CSC2556
Lecture 6

Kidney Exchange
Cake-Cutting

|Some illustrations due to: Ariel Procaccia]
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Announcements

* Project proposal
> Due: Mar 06 by 11:59PM
> I'll soon put up a few sample project ideas.
> If you have trouble finding a project idea, meet me.

e Structure
» Problem space introduction
> High-level research question
> Prior work
> Detailed goals

* Length: Ideally 1 page (2 pages max)
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Incentives

* A decade ago kidney exchanges were carried out
by individual hospitals

* Today there are nationally organized exchanges;
participating hospitals have little other interaction

* |t was observed that hospitals match easy-to-
match pairs internally, and enroll only hard-to-
match pairs into larger exchanges

* Goal: incentivize hospitals to enroll all their pairs
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The strategic model

e Undirected graph, only pairwise matches
> Vertex = donor-patient pair
> Edge = compatibility

* Each agent controls a subset of vertices

> Possible strategy: hide some vertices (match internally), and
only reveal others

> Utility of agent = # its matched vertices (self-matched +
matched by mechanism)
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The strategic model

* Mechanism:
> Input: revealed vertices by agents (edges are public)

> Output: matching
e Target: # matched vertices

e Strategyproof (SP): If no agent benefits from hiding
vertices irrespective of what other agents do.
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Approximating SW

* Theorem [Ashlagi et al. 2010]: No deterministic SP
mechanism can give a 2 — € approximation

* Proof:

0 00000

> No perfect matching exists.

> Any algorithm must either leave a blue node or a gray node
unmatched.
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Approximating SW

* Theorem [Ashlagi et al. 2010]: No deterministic SP
mechanism can give a 2 — € approximation

* Proof:

0 00000

> Suppose it leaves a blue node unmatched

o If the blue agent hides two nodes as follows, the mechanism is forced
to return a matching of size 1 when a matching of size 2 exists.

0 00 O
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Approximating SW

* Theorem [Ashlagi et al. 2010]: No deterministic SP
mechanism can give a 2 — € approximation

* Proof:

0 00000

> Suppose it leaves a gray node unmatched

o If the gray agent hides two nodes as follows, the mechanism is forced
to return a matching of size 1 when a matching of size 2 exists.

O 0 00
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Approximating SW

* Theorem [Kroer and Kurokawa 2013]: No randomized

. . 6 L
SP mechanism can give a < — € approximation.

* Proof: Homework!
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SP mechanism: Take 1

* Assume two agents

* MATCH4, 1,y mechanism:

» Consider matchings that maximize the number of
“internal edges” for each agent.

> Among these return, a matching with max overall
cardinality.
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Another example




Guarantees

* MATCH 4, 1oy, 8iVes a 2-approximation
> Cannot add more edges to matching

> For each edge in optimal matching, one of the two
vertices is in mechanism’s matching

* Theorem (special case): MATCH 3, iy iS
strategyproof for two agents.
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Proof

« M = matching when player 1 is
honest, M' = matching when
player 1 hides vertices

« MAM’ consists of paths and even-

_______________________________________________________________________________________

. : M
length cycles, each consisting of o s
alternating M, M’ edges A
R RN
EWhat s wrong with the q o o]
illustration on the right? S
5 Lol MM
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Proof

« Consider a path in MAM’, denote its edges in M by
P and its edges in M’ by P’

* Consider sets Py, P,,, P, containing edges of P
among V;, among V5, and between V;- 1/,

> Same for P'{{,P',5, P'15

* Note that |Py1| = |P{4]
> Property of the algorithm
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Proof

e Case 1: |Py1| = |P{4]

 Agent 2’s vertices don’t change, so |P,,| = |P,,]

e M is max cardinality = |P;,| = |P{,|

* U1 (P) = 2[Py4| + | Py
> 2|P{{| + |P{,| = U (P")
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Proof

 Case 2: |Py4| > |P{4] ;’ ;" O
* |Pio| = |Pip| — 2 1 Ol
» Every sub-path within V, is of even length
> Pair up edges of P;, and P/, N T
except maybe the first and the last
O O
* Uy (P) = 2|Py4| + [Py;]
>2(|P{{| + 1)+ |P{,| — 2 e el
— Ul(P’) ||
O O
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The case of 3 players
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SP Mechanism: Take 2

 Let I[1 = (I, I1,) be a bipartition of the players

* MATCH;; mechanism:

> Consider matchings that maximize the number of
“internal edges” and do not have any edges between
different players on the same side of the partition

> Among these return a matching with max cardinality
(need tie breaking)
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Eureka?

* Theorem [Ashlagi et al. 2010]: MATCH; is
strategyproof for any number of agents and any
partition II.

* Recall: For n = 2, MATCH,,, ry, is @ 2-approximation

* Question: n = 3, MATCH approximation?
{11{2,3}1

1. 2
2. 3
3. 4
‘ More than 4
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The Mechanism

e The MIX-AND-MATCH mechanism:

> Mix: choose a random partition I1

> Match: Execute MATCHf

* Theorem [Ashlagi et al. 2010]: MIX-AND-MATCH is
strategyproof and a 2-approximation.

