CSC2556

Lecture 3

Approaches to Voting

Credit for several visuals: Ariel D. Procaccia

CSC2556 - Nisarg Shah

Approaches to Voting

- What does an approach give us?
 - > A way to compare voting rules
 - > Hopefully a "uniquely optimal voting rule"
- Axiomatic Approach
- Distance Rationalizability
- Statistical Approach
- Utilitarian Approach

• ...

- Axiom: requirement that the voting rule should behave in a certain way
- Goal: define a set of reasonable axioms, and search for voting rules that satisfy them together
 - Ultimate hope: a unique voting rule satisfies the set of axioms simultaneously!
 - What often happens: no voting rule satisfies the axioms together ⁽³⁾

- Weak axioms, satisfied by all popular voting rules
- Unanimity: If all voters have the same top choice, that alternative is the winner.

$$(top(\succ_i) = a \ \forall i \in N) \Rightarrow f(\overrightarrow{\succ}) = a$$

> An even weaker version requires all rankings to be identical

• Pareto optimality: If all voters prefer *a* to *b*, then *b* is not the winner.

$$(a \succ_i b \ \forall i \in N) \Rightarrow f(\overrightarrow{\succ}) \neq b$$

• **Q**: What is the relation between these axioms?

> Pareto optimality \Rightarrow Unanimity

- Anonymity: Permuting votes does not change the winner (i.e., voter identities don't matter).
 - E.g., these two profiles must have the same winner:
 {voter 1: a > b > c, voter 2: b > c > a}
 {voter 1: b > c > a, voter 2: a > b > c}
- Neutrality: Permuting alternative names just permutes the winner.
 - > E.g., say *a* wins on {voter 1: a > b > c, voter 2: b > c > a}
 - > We permute all names: $a \rightarrow b$, $b \rightarrow c$, and $c \rightarrow a$
 - > New profile: {voter 1: b > c > a, voter 2: c > a > b}

> Then, the new winner must be b.

- Neutrality is tricky
 - For deterministic rules, it is inconsistent with anonymity!
 Imagine {voter 1: a > b, voter 2: b > a}
 - \circ Without loss of generality, say a wins
 - Imagine a different profile: {voter 1: b > a, voter 2: a > b}
 - Neutrality: We just exchanged $a \leftrightarrow b$, so winner is b.
 - Anonymity: We just exchanged the votes, so winner stays *a*.
 - > Typically, we only require neutrality for...
 - $\circ\,$ Randomized rules: E.g., a rule could satisfy both by choosing a and b as the winner with probability $\frac{1}{2}$ each, on both profiles
 - Deterministic rules that return a set of tied winners: E.g., a rule could return $\{a, b\}$ as tied winners on both profiles.

- Stronger but more subjective axioms
- Majority consistency: If a majority of voters have the same top choice, that alternative wins. $\left(|\{i: top(\succ_i) = a \}| > \frac{n}{2}\right) \Rightarrow f(\overrightarrow{\succ}) = a$
- Condorcet consistency: If a defeats every other alternative in a pairwise election, a wins. $\left(|\{i:a >_i b\}| > \frac{n}{2}, \forall b \neq a\right) \Rightarrow f(\overrightarrow{>}) = a$

- Recall: Condorcet consistency ⇒ Majority consistency
- All positional scoring rules violate Condorcet consistency.
- Most positional scoring rules also violate majority consistency.
 - > Plurality satisfies majority consistency.

• Consistency: If *a* is the winner on two profiles, it must be the winner on their union.

$$f(\overrightarrow{\succ}_1) = a \land f(\overrightarrow{\succ}_2) = a \Rightarrow f(\overrightarrow{\succ}_1 + \overrightarrow{\succ}_2) = a$$

- $\succ \text{Example:} \overrightarrow{\succ}_1 = \{ a \succ b \succ c \}, \ \overrightarrow{\succ}_2 = \{ a \succ c \succ b, b \succ c \succ a \}$
- > Then, $\overrightarrow{\succ}_1 + \overrightarrow{\succ}_2 = \{a > b > c, a > c > b, b > c > a\}$
- Theorem [Young '75]:
 - Subject to mild requirements, a voting rule is consistent if and only if it is a positional scoring rule!

