CSC2556

Lecture 2

Voting II

Credit for many visuals: Ariel D. Procaccia

CSC2556 - Nisarg Shah

Recap

- Voting
 - ➤ n voters, m alternatives
 - > Each voter *i* expresses a ranked preference \succ_i
 - \succ Voting rule f

 \circ Takes as input the collection of preferences $\overrightarrow{\succ}$

 $\,\circ\,$ Returns a single alternative

- A plethora of voting rule
 - > Plurality, Borda count, STV, Kemeny, Copeland, maximin, ...

Condorcet Winner

Definition

- Alternative x defeats y in a pairwise election if a strict majority of voters prefer x to y
- Alternative x is a Condorcet winner if it defeats every other alternative in a pairwise election

• Question

- > Can there be two Condorcet winners?
- Condorcet paradox
 - No Condorcet winner when the majority preference is cyclic

1	2	3
а	b	С
b	С	а
С	а	b

Majority Preference a > b b > cc > a

Condorcet Consistency

Condorcet consistency

- A voting rule is Condorcet consistent if it selects the Condorcet winner whenever one exists
- On preference profiles where there is no Condorcet winner, it is free to output any winner
- Among the rules we saw so far...
 - NOT Condorcet consistent: all positional scoring rules (plurality, Borda, ...), plurality with runoff, STV
 - > Condorcet consistent: Kemeny (Why?)

Majority Consistency

- Majority consistency
 - If a strict majority of voters rank alternative x first, then x must be the winner.
- Question: What is the relation between majority consistency and Condorcet consistency?
 - 1. Majority consistency \Rightarrow Condorcet consistency
 - 2. Condorcet consistency \Rightarrow Majority consistency
 - 3. Equivalent
 - 4. Incomparable

Condorcet Consistency

Copeland

- > Score(x) = # alternatives x beats in pairwise elections
- > Select x^* with the maximum score
- Condorcet consistent (Why?)

• Maximin

- > Score(x) = $\min_{y} n_{x > y}$
- > Select x^* with the maximum score
- > Also Condorcet consistent (Why?)

Which rule to use?

- We just introduced infinitely many rules
 - > (Recall positional scoring rules...)
- How do we know which is the "right" rule to use?
 - Various approaches
 - > Axiomatic, statistical, utilitarian, ...
- How do we ensure good incentives without using money?
 Bad luck! [Gibbard-Satterthwaite, next lecture]

Is Social Choice Practical?

- UK referendum: Choose between plurality and STV for electing MPs
- Academics agreed STV is better...
- ...but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!

CSC2556 - Nisarg Shah

Voting: For the People, By the People

- Voting can be useful in day-to-day activities
- On such a platform, easy to deploy the rules that we believe are the best

ROBOVOTE

AI-Driven Decisions

RoboVote is a free service that helps users combine their preferences or opinions into optimal decisions. To do so, RoboVote employs state-of-the-art voting methods developed in artificial intelligence research. Learn More

Poll Types

RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote which scenario best fits the problem at hand.

Objective Opinions

In this scenario, some alternatives are objectively better than others, and the opinion of a participant reflects an attempt to estimate the correct order. RoboVote's proposed outcome is guaranteed to be as close as possible — based on the available information — to the best outcome. Examples include deciding which product prototype to develop, or which company to invest in, based on a metric such as projected revenue or market share. Try the demo.

Subjective Preferences

In this scenario participants' preferences reflect their subjective taste; RoboVote proposes an outcome that mathematically makes participants as happy as possible overall. Common examples include deciding which restaurant or movie to go to as a group, which destination to choose for a family vacation, or whom to elect as class president. Try the demo.

Ready to get started?

CREATE A POLL

Incentives

- Can a voting rule incentivize voters to truthfully report their preferences?
- Strategyproofness
 - > A voting rule is strategyproof if a voter cannot submit a false preference and get a more preferred alternative (under her true preference) elected, irrespective of the preferences of other voters
 - > Formally, a voting rule f is strategyproof if for every preference profile $\overrightarrow{\succ}$, voter i, and preference \succ'_i , we have

$$f(\overrightarrow{\succ}) \geq_i f(\overrightarrow{\succ}_{-i},\succ_i')$$

▶ Question: What is the relation between $f(\overrightarrow{\succ})$ and $f(\overrightarrow{\succ}_{-i}, \succ'_i)$ according to \geq'_i ?

Strategyproofness

- None of the rules we saw are strategyproof!
- Example: Borda Count
 - > In the true profile, b wins
 - \succ Voter 3 can make a win by pushing b to the end

Borda's Response to Critics

My scheme is intended only for honest men!

Random 18th century French dude

Strategyproofness

• Are there any strategyproof rules?

> Sure

- Dictatorial voting rule
 - The winner is always the most preferred alternative of voter i
- Constant voting rule
 The winner is always the same
- Not satisfactory (for most cases)

Dictatorship

Constant function

Three Properties

- Strategyproof: Already defined. No voter has an incentive to misreport.
- Onto: Every alternative can win under some preference profile.
- Nondictatorial: There is no voter *i* such that *f*(→) is always the alternative most preferred by voter *i*.