* We only prove the approximation ratio.
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Proof

e M* = optimal matching

* Claim: | can create a matching M’ such that
> M’ is max cardinality on each V;, and

1 * 1 *
> %ilMy; | +gzi¢j|Mi'j| > 2ilM| + 5 2w j IM]

» M™* = max cardinality on each V;

> For each path P in M*AM**, add P N M** to M’ if M** has
more internal edges than M*, otherwise add P N M* to M’

> For every internal edge M’ gains relative to M*, it loses at
most one edge overall &
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Proof

e Fix [T and let M!! be the output of MATCH

* The mechanism returns max cardinality across II
subject to being max cardinality internally,
therefore

Z|M{}|+ z |>2|Mu|+ z

iEHl,jEHZ lEHl ]EHZ
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Cake-Cutting




Cake-Cutting

* A heterogeneous, divisible good

> Heterogeneous: it may be valued
differently by different individuals

> Divisible: we can share/divide
it between individuals

* Represented as [0,1]
> Almost without loss of generality

* Set of players N = {1, ..., n}
* Piece of cake X < [0,1]

> A finite union of disjoint intervals
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Agent Valuations

* Each player i has a valuation V; that
is very much like a probability
distribution over [0,1]

e Additive: ForX NnY = @,
ViiX) + Vi (V) =V (XUY)

* Normalized: V;(|0,1]) = 1

* Divisible: VA € [0,1] and X,
Y € X s.t. VL(Y) — AVL(X)
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Fairness Goals

* An allocation is a disjoint partition A = (4, ..., 4,,)
of the cake

* We desire the following fairness properties from
our allocation A:

» Proportionality (Prop):

1
Vi € N: Vi(4) 2 —

* Envy-Freeness (EF):
Vl,] EN: VL(AL) = VL(A])
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Fairness Goals

* Prop: Vi € N:V;(4;) = 1/n
* EF: Vi, j € N:V;(4) = V;(4;)

* Question: What is the relation between
proportionality and EF?
1. Prop = EF
(2. EF = Prop
3. Equivalent
4. Incomparable
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CUT-AND-CHOOSE

e Algorithm for n = 2 players

Vi(X) =11 (Y) =1/2

* Player 2 chooses the piece she prefers.

.

(o Player 1 divides the cake into two pieces X, Y s.t. A

J

* This is EF and therefore proportional.
> Why?
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Input Model

* How do we measure the “time complexity” of a
cake-cutting algorithm for n players?

* Typically, time complexity is a function of the
length of input encoded as binary.

* Our input consists of functions V;, which requires
infinite bits to encode.

* We want running time just as a function of n.
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Robertson-Webb Model

* We restrict access to valuations V/;’s through two
types of queries:

> Eval; (x, y) returns V;([x, y])
> Cut;(x, a) returns y such that V;(|x, y]) = «

eval output —— u

I

X y cut output
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Robertson-Webb Model

* Two types of queries:

> Evali(x) y) — Vi([X, y])
» Cut;(x,a) =y s.t. Vi(|x,y]) =«

* Question: How many queries are needed to find an
EF allocation whenn = 27?

e Answer: 2
> Why?
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DUBINS-SPANIER

* Protocol for finding a proportional allocation for n
players

KReferee starts at 0, and continuously moves knife\
to the right.

* Repeat: when the piece to the left of knife is worth
1/n to a player, the player shouts “stop”, gets the
piece, and exits.

{I’he last player gets the remaining piece. J
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DUBINS-SPANIER
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DUBINS-SPANIER

* Moving knife is not really needed.

e At each stage, we can ask each remaining player a
cut query to mark his 1/n point in the remaining
cake.

* Move the knife to the leftmost mark.
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DUBINS-SPANIER

3 3
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DUBINS-SPANIER

i T |
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DUBINS-SPANIER

ga g
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DUBINS-SPANIER

ga  ga s
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DUBINS-SPANIER

* Question: What is the complexity of the Dubins-
Spanier protocol in the Robertson-Webb model?

1. O(n)
2. O(nlogn)

(3) 0(n?)
1. ©(n?logn)
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EVEN-PAZ

ﬂnput: Interval [x, y]|, number of players n \
> Assume n = 2% for some k

* If n =1, give |x, y] to the single player.

* Otherwise, let each player i mark z; s.t.
1
Vi([x; Zi]) — E Vi([x, y])

* Let z* be the n/2 mark from the left.
* Recurse on [x, z"| with the left n/2 players, and on

\[z*,y] with the right n/2 players. J
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EVEN-PAZ

$3$ 8 B

L S — $
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EVEN-PAZ

* Theorem: EVEN-PAZ returns a Prop allocation.

* Proof:

> Inductive proof. We want to prove that if playeri is
allocated piece A; when [x, y] is divided between n

players, V;(4;) = (1/n)V;([x, y])
o Then Prop follows because initially V;([x, y]) = V;([0,1]) =1

> Base case: n = 1 is trivial.
> Suppose it holds for n = 2%~1, We prove for n = 2*.
> Take the 2%~ 1 |eft players.
o Every left player i has V;([x,z*]) = (1/2) V;([x, y])
o If it gets A;, by induction, V;(4;) = zk_1—1 Vi(lx,z*]) = zik V:([x, v])
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EVEN-PAZ

* Question: What is the complexity of the Even-Paz
protocol in the Robertson-Webb model?

1. O(n)
(2) O(nlogn)
3. O(n?)

1. ©(n?logn)
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Complexity of Proportionality

* Theorem [Edmonds and Pruhs, 2006]: Any
proportional protocol needs ((n logn) operations
in the Robertson-Webb model.

* Thus, the EVEN-PAZ protocol is (asymptotically)
provably optimall!
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Envy-Freeness?

* “| suppose you are also going to give such cute
algorithms for finding envy-free allocations?”

* Bad luck. For n-player EF cake-cutting:
> [Brams and Taylor, 1995] give an unbounded EF protocol.
> [Procaccia 2009] shows Q(n?) lower bound for EF.
> Last year, the long-standing major open question of
“bounded EF protocol” was resolved!

n
nTL

> [Aziz and Mackenzie, 2016]: O(n”n ) protocol!
o Not a typo!
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