- Weak monotonicity: If a is the winner, and a is "pushed up" in some votes, a remains the winner.
 f(→) = a → f(→') = a, where
 b >_i c ⇔ b >_i' c, ∀i ∈ N, b, c ∈ A \{a} (Order of others preserved)
 a >_i b ⇒ a >_i' b, ∀i ∈ N, b ∈ A \{a} (a only improves)
- In contrast, strong monotonicity requires $f(\vec{\succ}') = a$ even if $\vec{\succ}'$ only satisfies the 2nd condition
 - > Too strong; only satisfied by dictatorial or non-onto rules [GS Theorem]

- Weak monotonicity: If a is the winner, and a is "pushed up" in some votes, a remains the winner.
 f(→) = a → f(→') = a, where
 b >_i c ⇔ b >_i' c, ∀i ∈ N, b, c ∈ A \{a} (Order of others preserved)
 a >_i b ⇒ a >_i' b, ∀i ∈ N, b ∈ A \{a} (a only improves)
- Weak monotonicity is satisfied by most voting rules
 Popular exceptions: STV, plurality with runoff
 - > But this helps STV be hard to manipulate
 - Theorem [Conitzer-Sandholm '06]: "Every weakly monotonic voting rule is easy to manipulate on average."

STV violates weak monotonicity

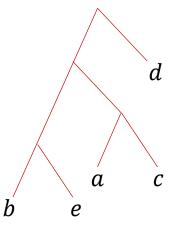
7 voters	5 voters	2 voters	6 voters
а	b	b	С
b	С	С	а
С	а	а	b

7 voters	5 voters	2 voters	6 voters
а	b	а	С
b	С	b	а
С	а	С	b

- First *c*, then *b* eliminated
- Winner: *a*

- First *b*, then *a* eliminated
- Winner: *c*

- Pareto optimality: If $a \succ_i b$ for all voters *i*, then $f(\overrightarrow{\succ}) \neq b$.
- Relatively weak requirement
 - Some rules that throw out alternatives early may violate this.
 - > Example: voting trees
 - Alternatives move up by defeating opponent in pairwise election
 - $\circ d$ may win even if all voters prefer b to d if b loses to e early, and e loses to c



- Arrow's Impossibility Theorem
 - > Applies to social welfare functions (profile \rightarrow ranking)
 - Independence of Irrelevant Alternatives (IIA): If the preferences of all voters between a and b are unchanged, the social preference between a and b should not change
 - ➤ Pareto optimality: If all prefer a to b, then the social preference should be a > b
 - > Theorem: IIA + Pareto optimality \Rightarrow dictatorship.
- Interestingly, automated theorem provers can also prove Arrow's and GS impossibilities!

- One can think of polynomial time computability as an axiom
 - > Two rules that attempt to make the pairwise comparison graph acyclic are NP-hard to compute:
 - $\,\circ\,$ Kemeny's rule: invert edges with minimum total weight
 - $\,\circ\,$ Slater's rule: invert minimum number of edges
 - > Both rules can be implemented by straightforward integer linear programs
 - For small instances (say, up to 20 alternatives), NP-hardness isn't a practical concern.

- According to Condorcet [1785]:
 - > The purpose of voting is not merely to balance subjective opinions; it is a collective quest for the truth.
 - Enlightened voters try to judge which alternative best serves society.
- Modern motivation due to human computation systems
 - EteRNA: Select 8 RNA designs to synthesize so that the truly most stable design is likely one of them

- Traditionally well-explored for choosing a ranking
- For m = 2, the majority choice is most likely the true choice under any reasonable model.
- For m ≥ 3: Condorcet suggested an approach, but the writing was too ambiguous to derive a welldefined voting rule.

