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Prices of Anarchy and Stability



Price of Anarchy and Stability
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• If players play a Nash equilibrium instead of 
“socially optimum”, how bad can it be?

• Objective function: sum of utilities/costs

• Price of Anarchy (PoA): compare the optimum to 
the worst Nash equilibrium

• Price of Stability (PoS): compare the optimum to 
the best Nash equilibrium



Price of Anarchy and Stability
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• Price of Anarchy (PoA)

Max social utility

Min social utility in any NE

• Price of Stability (PoS)

Max social utility

Max social utility in any NE

Costs  → flip: 
Nash equilibrium 

divided by optimum



Revisiting Stag-Hunt
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• Optimum social utility = 4+4 = 8

• Three equilibria:
➢ (Stag, Stag) : Social utility = 8

➢ (Hare, Hare) : Social utility = 2

➢ (Stag:1/3 - Hare:2/3, Stag:1/3 - Hare:2/3)
o Social utility = (1/3)*(1/3)*8 + (1-(1/3)*(1/3))*2 = Btw 2 and 8

• Price of stability? Price of anarchy?

Hunter 2
Hunter 1 Stag Hare

Stag (4 , 4) (0 , 2)

Hare (2 , 0) (1 , 1)



Cost Sharing Game
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• 𝑛 players on directed weighted graph 𝐺

• Player 𝑖
➢ Wants to go from 𝑠𝑖 to 𝑡𝑖

➢ Strategy set 𝑆𝑖 = {directed 𝑠𝑖 → 𝑡𝑖 paths}

➢ Denote his chosen path by 𝑃𝑖 ∈ 𝑆𝑖

• Each edge 𝑒 has cost 𝑐𝑒 (weight)
➢ Cost is split among all players taking edge 𝑒

➢ That is, among all players 𝑖 with 𝑒 ∈ 𝑃𝑖

1
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Cost Sharing Game
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• Given strategy profile 𝑃, cost 𝑐𝑖 𝑃 to player 𝑖

is sum of his costs for edges 𝑒 ∈ 𝑃𝑖

• Social cost 𝐶 𝑃 = σ𝑖 𝑐𝑖 𝑃

➢ Note that 𝐶 𝑃 = σ
𝑒∈𝐸 𝑃

𝑐𝑒, where 

𝐸(𝑃)={edges taken in 𝑃 by at least one player}

• In the example on the right:
➢ What if both players take the direct paths? 

➢ What if both take the middle paths?

➢ What if only one player takes the middle path while 
the other takes the direct path?

1
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Cost Sharing: Simple Example
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• Example on the right: 𝑛 players

• Two pure NE
➢ All taking the n-edge: social cost = 𝑛

➢ All taking the 1-edge: social cost = 1
o Also the social optimum

• In this game, price of anarchy ≥ 𝑛

• We can show that for all cost sharing 
games, price of anarchy ≤ 𝑛

s

t

𝑛 1



Cost Sharing: PoA
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• Theorem: The price of anarchy of a cost sharing 
game is at most 𝑛.

• Proof:
➢ Suppose the social optimum is (𝑃1

∗, 𝑃2
∗, … , 𝑃𝑛

∗), in which 
the cost to player 𝑖 is 𝑐𝑖

∗.

➢ Take any NE with cost 𝑐𝑖 to player 𝑖.

➢ Let 𝑐𝑖
′ be his cost if he switches to 𝑃𝑖

∗. 

➢ NE  ⇒ 𝑐𝑖
′ ≥ 𝑐𝑖 (Why?)

➢ But  :  𝑐𝑖
′ ≤ 𝑛 ⋅ 𝑐𝑖

∗ (Why?)

➢ 𝑐𝑖 ≤ 𝑛 ⋅ 𝑐𝑖
∗ for each 𝑖 ⇒ no worse than 𝑛 × optimum

∎



Cost Sharing
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• Price of anarchy

➢ All cost-sharing games: PoA ≤ 𝑛

➢ ∃ example where PoA = 𝑛

• Price of stability? Later…

• Both examples we saw had 
pure Nash equilibria
➢ What about more complex 

games, like the one on the right?

10 players: 𝐸 → 𝐶
27 players: 𝐵 → 𝐷
19 players: 𝐶 → 𝐷

E
D

A

7

B

C
60

12

32

10

20



Good News
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• Theorem: All cost sharing games admit a pure Nash 
equilibrium.

• Proof:
➢ Via a “potential function” argument.



