CSC2556

Lecture 9

Mechanism Design with Money (VCG)

CSC2556 - Nisarg Shah

Announcements

- Class moving online starting next week
 - Starting 3/20, and for the remaining semester, our class is moving online
 - > That means:
 - $\,\circ\,$ Lectures and project presentations will be online
 - Exact details TBD; I'll send out the instructions next week
 - Office hours will be through Skype

 $\,\circ\,$ Homework and project reports will still be through MarkUs

- Mid-project (virtual) check-in
 - I'll send out a sign-up sheet during the weekend
 - Can sign up for a 30-minute slot to chat about progress in your project (voluntary)

VCG

• A set of outcomes A

> A might depend on which agents are participating.

• Each agent *i* has a private valuation $v_i : A \to \mathbb{R}$

• Auctions:

- > A has a nice structure.
 - \circ Selling one item to *n* buyers = *n* outcomes ("give to *i*")
 - \circ Selling *m* items to *n* buyers = n^m outcomes
- > Agents only care about which items *they* receive
 - $\circ A_i$ = bundle of items allocated to agent i
 - \circ Use $v_i(A_i)$ instead of $v_i(A)$ for notational simplicity
- > But for now, we'll look at the general setup.

- Agent *i* might misreport: report \tilde{v}_i instead of v_i
- Mechanism: (f, p)
 > Input: reported valuations ṽ = (ṽ₁, ..., ṽ_n)
 > f(ṽ) ∈ A decides what outcome is implemented
 > p(ṽ) = (p₁, ..., p_n) decides how much each agent pays
 Note that each p_i is a function of all reported valuations
- Utility to agent i : u_i(ṽ) = v_i(f(ṽ)) − p_i(ṽ)
 "Quasi-linear utilities"

- Our goal is to design the mechanism (f, p)
 - *f* is called the social choice function
 - p is called the payment scheme
 - > We want to several things from our mechanism
- Truthfulness/strategyproofness
 - ➢ For all agents i, all v_i, and all ṽ, $u_i(v_i, v_{-i}) ≥ u_i(v_i, v_{-i})$
 - > An agent is at least as happy reporting the truth as telling any lie, irrespective of what other agents report

- Our goal is to design the mechanism (f, p)
 - > f is called the social choice function
 - $\succ p$ is called the payment scheme
 - > We want to several things from our mechanism
- Individual rationality
 - > For all agents i and for all \tilde{v}_{-i} , $u_i(v_i, \tilde{v}_{-i}) \ge 0$

> An agent doesn't regret participating if she tells the truth.

- Our goal is to design the mechanism (f, p)
 - > f is called the social choice function
 - $\succ p$ is called the payment scheme
 - > We want to several things from our mechanism
- No payments to agents

> For all agents *i* and for all \tilde{v} ,

$$p_i(\tilde{v}) \ge 0$$

> Agents pay the center. Not the other way around.

- Our goal is to design the mechanism (f, p)
 - > f is called the social choice function
 - $\succ p$ is called the payment scheme
 - > We want to several things from our mechanism

Welfare maximization

> Maximize $\sum_i v_i(f(\tilde{v}))$

 \circ In many contexts, payments are less important (e.g. ad auctions)

- \circ Or think of the auctioneer as another agent with utility $\sum_i p_i(ilde{
 u})$
 - Then, the total utility of all agents (including the auctioneer) is precisely the objective written above

Objective: The one who really needs it more should have it.

Objective: The one who really needs it more should have it.

Objective: The one who really needs it more should have it.

Implements the desired outcome. But not truthfully.

Image Courtesy: Freepik

Objective: The one who really needs it more should have it.

Single-item Vickrey Auction

- Simplifying notation: v_i = value of agent *i* for the item
- $f(\tilde{v})$: give the item to agent $i^* \in \operatorname{argmax}_i \tilde{v}_i$
- $p(\tilde{v}): p_{i^*} = \max_{j \neq i^*} \tilde{v}_j$, other agents pay nothing

Theorem:

Single-item Vickrey auction is strategyproof.

Proof sketch:

Vickrey Auction: Identical Items

- Two identical xboxes
 - > Each agent i only wants one, has value v_i
 - Goal: give to the agents with the two highest values
- Attempt 1
 - > To agent with highest value, charge 2nd highest value.
 - > To agent with 2nd highest value, charge 3rd highest value.
- Attempt 2
 - To agents with highest and 2nd highest values, charge the 3rd highest value.
- **Question:** Which attempt(s) would be strategyproof?
 - Both, 1, 2, None?