- Young's interpretation of Condorcet's approach:
 - \succ Assume there is a ground truth ranking σ^*
 - > Each voter *i* makes a noisy observation σ_i
 - > The observations are i.i.d. given the ground truth ○ $\Pr[\sigma|\sigma^*] \propto \varphi^{d(\sigma,\sigma^*)}$
 - \circ *d* = Kendall-tau distance = #pairwise disagreements
 - $\,\circ\,$ Interesting tidbit: Normalization constant is independent of σ^*

 $\Sigma_{\sigma} \varphi^{d(\sigma,\sigma^*)} = 1 \cdot (1+\varphi) \cdot \ldots \cdot (1+\varphi+\cdots+\varphi^{m-1})$

> Which ranking is most likely to be the ground truth (maximum likelihood estimate – MLE)?

 \circ The ranking that Kemeny's rule returns!

- The approach yields a uniquely optimal voting rule, but relies on a very specific distribution
 - > Other distributions will lead to different MLE rankings.
 - Reasonable if sufficient data is available to estimate the distribution well
 - Else, we may want robustness to a wide family of possible underlying distributions [Caragiannis et al. '13, '14]
- A connection to the axiomatic approach
 - > A voting rule can be MLE for some distribution only if it satisfies consistency. (Why?)

• Maximin violates consistency, and therefore can never be MLE!

Implicit Utilitarian Approach

- Utilities: Voters have underlying numerical utilities
 - > Utility of voter *i* for alternative $a = u_i(a)$
 - \circ Normalization: $\sum_{a} u_i(a) = 1$ for all voters i
 - > Given utility vector \vec{u} , $sw(a, \vec{u}) = \sum_i u_i(a)$
 - ≻ Goal: choose $a^* \in \operatorname{argmax}_a sw(a, \vec{u})$
- Preferences: Voters only report ranked preferences consistent with their utilities
 - $\succ u_i(a) > u_i(b) \Rightarrow a \succ_i b$
 - > Preference profile: $\overrightarrow{>}$
 - Cannot maximize welfare given only partial information

Implicit Utilitarian Approach

- Modified goal: Achieve the best worst-case approximation to social welfare
- Distortion of voting rule *f*

$$\max_{\vec{u}} \frac{\max_{a} \operatorname{sw}(a, \vec{u})}{\operatorname{sw}(f(\vec{\succ}), \vec{u})}$$

- > Here, $\overrightarrow{\succ}$ are the preferences cast by voters when their utilities are \vec{u}
- > If f is randomized, we need $E[sw(f(\overrightarrow{\succ}), \vec{u})]$

Utilitarian Approach

• Pros:

- > Uses minimal subjective assumptions
- > Yields a uniquely optimal voting rule
 - One can define the distortion of f on a given input $\overrightarrow{\succ}$ by taking the worst case over all \vec{u} which would generate $\overrightarrow{\succ}$
 - \circ Optimal voting rule minimizes the distortion on every $\overrightarrow{\succ}$ individually

• Cons:

- > The optimal rule does not have an intuitive formula that humans can comprehend
- > In some scenarios, the optimal rule is difficult to compute

• Theorem [Caragiannis et al. '16]: Given ranked preferences, the optimal deterministic voting rule has $\Theta(m^2)$ distortion.

• Proof:

- > Lower bound: Construct a profile on which every deterministic voting rule has $\Omega(m^2)$ distortion.
- > Upper bound: Show *some* deterministic voting rule that has $O(m^2)$ distortion on every profile.

• Proof (lower bound):

- Consider the profile on the right
- If the rule chooses a_m:
 Infinite distortion. WHY?
- > If the rule chooses a_i for i < m:

n/(m-1) voters per column					
a_1	a_2		a_{m-1}		
a_m	a_m		a_m		
:	:	:	:		

- \circ Construct a bad utility profile \vec{u} as follows
 - Voters in column i have utility 1/m for every alternative
 - All other voters have utility 1/2 for their top two alternatives

$$\circ \operatorname{sw}(a_i, \vec{u}) = \frac{n}{m-1} \cdot \frac{1}{m}$$
, $\operatorname{sw}(a_m, \vec{u}) \ge \frac{n-n/(m-1)}{2}$
 $\circ \operatorname{Distortion} = \Omega(m^2)$

- Proof (upper bound):
 - Simply using plurality achieves O(m²) distortion.
 WHY?
 - \succ Suppose plurality winner is a.
 - \circ At least n/m voters prefer a the most, and thus have utility at least 1/m for a.
 - $> sw(a, \vec{u}) \ge n/m^2$
 - $> sw(a^*, \vec{u}) \le n$ for every alternative a^*
 - > $O(m^2)$ distortion

Implicit Utilitarian Voting

- Plurality is as good as any other deterministic voting rule!
- Alternatively:
 - If we must choose an alternative deterministically, ranked preferences provide no more useful information than top-place votes do, in the worst case.
- There's more hope if we're allowed to randomize.