Step 1: Define Potential Fn
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• Potential function: Φ ∶ ς𝑖 𝑆𝑖 → ℝ+

➢ For all pure strategy profiles 𝑃 = 𝑃1, … , 𝑃𝑛 ∈ ς𝑖 𝑆𝑖, …

➢ all players 𝑖, and …

➢ all alternative strategies 𝑃𝑖
′ ∈ 𝑆𝑖 for player 𝑖…

𝑐𝑖 𝑃𝑖
′, 𝑃−𝑖 − 𝑐𝑖 𝑃 = Φ 𝑃𝑖

′, 𝑃−𝑖 − Φ 𝑃

• When a single player changes his strategy, the 
change in his cost is equal to the change in the 
potential function
➢ Do not care about the changes in the costs to others



Step 2: Potential Fn → pure Nash Eq
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• All games that admit a potential function have a 
pure Nash equilibrium. Why?

➢ Think about 𝑃 that minimizes the potential function.

➢ What happens when a player deviates?
o If his cost decreases, the potential function value must also 

decrease.

o 𝑃 already minimizes the potential function value.

• Pure strategy profile minimizing potential function 
is a pure Nash equilibrium.



Step 3: Potential Fn for Cost-Sharing
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• Recall: 𝐸(𝑃) = {edges taken in 𝑃 by at least one player}

• Let 𝑛𝑒(𝑃) be the number of players taking 𝑒 in 𝑃

Φ 𝑃 = ෍

𝑒∈𝐸(𝑃)

෍

𝑘=1

𝑛𝑒(𝑃)
𝑐𝑒

𝑘

• Note: The cost of edge 𝑒 to each player taking 𝑒 is 

𝑐𝑒/𝑛𝑒(𝑃). But the potential function includes all 

fractions: 𝑐𝑒/1, 𝑐𝑒/2, …, 𝑐𝑒/𝑛𝑒 𝑃 .



CSC2556 - Nisarg Shah 15

Φ 𝑃 = ෍

𝑒∈𝐸(𝑃)

෍

𝑘=1

𝑛𝑒(𝑃)
𝑐𝑒

𝑘

• Why is this a potential function?

➢ If a player changes path, he pays 
𝑐𝑒

𝑛𝑒 𝑃 +1
for each new 

edge 𝑒, gets back 
𝑐𝑓

𝑛𝑓 𝑃
for each old edge 𝑓.

➢ This is precisely the change in the potential function too.

➢ So Δ𝑐𝑖 = ΔΦ.

∎

Step 3: Potential Fn for Cost-Sharing



Potential Minimizing Eq.
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• There could be multiple pure Nash equilibria
➢ Pure Nash equilibria are “local minima” of the potential 

function. 

➢ A single player deviating should not decrease the 
function value.

• Is the global minimum of the potential function a 
special pure Nash equilibrium?



Potential Minimizing Eq.
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෍

𝑒∈𝐸(𝑃)

𝑐𝑒 ≤ Φ 𝑃 = ෍

𝑒∈𝐸(𝑃)

෍

𝑘=1

𝑛𝑒(𝑃)
𝑐𝑒

𝑘
≤ ෍

𝑒∈𝐸(𝑃)

𝑐𝑒 ∗ ෍

𝑘=1

𝑛
1

𝑘

Social cost

∀𝑃, 𝐶 𝑃 ≤ Φ 𝑃 ≤ 𝐶 𝑃 ∗ 𝐻 𝑛

𝐶 𝑃∗ ≤ Φ 𝑃∗ ≤ Φ 𝑂𝑃𝑇 ≤ 𝐶 𝑂𝑃𝑇 ∗ 𝐻(𝑛)

Harmonic function 𝐻(𝑛)
= σ𝑘=1

𝑛 1/𝑘 = 𝑂(log 𝑛)

Potential minimizing eq. Social optimum



Potential Minimizing Eq.
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• Potential minimizing equilibrium gives 𝑂(log 𝑛)

approximation to the social optimum

➢ Price of stability is 𝑂(log 𝑛)

o ∃ example where price of stability is Θ log 𝑛

➢ Compare to the price of anarchy, which can be 𝑛



Congestion Games
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• Generalize cost sharing games

• 𝑛 players, 𝑚 resources (e.g., edges)

• Each player 𝑖 chooses a set of resources 𝑃𝑖 (e.g., 
𝑠𝑖 → 𝑡𝑖 paths)

• When 𝑛𝑗 player use resource 𝑗, each of them get a 

cost 𝑓𝑗(𝑛𝑗)

• Cost to player is the sum of costs of resources used



Congestion Games
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• Theorem [Rosenthal 1973]: Every congestion game 
is a potential game.