VCG Auction

- Recall the general setup:
 - > A = set of outcomes, v_i = valuation of agent *i*, \tilde{v}_i = what agent i reports, f chooses the outcome, p decides payments
- VCG (Vickrey-Clarke-Groves Auction) $\succ f(\tilde{v}) = a^* \in \operatorname{argmax}_{a \in A} \sum_i \tilde{v}_i(a)$

Maximize welfare

welfare that

$$> p_i(\tilde{v}) = \left[\max_a \sum_{j \neq i} \tilde{v}_j(a)\right] - \left[\sum_{j \neq i} \tilde{v}_j(a^*)\right]$$

i's payment = welfare that
others lost due to presence of *i*

A Note About Payments

•
$$p_i(\tilde{v}) = \left[\max_{a} \sum_{j \neq i} \tilde{v}_j(a)\right] - \left[\sum_{j \neq i} \tilde{v}_j(a^*)\right]$$

- In the first term...
 - Maximum is taken over alternatives that are feasible when *i* does not participate.
 - > Agent i cannot affect this term, so can ignore in calculating incentives.
 - > Could be replaced with any function $h_i(\tilde{v}_{-i})$
 - \circ This specific function has advantages (we'll see)

• Strategyproofness:

- > Suppose agents other than *i* report \tilde{v}_{-i} .
- > Agent *i* reports $\tilde{v}_i \Rightarrow$ outcome chosen is $f(\tilde{v}) = a$

> Utility to agent
$$i = v_i(a) - \left(\prod_{i=1}^{n} - \sum_{j \neq i} \tilde{v}_j(a) \right)$$

Term that agent *i* cannot affect

- > Agent *i* wants *a* to maximize $v_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$
- > f chooses a to maximize $\tilde{v}_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$
- \succ Hence, agent i is best off reporting $\tilde{v}_i = v_i$

 $\circ f$ chooses a that maximizes the utility to agent i

• Individual rationality:

 $> a^* \in \operatorname{argmax}_{a \in A} v_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$ $> \tilde{a} \in \operatorname{argmax}_{a \in A} \sum_{j \neq i} \tilde{v}_j(a)$

$$\begin{split} & u_i(v_i, \tilde{v}_{-i}) \\ &= v_i(a^*) - \left(\sum_{j \neq i} \tilde{v}_j(\tilde{a}) - \sum_{j \neq i} \tilde{v}_j(a^*) \right) \\ &= \left[v_i(a^*) + \sum_{j \neq i} \tilde{v}_j(a^*) \right] - \left[\sum_{j \neq i} \tilde{v}_j(\tilde{a}) \right] \\ &= \text{Max welfare to all agents} \\ &- \text{max welfare to others when } i \text{ is absent} \\ &\geq 0 \end{split}$$

• No payments to agents:

> Suppose the agents report \tilde{v} > $a^* \in \operatorname{argmax}_{a \in A} \sum_j \tilde{v}_j(a)$ > $\tilde{a} \in \operatorname{argmax}_{a \in A} \sum_{j \neq i} \tilde{v}_j(a)$

$$\begin{split} p_i(\tilde{v}) \\ &= \sum_{j \neq i} \tilde{v}_j(\tilde{a}) - \sum_{j \neq i} \tilde{v}_j(a^*) \\ &= \text{Max welfare to others when } i \text{ is absent} \\ &- \text{ welfare to others when } i \text{ is present} \\ &\geq 0 \end{split}$$

• Welfare maximization:

> By definition, since f chooses the outcome maximizing the sum of reported values

• Informal result:

> Under minimal assumptions, VCG is the unique auction satisfying these properties.

- Suppose each agent has a value XBox and a value for PS4.
- Their value for {*XBox*, *PS*4} is the max of their two values.

Q: Who gets the xbox and who gets the PS4?Q: How much do they pay?

Allocation:

- A4 gets XBox, A3 gets PS4
- Achieves maximum welfare of 7 + 6 = 13

Payments:

- Zero payments charged to A1 and A2
 - "Deleting" either does not change the outcome/payments for others
- Can also be seen by individual rationality

Payments:

- Payment charged to A3 = 11 7 = 4
 - > Max welfare to others if A3 absent: 7 + 4 = 11
 - $\,\circ\,\,$ Give XBox to A4 and PS4 to A1
 - Welfare to others if A3 present: 7

Payments:

- Payment charged to A4 = 12 6 = 6
 - > Max welfare to others if A4 absent: 8 + 4 = 12
 - $\,\circ\,$ Give XBox to A3 and PS4 to A1
 - > Welfare to others if A4 present: 6

Final Outcome:

- Allocation: A3 gets PS4, A4 gets XBox
- Payments: A3 pays 4, A4 pays 6
- Net utilities: A3 gets 6 4 = 2, A4 gets 7 6 = 1

Problems with VCG

- Difficult to understand
 - > Must reason about what would maximize others' welfare
- Possibly low revenue
 - > [Bulow-Klemperer 96]: With i.i.d. valuations, $\mathbb{E}[VCG revenue, n+1 agents] \ge \mathbb{E}[OPT revenue, n agents]$
- Often NP-hard to implement
 - > Even computing the welfare maximizing allocation may be computationally difficult