• Theorem [Boutilier et al. '12]: Given ranked preferences, the optimal randomized voting rule has distortion $O(\sqrt{m} \cdot \log^* m)$, $\Omega(\sqrt{m})$.

• Proof:

- > Lower bound: Construct a profile on which every randomized voting rule $\Omega(\sqrt{m})$ distortion.
- > Upper bound: Show *some* randomized voting rule that has $O(\sqrt{m} \cdot \log^* m)$ distortion

• We'll do the much simpler $O(\sqrt{m \log m})$ distortion

- Proof (lower bound):
 - Consider a similar profile:
 - $\circ \sqrt{m}$ special alternatives
 - \circ Voting rule must choose one of them (say a^*) w.p. at most $1/\sqrt{m}$
 - > Bad utility profile \vec{u} :
 - \circ All voters ranking a^* first give utility 1 to a^*
 - \circ All other voters give utility 1/m to each alternative

$$\circ \frac{n}{\sqrt{m}} \le \mathrm{sw}(a^*, \vec{u}) \le \frac{2n}{\sqrt{m}}$$

- \circ sw(a, \vec{u}) \leq n/m for every other a.
- Distortion lower bound: $\sqrt{m}/3$ (proof on the board!)

n/\sqrt{m} voters per column				
a_1	<i>a</i> ₂		$a_{\sqrt{m}}$	
:	:	:	:	

• Proof (upper bound):

- ≻ Given profile $\overrightarrow{\succ}$, define the harmonic score sc(a, $\overrightarrow{\succ}$):
 - \circ Each voter gives 1/k points to her k^{th} most preferred alternative
 - $\,\circ\,$ Take the sum of points across voters
 - $\circ \operatorname{sw}(a, \vec{u}) \leq \operatorname{sc}(a, \overrightarrow{\succ})$ (WHY?)
 - $\circ \sum_{a} sc(a, \overrightarrow{\succ}) = n \cdot \sum_{k=1}^{m} 1/k = n H_{m} \le n \cdot (\ln m + 1)$

Golden rule:

- W.p. ½: Choose every a w.p. proportional to $sc(a, \overrightarrow{\succ})$
- \circ W.p. ½: Choose every *a* w.p. 1/m (uniformly at random)
- > Distortion $\leq 2\sqrt{m \cdot (\ln m + 1)}$ (proof on the board!)

Optimal vs Near-Optimal Rules

- The distortion is often bad for large m
 - > E.g., $\Theta(m^2)$ for deterministic rules.
 - But one can argue that the optimal alternative which minimizes distortion represents *some* meaningful aggregation of information.
- How difficult is it to find the *optimal* alternative?
 - Polynomial time computable for both deterministic (via a direct formula) and randomized (via a non-trivial LP) cases

Input Format

- What if we ask about underlying numerical utilities in a format other than ranking?
- Threshold approval votes
 - > Voting rule selects a threshold τ , asks each voter i, for each alternative a, whether $u_i(a) \ge \tau$
 - > O(log m) distortion!
- Food for thought
 - > What is the tradeoff between the number of bits of information elicited and the distortion achieved?
 - > What is the best input format for a given number of bits?

Implicit Utilitarian Approach

• Extensions

- Selecting a subset of alternatives or a ranking
 - $\,\circ\,$ Lack of an obvious objective function
 - Has been studied for some natural objective functions [Caragiannis et al. '16, ongoing work]
- > Participatory budgeting [Benade et al. '17]
- > Graph problems
- Project idea: Replace numbers with rankings in any problem!
- Deployed

