CSC2556

Lecture 2

Manipulation in Voting

Credit for many visuals: Ariel D. Procaccia

Recap

- Voting
> n voters, m alternatives
> Each voter i expresses a ranked preference $>_{i}$
$>$ Voting rule f
- Takes as input the collection of preferences $\overrightarrow{>}$
- Returns a single alternative
- A plethora of voting rule
> Plurality, Borda count, STV, Kemeny, Copeland, maximin,

Incentives

- Can a voting rule incentivize voters to truthfully report their preferences?
- Strategyproofness
> A voting rule is strategyproof if a voter cannot submit a false preference and get a more preferred alternative (under her true preference) elected, irrespective of the preferences of other voters.
> Formally, a voting rule f is strategyproof if there is no preference profile $\vec{\succ}$, voter i, and false preference $>_{i}^{\prime}$ s.t.

$$
f\left(\vec{\succ}_{-i},>_{i}^{\prime}\right) \succ_{i} f(\vec{\succ})
$$

Strategyproofness

- None of the rules we saw are strategyproof!
- Example: Borda Count
$>$ In the true profile, b wins
> Voter 3 can make a win by pushing b to the end

	1	2	3			
	b	b	a		1	2

Borda’s Response to Critics

My scheme is intended only for honest men!

Random $18^{\text {th }}$ century
French dude

Strategyproofness

- Are there any strategyproof rules?
> Sure
- Dictatorial voting rule
> The winner is always the most preferred alternative of voter i
- Constant voting rule
> The winner is always the same
- Not satisfactory (for most cases)

Dictatorship

Constant function

Three Properties

- Strategyproof: Already defined. No voter has an incentive to misreport.
- Onto: Every alternative can win under some preference profile.
- Nondictatorial: There is no voter i such that $f(\overrightarrow{>})$ is always the alternative most preferred by voter i.

Gibbard-Satterthwaite

- Theorem: For $m \geq 3$, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously ${ }^{(2)}$
- Proof: We will prove this for $n=2$ voters.
> Step 1: Show that SP implies "strong monotonicity" [Assignment]
> Strong Monotonicity (SM): If $f(\overrightarrow{>})=a$, and $\overrightarrow{>}^{\prime}$ is such that $\forall i \in N, x \in A: a>_{i} x \Rightarrow a>_{i}^{\prime} x$, then $f\left(\overrightarrow{>}^{\prime}\right)=a$.
- If a still defeats every alternative it defeated in every vote in $\overrightarrow{>}$, it should still win.

Gibbard-Satterthwaite

- Theorem: For $m \geq 3$, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously ${ }^{(2)}$
- Proof: We will prove this for $n=2$ voters.
> Step 2: Show that SP+onto implies "Pareto optimality" [Assignment]
$>$ Pareto Optimality (PO): If $a>_{i} b$ for all $i \in N$, then $f(\overrightarrow{>}) \neq b$.
- If there is a different alternative that everyone prefers, your choice is not Pareto optimal (PO).

Gibbard-Satterthwaite

- Proof for $\mathrm{n}=2$: Consider problem instance $I(a, b)$

Gibbard-Satterthwaite

- Proof for $\mathrm{n}=2$:
$>$ If f outputs a on instance $I(a, b)$, voter 1 can get a elected whenever she puts a first.
- In other words, voter 1 becomes dictatorial for a.
- Denote this by $D(1, a)$.
> If f outputs b on $I(a, b)$
- Voter 2 becomes dictatorial for b, i.e., we have $D(2, b)$.
- For every (a, b), we have either $D(1, a)$ or $D(2, b)$.

Gibbard-Satterthwaite

- Proof for $\mathrm{n}=2$:
> Fix a^{*} and b^{*}. Suppose $D\left(1, a^{*}\right)$ holds.
$>$ Then, we show that voter 1 is a dictator.
- That is, $D(1, c)$ holds for every $c \neq a^{*}$ as well.
> Take $c \neq a^{*}$. Because $|A| \geq 3$, there exists $d \in A \backslash\left\{a^{*}, c\right\}$.
$>$ Consider $I(c, d)$. We either have $D(1, c)$ or $D(2, d)$.
> But $D(2, d)$ is incompatible with $D\left(1, a^{*}\right)$
- Who would win if voter 1 puts a^{*} first and voter 2 puts d first?
$>$ Thus, we have $D(1, c)$, as required.
> QED!