Single-Minded Bidders

- Allocate a set S of m items
- Each agent *i* is described by (v_i, S_i)
 - > Gets value v_i if she receives all items in $S_i \subseteq S$ (and possibly some other items)
 - > Gets value 0 if she doesn't receive even one item in S_i
 - "Single-minded"
- Welfare-maximizing allocation:
 - Find a subset of players with the highest total value such that their desired sets are disjoint

Single-Minded Bidders

- Reduction to the Weighted Independent Set (WIS) problem in graphs
 - > NP-hard

> No $O(m^{0.5-\epsilon})$ approximation (unless $NP \subseteq ZPP$)

• \sqrt{m} -approximation through a simple greedy algorithm in a strategyproof way

Greedy Algorithm

- Input: (v_i, S_i) for each agent i
- Output: Agents with mutually independent S_i
- Greedy Algorithm:
 - Sort the agents in a specific order (we'll see).
 - > Relabel them as 1,2, ..., n in this order.
 - $\succ W \leftarrow \emptyset$
 - ≻ For i = 1, ..., n:
 - If $S_i \cap S_j = \emptyset$ for every $j \in W$, then $W \leftarrow W \cup \{i\}$

 \succ Give agents in W their desired items.

Greedy Algorithm

- Sort by what?
- We want to satisfy agents with higher values. > $v_1 \ge v_2 \ge \cdots \ge v_n \Rightarrow m$ -approximation \bigotimes
- But we don't want to exhaust too many items. $\Rightarrow \frac{v_1}{|S_1|} \ge \frac{v_2}{|S_2|} \ge \cdots \frac{v_n}{|S_n|} \Rightarrow m$ -approximation S
- \sqrt{m} -approximation : $\frac{v_1}{\sqrt{|S_1|}} \ge \frac{v_2}{\sqrt{|S_2|}} \ge \cdots \frac{v_n}{\sqrt{|S_n|}}$?

[Lehmann et al. 2011]

Proof of Approximation

- Definitions
 - > *OPT* = Agents satisfied by the optimal algorithm
 - > W = Agents satisfied by the greedy algorithm
- Claim 1: $OPT \subseteq \bigcup_{i \in W} OPT_i$
- Claim 2: It is enough to show that $\forall i \in W$ $\sqrt{m} \cdot v_i \ge \Sigma_{j \in OPT_i} v_j$

• Observation: For $j \in OPT_i$, $v_j \le v_i \cdot \frac{\sqrt{|S_j|}}{\sqrt{|S_i|}}$

Proof of Approximation

• Summing over all $j \in OPT_i$:

$$\Sigma_{j \in OPT_i} v_j \leq \frac{v_i}{\sqrt{|S_i|}} \cdot \Sigma_{j \in OPT_i} \sqrt{|S_j|}$$

• Using Cauchy-Schwarz (
$$\Sigma_i \ x_i y_i \leq \sqrt{\Sigma_i \ x_i^2} \cdot \sqrt{\Sigma_i \ y_i^2}$$
)
 $\Sigma_{j \in OPT_i} \sqrt{|S_j| \cdot 1} \leq \sqrt{|OPT_i|} \cdot \sqrt{\Sigma_{j \in OPT_i} \ |S_j|}$
 $\leq \sqrt{|S_i|} \cdot \sqrt{m}$

Strategyproofness

• Agent *i* pays
$$p_i = v_{j^*} \cdot \sqrt{\frac{|S_i|}{|S_{j^*}|}}$$

- j* is the smallest index j such that j is currently not selected by greedy but would be selected if we remove (v_i, S_i) from the system
- > Exercise: Show that we must have $j^* > i$
- ▶ Exercise: Show that $S_i \cap S_{j^*} \neq \emptyset$
- Another interpretation: p_i = lowest value i can report and still win

Strategyproofness

- Critical payment
 - Charge each agent the lowest value they can report and still win
- Monotonic allocation
 - > If agent *i* wins when reporting (v_i, S_i) , she must win when reporting $v'_i \ge v_i$ and $S'_i \subseteq S_i$.
 - > Greedy allocation rule satisfies this.
- Theorem: Critical payment + monotonic allocation rule imply strategyproofness.

Moral

- VCG can sometimes be too difficult to implement
 - > May look into approximately maximizing welfare
 - > As long as the allocation rule is monotone, we can charge critical payments to achieve strategyproofness
 - > Note: approximation is needed for computational reasons

Use of approximation

- Note that here we used approximation to circumvent computational hardness, not to achieve strategyproofness
- In mechanism design without money, we needed approximation even to just achieve strategyproofness