurality winner is a.

 \circ At least n/m voters have a as their top choice

 \circ A voter has utility at least 1/m for their top choice

- $\succ sw(a, \vec{u}) \ge n/m^2$
- > $sw(a^*, \vec{u}) ≤ n$ for every alternative a^*
- > $O(m^2)$ distortion

- Theorem [Boutilier et al. '12]: Given ranked preferences, the optimal randomized voting rule has distortion $O(\sqrt{m} \cdot \log^* m)$, $\Omega(\sqrt{m})$.
- Proof (lower bound):
 - Same high-level approach:
 - \circ Take an arbitrary *randomized* voting rule f
 - \circ Construct a preference profile $\overrightarrow{\succ}$
 - \circ Let f choose a distribution over alternatives p
 - \circ Reveal a utility profile \vec{u} which could have induced $\overrightarrow{\succ}$ but on which the expected social welfare under *p* is Ω(\sqrt{m}) times worse than the optimal social welfare

- Proof (lower bound):
 - > Let f be an arbitrary rule
 - > Consider $\overrightarrow{\succ}$ on the right:
 - $\circ \sqrt{m}$ special alternatives
 - > f must choose at least one special alternative (say a^*) w.p. at most $1/\sqrt{m}$

n/\sqrt{m} voters per column			
<i>a</i> ₁	a_2		$a_{\sqrt{m}}$
• •	:	:	:

- > Bad utility profile \vec{u} consistent with :
 - \circ All voters ranking a^* first give utility 1 to a^*
 - \circ All other voters give utility 1/m to each alternative

$$\circ \frac{n}{\sqrt{m}} \le \mathrm{sw}(a^*, \vec{u}) \le \frac{2n}{\sqrt{m}}$$

 $\circ sw(a, \vec{u}) \leq n/m$ for every other a

• Distortion lower bound: $\sqrt{m}/3$ (proof on the board!)

- Proof (upper bound):
 - Given preference profile →, define harmonic scores sc(a, →):
 Each voter gives 1/k points to her kth most preferred alternative
 Take the sum of points across voters
 - How does the harmonic score relate to social welfare?
 It is an upper bound on social welfare
 - $sw(a, \vec{u}) \le sc(a, \overrightarrow{\succ})$ (WHY?)
 - \circ On average, it is a relatively tight upper bound
 - $\sum_{a} sc(a, \overrightarrow{\succ}) = n \cdot \sum_{k=1}^{m} 1/k = n H_m \le n \cdot (\ln m + 1)$
 - $\sum_{a} sw(a, \overrightarrow{\succ}) = n$

- Proof (upper bound):
 - ➤ Golden rule f:
 - \circ With probability $\frac{1}{2}$:
 - Choose every *a* with probability proportional to $sc(a, \overrightarrow{\succ})$
 - \odot With the remaining probability 1/2:
 - Choose every a with probability 1/m (uniformly at random)

▷ dist(f) ≤ $2\sqrt{m \cdot (\ln m + 1)}$ (proof on the board!)

Some Thoughts

- How do we interpret the distortion number?
 - > Sometimes distortion can be large
 - \circ E.g. $\Theta(m^2)$ for deterministic rules
 - But if all alternatives have bad worst-case approximation ratio, the alternative that minimizes it is still, in a sense, better than the others
 The best we can do given partial information
- Optimal vs asymptotically optimal
 - Plurality and "golden rule" are (almost) asymptotically optimal
 - But one can also write an optimization program that chooses the exact alternative minimizing distortion on each input →
 - Polytime for both deterministic (via a direct formula) and randomized (via a non-trivial LP) cases

Some Thoughts

- Elicitation-distortion tradeoff
 - > What about other types of partial information?
 - There is work on considering less information than rankings as well as more information than rankings
 - $\,\circ\,$ One can analyze a tradeoff between eliciting less information and achieving low distortion

• Extensions

- > Selecting a subset of k alternatives or a ranking of alternatives
- Participatory budgeting
- > Graph matching

Metric Distortion

- Instead of utilities, voters have costs for alternatives
- Underlying metric *d*
 - Voters and alternatives are in an underlying *metric space* with distance function d, which satisfies the triangle inequality
 ∀x, y, z: d(x, y) + d(y, z) ≥ d(x, z)
 - > Social cost $sc(a, d) = \sum_i d(i, a)$
 - ► Ideal goal: Choose $a^* \in \operatorname{argmin}_a sc(a, d)$
- Preference profile $\overrightarrow{\succ} = (\succ_1, \dots, \succ_n)$
 - ➤ Voter *i* ranks the alternatives according to their distance from her $o d(i, a) < d(i, b) \Rightarrow a >_i b$
 - \circ As before, the voter can break ties arbitrarily

Metric Distortion

• Metric distortion of a voting rule *f*

dist(f) =
$$\sup_{d} \frac{\operatorname{sc}(f(\overrightarrow{\succ}), d)}{\min_{a} \operatorname{sc}(a, d)}$$

○ Implicit max over all possible → that can be induced from d
 ○ If f is randomized, we need E[sc(f(→), d)]

 Once again, we can consider both deterministic and randomized rules

• A simple lower bound of 3 with just two candidates

What about upper bounds?

Distortion	Rule	Citation
Unbounded	k-approval ($k > 2$)	[Anshelevich et al., 2015]
$\Theta(m)$	Plurality, Borda count	[Anshelevich et al., 2015]
$\Theta(\sqrt{m})$	Ranked pairs, Schulze	[Kempe 2020]
$O(\log m)$,	STV	[Skowron and Elkind, 2017]
$\Omega(\sqrt{\log m})$		
5	Copeland's rule	[Anshelevich et al., 2015]
$2 + \sqrt{5} \approx 4.236$	A new rule	[Munagala and Wang, 2019]
3	PluralityMatching	[Gkatzelis et al., 2020]

Distortion	Rule	Citation
3 - 2/n	Random Dictatorship	[Anshelevich and Postl, 2017]
3 - 2/m	Smart Dictatorship	[Kempe 2020 <i>,</i> Gkatzelis et al. 2020]
≥ 2	Lower bound	Same example as before

• Major open question:

> Does there exist a randomized voting rule with metric distortion 2?