Circumventing G-S

- Restricted preferences (later in the course)
> Not allowing all possible preference profiles
> Example: single-peaked preferences
- Alternatives are on a line (say 1D political spectrum)
o Voters are also on the same line
- Voters prefer alternatives that are closer to them
- Use of money (later in the course)
> Require payments from voters that depend on the preferences they submit
> Prevalent in auctions

Circumventing G-S

- Randomization (later in this lecture)
- Equilibrium analysis
> How will strategic voters act under a voting rule that is not strategyproof?
> Will they reach an "equilibrium" where each voter is happy with the (possibly false) preference she is submitting?
- Restricting information
> Can voters successfully manipulate if they don't know the votes of the other voters?

Circumventing G-S

- Computational complexity
> So we need to use a rule that is the rule is manipulable.
> Can we make it NP-hard for voters to manipulate? [Bartholdi et al., SC\&W 1989]
> NP-hardness can be a good thing!
- f-MANIPULATION problem (for a given voting rule f):
> Input: Manipulator i, alternative p, votes of other voters (non-manipulators)
> Output: Can the manipulator cast a vote that makes p uniquely win under f ?

Example: Borda

- Can voter 3 make a win?

1	2	3
b	b	
a	a	
c	c	
d	d	

1	2	$\mathbf{3}$
b	b	a
a	a	c
c	c	d
d	d	b

A Greedy Algorithm

- Goal: The manipulator wants to make alternative p win uniquely
- Algorithm:
$>$ Rank p in the first place
> While there are unranked alternatives:
- If there is an alternative that can be placed in the next spot without preventing p from winning, place this alternative.
- Otherwise, return false.

Example: Borda

1	2	3	1	2	3	1	2	3
b	b	a				b	b	a
a	a		a		b	a	a	C
c	c					C	C	
d	d			d		d	d	
	2	3	1	2	3	1	2	3
			b	b	a	b	b	a
a		C	a	a	c	a	a	c
			C	c	d	C	C	d
	d		d	d		d	d	b

Example: Copeland

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	2	-	3	1
\mathbf{d}	0	0	1	-	2
\mathbf{e}	2	2	3	2	-

Pairwise elections

Example: Copeland

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	0	1	-	2
\mathbf{e}	2	2	3	2	-

Pairwise elections

Example: Copeland

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	2	3	2	-

Pairwise elections

Example: Copeland

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	3	3	2	-

Pairwise elections

Example: Copeland

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	b

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	3	3	2	-

Pairwise elections

When does this work?

- Theorem [Bartholdi et al., SCW 89]:

Fix voter i and votes of other voters. Let f be a rule for which \exists function $s\left(\succ_{i}, x\right)$ such that:

1. For every \rangle_{i}, f chooses a candidate x that uniquely maximizes $s\left(\succ_{i}, x\right)$.
2. $\left\{y: x>_{i} y\right\} \subseteq\left\{y: x>_{i}^{\prime} y\right\} \Rightarrow s\left(\succ_{i}, x\right) \leq s\left(\succ_{i}^{\prime}, x\right)$

Then the greedy algorithm solves f-MANIPULATION correctly.

- Question: What is the function s for plurality?

Proof of the Theorem

- Say the algorithm creates a partial ranking $>_{i}$ and then fails, i.e., every next choice prevents p from winning
- Suppose for contradiction that \succ_{i}^{\prime} could make p uniquely win
- $U \leftarrow$ alternatives not ranked in $>_{i}$
- $u \leftarrow$ highest ranked alternative in U according to \succ_{i}^{\prime}
- Complete $>_{i}$ by adding u next, and then other alternatives arbitrarily

Proof of the Theorem

- $s\left(\succ_{i}, p\right) \geq s\left(\succ_{i}^{\prime}, p\right)$
> Property 2
- $s\left(\succ_{i}^{\prime}, p\right)>s\left(\succ_{i}^{\prime}, u\right)$
$>$ Property $1 \& p$ wins under $>_{i}^{\prime}$
- $s\left(\succ_{i}^{\prime}, u\right) \geq s\left(>_{i}, u\right)$
> Property 2
- Conclusion
> Putting u in the next position wouldn't have prevented p from winning
> So the algorithm should have continued