• Potential function:

Φ 𝑃 = ෍

𝑗∈𝐸(𝑃)

෍

𝑘=1

𝑛𝑗 𝑃

𝑓𝑗 𝑘

• Theorem [Monderer and Shapley 1996]: Every 
potential game is equivalent to a congestion game.



Potential Functions
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• Potential functions are useful for deriving various 
results
➢ E.g., used for analyzing amortized complexity of 

algorithms

• Bad news: Finding a potential function that works 
may be hard.



The Braess’ Paradox
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• In cost sharing, 𝑓𝑗 is decreasing
➢ The more people use a resource, the less the cost to each.

• 𝑓𝑗 can also be increasing
➢ Road network, each player going from home to work

➢ Uses a sequence of roads

➢ The more people on a road, the greater the congestion, 
the greater the delay (cost)

• Can lead to unintuitive phenomena



The Braess’ Paradox
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• Due to Parkes and Seuken:
➢ 2000 players want to go from 1 to 4

➢ 1 → 2 and 3 → 4 are “congestible” roads

➢ 1 → 3 and 2 → 4 are “constant delay” roads

1 4

2

3



The Braess’ Paradox
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• Pure Nash equilibrium?
➢ 1000 take 1 → 2 → 4, 1000 take 1 → 3 → 4
➢ Each player has cost 10 + 25 = 35
➢ Anyone switching to the other creates a greater congestion on 

it, and faces a higher cost

1 4

2

3



The Braess’ Paradox
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• What if we add a zero-cost connection 2 → 3?
➢ Intuitively, adding more roads should only be helpful

➢ In reality, it leads to a greater delay for everyone in the 
unique equilibrium!

1 4

2

3

𝑐23 𝑛23 = 0



The Braess’ Paradox
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• Nobody chooses 1 → 3 as 1 → 2 → 3 is better 
irrespective of how many other players take it

• Similarly, nobody chooses 2 → 4

• Everyone takes 1 → 2 → 3 → 4, faces delay = 40!

1 4

2

3

𝑐23 𝑛23 = 0



The Braess’ Paradox
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• In fact, what we showed is:
➢ In the new game, 1 → 2 → 3 → 4 is a strictly dominant 

strategy for each firm!

1 4

2

3

𝑐23 𝑛23 = 0
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Zero-Sum Games



Zero-Sum Games
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• Total reward is constant in all outcomes (w.l.o.g. 0)

• Focus on two-player zero-sum games (2p-zs)
➢ “The more I win, the more you lose”

➢ Chess, tic-tac-toe, rock-paper-scissor, …

P1
P2 Rock Paper Scissor

Rock (0 , 0) (-1 , 1) (1 , -1)

Paper (1 , -1) (0 , 0) (-1 , 1)

Scissor (-1 , 1) (1 , -1) (0 , 0)



Zero-Sum Games
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• Reward for P2 = - Reward for P1

➢ Only need a single matrix 𝐴 : reward for P1

➢ P1 wants to maximize, P2 wants to minimize

P1
P2 Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0



Rewards in Matrix Form
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• Reward for P1 when…
➢ P1 uses mixed strategy 𝑥1

➢ P2 uses mixed strategy 𝑥2

➢ 𝑥1
𝑇 𝐴 𝑥2 (where 𝑥1 and 𝑥2 are column vectors)



Maximin/Minimax Strategy
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• Worst-case thinking by P1…
➢ If I commit to 𝑥1 first, P2 would choose 𝑥2 to minimize my 

reward (i.e., maximize his reward)

• P1’s best worst-case guarantee:

𝑉1
∗ = max

𝑥1

min
𝑥2

𝑥1
𝑇 ∗ 𝐴 ∗ 𝑥2

➢ A maximizer 𝑥1
∗ is a maximin strategy for P1



Maximin/Minimax Strategy
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• P1’s best worst-case guarantee:

𝑉1
∗ = max

𝑥1

min
𝑥2

𝑥1
𝑇 ∗ 𝐴 ∗ 𝑥2

• P2’s best worst-case guarantee:

𝑉2
∗ = min

𝑥2

max
𝑥1

𝑥1
𝑇 ∗ 𝐴 ∗ 𝑥2

➢ P2’s minimax strategy 𝑥2
∗ minimizes this

• 𝑉1
∗ ≤ 𝑉2

∗ (both play their “safe” strategies together)



The Minimax Theorem

CSC2556 - Nisarg Shah 34

• Jon von Neumann [1928]

• Theorem: For any 2p-zs game,

➢ 𝑉1
∗ = 𝑉2

∗ = 𝑉∗ (called the minimax value of the game)

➢ Set of Nash equilibria = 

{ x1
∗ , x2

∗ ∶ x1
∗ = maximin for P1, x2

∗ = minimax for P2}

• Corollary: 𝑥1
∗ is best response to 𝑥2

∗ and vice-versa.