- Theorem: For $m \ge 3$, no deterministic social choice function is strategyproof, onto, and nondictatorial simultaneously \bigotimes
- **Proof:** We will prove this for n = 2 voters.
 - > Step 1: Show that SP \Rightarrow "strong monotonicity" [Assignment]
 - ▶ Strong Monotonicity (SM): If $f(\overrightarrow{\succ}) = a$, and $\overrightarrow{\succ}'$ is such that $\forall i \in N, x \in A$: $a \succ_i x \Rightarrow a \succ'_i x$, then $f(\overrightarrow{\succ}') = a$.
 - If, for each *i*, the set of alternatives defeated by *a* in \succ_i' is a superset of what it defeats in \succ_i , then if it was winning under $\overrightarrow{\succ}$, it should also win under $\overrightarrow{\succ}'$

- Theorem: For $m \ge 3$, no deterministic social choice function is strategyproof, onto, and nondictatorial simultaneously \otimes
- **Proof:** We will prove this for n = 2 voters.
 - > Step 2: Show that SP + onto \Rightarrow "Pareto optimality" [Assignment]
 - ▶ Pareto Optimality (PO): If $a >_i b$ for all $i \in N$, then $f(\overrightarrow{>}) \neq b$.

If there is a different alternative *a* that *everyone* prefers to *b*, then *b* should not be the winner.

• **Proof for n=2:** Consider problem instance *I*(*a*, *b*)

$$f(\succ_1,\succ_2) \in \{a,b\}$$

> PO

Say
$$f(\succ_1,\succ_2) = a$$

$$f(\succ_1,\succ_2') = a \qquad \qquad f(\succ_1, \cdots, \succ_2) = a$$

• PO:
$$f(\succ_1, \succ'_2) \in \{a, b\}$$

• SP: $f(\succ_1, \succ'_2) \neq b$

$$f(\succ'') = a$$

> SM

• Proof for n=2:

If f outputs a on instance I(a, b), voter 1 can get a elected whenever she puts a first.

 \circ In other words, voter 1 becomes dictatorial for a.

 \circ Denote this property by the notation D(1, a).

> If f outputs b on I(a, b)

 \circ Voter 2 becomes dictatorial for *b*, i.e., we have D(2, b).

- For every (a, b), f either satisfies the property D(1, a) or the property D(2, b).
 - > We're not done! (Why?)

• Proof for n=2:

- > Fix a^* and b^* . Suppose $D(1, a^*)$ holds.
- > Then, we show that voter 1 is a dictator.

• That is, D(1, c) also holds for every $c \neq a^*$

- ≻ Take $c \neq a^*$. Because $|A| \geq 3$, there exists $d \in A \setminus \{a^*, c\}$
- > Consider I(c, d); f sastisifies either D(1, c) or D(2, d)
- > But D(2, d) is incompatible with $D(1, a^*)$

 \circ Who would win if voter 1 puts a^* first and voter 2 puts d first?

> Thus, we have D(1, c), as required

Circumventing G-S

- Restricted preferences (later in the course)
 - > Not allowing all possible preference profiles
 - > Example: single-peaked preferences
 - Alternatives are on a line (say 1D political spectrum)
 - $\,\circ\,$ Voters are also on the same line
 - $\,\circ\,$ Voters prefer alternatives that are closer to them
- Use of money (later in the course)
 - Require payments from voters that depend on the preferences they submit
 - > Prevalent in auctions

Circumventing G-S

- Randomization (later in this lecture)
- Equilibrium analysis
 - How will strategic voters act under a voting rule that is not strategyproof?
 - Will they reach an "equilibrium" where each voter is happy with the (possibly false) preference she is submitting?
- Restricting information required for manipulation
 - Can voters successfully manipulate if they don't know the votes of the other voters?

Circumventing G-S

- Computational complexity
 - > We need to use a rule that is the rule is manipulable
 - Can we make it NP-hard for voters to manipulate? [Bartholdi et al., SC&W 1989]
 - > NP-hardness can be a good thing!
- f-MANIPULATION problem (for a given voting rule f)
 - Input: Manipulator *i*, alternative *p*, votes of other voters (nonmanipulators)
 - Output: Can the manipulator cast a vote that makes p uniquely win under f?

Example: Borda

• Can voter 3 make *a* win?

> Yes

1	2	3
b	b	
a	a	
с	С	
d	d	

A Greedy Algorithm

• Goal:

 \succ The manipulator wants to make alternative p win uniquely

• Algorithm:

- \succ Rank p in the first place
- > While there are unranked alternatives:
 - \circ If there is an alternative that can be placed in the next spot without preventing p from winning, place this alternative.
 - Otherwise, return false.

Example: Borda

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a		a	X	b	a	a	С
с	С		с	c		С	С	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	\times	с	a	a	С	a	a	С
с	c	b	с	с	d	С	С	d

1	2	3	4	5
a	b	е	е	a
b	a	С	С	
С	d	b	b	
d	е	a	a	
е	С	d	d	

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	2	-	3	1
d	0	0	1	-	2
e	2	2	3	2	_

1	2	3	4	5
a	b	е	е	a
b	a	С	С	С
С	d	b	b	
d	е	a	a	
е	С	d	d	

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	0	1	_	2
е	2	2	3	2	_

1	2	3	4	5
a	b	е	е	a
b	a	С	С	С
С	d	b	b	d
d	е	a	a	
е	С	d	d	

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
e	2	2	3	2	-

1	2	3	4	5
a	b	е	е	a
b	a	С	С	С
С	d	b	b	d
d	е	a	a	е
е	С	d	d	

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	_

1	2	3	4	5
a	b	е	е	a
b	a	С	С	С
С	d	b	b	d
d	е	a	a	e
е	С	d	d	b

Preference profile

	a	b	С	d	е
a	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	_