Hard-to-Manipulate Rules

- Natural rules
> Copeland with second-order tie breaking [Bartholdi et al. SCW 89]
- In case of a tie, choose the alternative for which the sum of Copeland scores of defeated alternatives is the largest
> STV [Bartholdi \& Orlin, SCW 91]
> Ranked Pairs [Xia et al., IJCAI 09]
- Iteratively lock in pairwise comparisons by their margin of victory (largest first), ignoring any comparison that would form cycles.
- Winner is the top ranked candidate in the final order.
- Can also "tweak" easy to manipulate voting rules [Conitzer \& Sandholm, IJCAI 03]

Example: Ranked Pairs

Randomized Voting Rules

- Take as input a preference profile, output a distribution over alternatives
- To think about successful manipulations, we need numerical utilities
- $>_{i}$ is consistent with u_{i} if

$$
a>_{i} b \Leftrightarrow u_{i}(a)>u_{i}(b)
$$

- Strategyproofness: For all $i, u_{i}, \vec{\succ}_{-i}$, and $>_{i}^{\prime}$

$$
\mathbb{E}\left[u_{i}(f(\overrightarrow{>}))\right] \geq \mathbb{E}\left[u_{i}\left(f\left(\vec{\succ}_{-i},>_{i}^{\prime}\right)\right)\right]
$$

where $>_{i}$ is consistent with u_{i}.

Randomized Voting Rules

- A (deterministic) voting rule is
> unilateral if it only depends on one voter
> duple if its range contains at most two alternatives
- A probability mixture f over rules f_{1}, \ldots, f_{k} is a rule given by some probability distribution ($\alpha_{1}, \ldots, \alpha_{k}$) s.t. on every profile $\vec{\succ}, f$ returns $f_{j}(\vec{\succ})$ w.p. α_{j}.

Randomized Voting Rules

- Theorem [Gibbard 77]:

A randomized voting rule is strategyproof only if it is a probability mixture over unilaterals and duples.

- Example:
$>$ With probability 0.5 , output the top alternative of a randomly chosen voter
$>$ With the remaining probability 0.5 , output the winner of the pairwise election between a^{*} and b^{*}
- Question: What is a probability mixture over unilaterals and duples that is not strategyproof?

Approximating Voting Rules

- Idea: Can we use strategyproof voting rules to approximate popular voting rules?
- Fix a rule (e.g., Borda) with a clear notion of score denoted $\operatorname{sc}(\vec{\succ}, a)$
- A randomized voting rule f is a c-approximation to sc if for every profile $\overrightarrow{>}$

$$
\frac{\mathbb{E}[\operatorname{sc}(\vec{\succ}, f(\vec{\succ}))}{\max _{a} \operatorname{sc}(\vec{\succ}, a)} \geq c
$$

Approximating Borda

- Question: How well does choosing a random alternative approximate Borda?

1. $\Theta(1 / n)$
2. $\Theta(1 / m)$
3. $\Theta(1 / \sqrt{m})$
(4.) $\Theta(1)$

- Theorem [Procaccia 10]:

No strategyproof voting rule gives $1 / 2+\omega(1 / \sqrt{m})$ approximation to Borda.

Interlude: Zero-Sum Games

Interlude: Minimiax Strategies

- A minimax strategy for a player is
> a (possibly) randomized choice of action by the player
$>$ that minimizes the expected loss (or maximizes the expected gain)
> in the worst case over the choice of action of the other player
- In the previous game, the minimax strategy for each player is $(1 / 2,1 / 2)$. Why?

Interlude: Minimiax Strategies

- In the game above, if the shooter uses $(p, 1-p)$:
> If goalie jumps left: $p \cdot\left(-\frac{1}{2}\right)+(1-p) \cdot 1=1-\frac{3}{2} p$
> If goalie jumps right: $p \cdot 1+(1-p) \cdot(-1)=2 p-1$
$>$ Shooter chooses p to maximize $\min \left\{1-\frac{3 p}{2}, 2 p-1\right\}$

Interlude: Minimax Theorem

- Theorem [von Neumann, 1928]:
Every 2-player zero-sum game has a unique value v such that > Player 1 can guarantee value at least v
> Player 2 can guarantee loss at most v