The Minimax Theorem
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• Jon von Neumann [1928]

“As far as I can see, there could be no theory of games … 
without that theorem … 

I thought there was nothing worth publishing until the 
Minimax Theorem was proved”

• Indeed, much more compelling and predictive than 
Nash equilibria in general-sum games (which came 
much later).



Computing Nash Equilibria
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• General-sum games: Computing a Nash equilibrium 
is PPAD-complete even with just two players.
➢ Trivia: Another notable PPAD-complete problem is finding 

a three-colored point in Sperner’s Lemma.

• 2p-zs games: Polynomial time using linear 
programming
➢ Polynomial in #actions of the two players: 𝑚1 and 𝑚2



Computing Nash Equilibria
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Maximize 𝑣

Subject to

𝑥1
𝑇 𝐴

𝑗
≥ 𝑣,  𝑗 ∈ 1, … , 𝑚2

𝑥1 1 + ⋯ + 𝑥1 𝑚1 = 1

𝑥1 𝑖 ≥ 0, 𝑖 ∈ {1, … , 𝑚1}



Minimax Theorem in Real Life?
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• If you were to play a 2-player zero-sum game (say, 
as player 1), would you always play a maximin 
strategy?

• What if you were convinced your opponent is an 
idiot?

• What if you start playing the maximin strategy, but 
observe that your opponent is not best 
responding?



Minimax Theorem in Real Life?
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Minimax Theorem in Real Life?
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Kicker
Goalie L R

L 0.58 0.95

R 0.93 0.70

Kicker
Maximize 𝑣
Subject to
0.58𝑝𝐿 + 0.93𝑝𝑅 ≥ 𝑣
0.95𝑝𝐿 + 0.70𝑝𝑅 ≥ 𝑣
𝑝𝐿 + 𝑝𝑅 = 1

𝑝𝐿 ≥ 0, 𝑝𝑅 ≥ 0

Goalie
Minimize 𝑣
Subject to
0.58𝑞𝐿 + 0.95𝑞𝑅 ≤ 𝑣
0.93𝑞𝐿 + 0.70𝑞𝑅 ≤ 𝑣
𝑞𝐿 + 𝑞𝑅 = 1

𝑞𝐿 ≥ 0, 𝑞𝑅 ≥ 0



Minimax Theorem in Real Life?
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Kicker
Goalie L R

L 0.58 0.95

R 0.93 0.70

Kicker
Maximin:
𝑝𝐿 = 0.38, 𝑝𝑅 = 0.62

Reality:
𝑝𝐿 = 0.40, 𝑝𝑅 = 0.60

Goalie
Maximin:
𝑞𝐿 = 0.42, 𝑞𝑅 = 0.58

Reality:
𝑝𝐿 = 0.423, 𝑞𝑅 = 0.577



Minimax Theorem
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• Implies Yao’s minimax principle

• Equivalent to linear programming 
duality

John von Neumann

George Dantzig



von Neumann and Dantzig
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George Dantzig loves to tell the story of his meeting with John von Neumann on 
October 3, 1947 at the Institute for Advanced Study at Princeton. Dantzig went to 
that meeting with the express purpose of describing the linear programming 
problem to von Neumann and asking him to suggest a computational procedure. 
He was actually looking for methods to benchmark the simplex method. Instead, 
he got a 90-minute lecture on Farkas Lemma and Duality (Dantzig's notes of this 
session formed the source of the modern perspective on linear programming 
duality). Not wanting Dantzig to be completely amazed, von Neumann admitted: 

"I don't want you to think that I am pulling all this out of my sleeve like a magician. 
I have recently completed a book with Morgenstern on the theory of games. What 
I am doing is conjecturing that the two problems are equivalent. The theory that I 
am outlining is an analogue to the one we have developed for games.“

- (Chandru & Rao, 1999)