Yao's Minimax Principle

- Rows as inputs
- Columns as deterministic algorithms
- Cell numbers = running times
- Best randomized algorithm
> Minimax strategy for the column player

$$
\min _{\text {rand algo }} \max _{\text {input }} E[\text { time }]=
$$

$$
\max _{\text {dist over inputs det algo }} \min _{\text {dime }]} E[\text { tim }
$$

Yao's Minimax Principle

- To show a lower bound T on the best worst-case running time achievable through randomized algorithms:
> Show a "bad" distribution over inputs D such that every deterministic algorithm takes time at least T on average, when inputs are drawn according to D

$$
\min _{\text {rand algo }} \max _{\text {input }} E[\text { time }]=
$$

$$
\max _{\text {dist over inputs det algo }} \min _{\text {dime }]} E[\text { tim }
$$

Randomized Voting Rules

	$<^{1}$	\ldots	\ldots	\ldots	\ldots	$<t$
U_{1}	$\frac{1}{15}$	\ldots	\ldots	\ldots	\ldots	$\frac{2}{21}$
\ldots						
U_{k}	$\frac{7}{15}$	Approximation ratio	$\frac{5}{21}$			
D_{1}	$\frac{4}{15}$	\ldots	\ldots	\ldots	\ldots	$\frac{8}{21}$
\ldots						
D_{S}	$\frac{13}{15}$	\ldots	\ldots	\ldots	\ldots	$\frac{17}{21}$

Randomized Voting Rules

- Rows = unilaterals and duples
- Columns = preference profiles
- Cell numbers = approximation ratios
- The expected ratio of the best strategyproof rule (by Gibbard's theorem, distribution over unilaterals and duples) is at most...
> The expected ratio of the best unilateral or duple rule when profiles are drawn from a "bad" distribution D

A Bad Distribution

- $m=n+1$
- Choose a random alternative x^{*}
- Each voter i chooses a random number $k_{i} \in\{1, \ldots, \sqrt{m}\}$ and places x^{*} in position k_{i}
- The other alternatives are ranked cyclically

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
c	b	d
b	a	b
a	d	c
d	c	a

$$
\begin{aligned}
& x^{*}=b \\
& k_{1}=2 \\
& k_{2}=1 \\
& k_{3}=2
\end{aligned}
$$

A Bad Distribution

- Question: What is the best lower bound on $\operatorname{sc}\left(\vec{\succ}, x^{*}\right)$ that holds for every profile \gg generated under this distribution?

$$
\begin{aligned}
& \text { 1. } \sqrt{n} \\
& \text { 2. } \sqrt{m} \\
& \text { 3. } n \cdot(m-\sqrt{m}) \\
& \text { 4. } n \cdot m
\end{aligned}
$$

A Bad Distribution

- How bad are other alternatives?
> For every other alternative $x, \operatorname{sc}(\overrightarrow{>}, x) \sim \frac{n(m-1)}{2}$
- How surely can a unilateral/duple rule return x^{*} ?
> Unilateral: By only looking at a single vote, the rule is essentially guessing x^{*} among the first \sqrt{m} positions, and captures it with probability at most $1 / \sqrt{m}$.
> Duple: By fixing two alternatives, the rule captures x^{*} with probability at most $2 / \mathrm{m}$.
- Putting everything together...

Quantitative GS Theorem

- Regarding the use of NP-hardness to circumvent GS
> NP-hardness is hardness in the worst case
> What happens in the average case?
- Theorem [Mossel-Racz '12]:

For every voting rule that is at least ϵ-far from being a dictatorship or having range of size 2 , the probability that a profile chosen uniformly at random admits a manipulation is at least $p(n, m, 1 / \epsilon)$ for some polynomial p.

Coalitional Manipulations

- What if multiple voters collude to manipulate?
> The following result applies to a wide family of voting rules called "generalized scoring rules".
- Theorem [Conitzer-Xia ‘08]:

Powerful = can manipulate with high probability

Interesting Tidbit

- Detecting a manipulable profile versus finding a beneficial manipulation
- Theorem [Hemaspaandra, Hemaspaandra, Menton '12] If integer factoring is NP-hard, then there exists a generalized scoring rule for which:
> We can efficiently check if there exists a beneficial manipulation.
> But finding such a manipulation is NP-hard.

Next Lecture

- Frameworks to compare voting rules
> Even if we assume that voters will reveal their true preferences, we still don't know if there is one "right" way to choose the winner.
> There are reasonable profiles where most prominent voting rules return different winners [Assignment]

