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establish that the MNW solution provides a good approximation to another popular (yet possibly infeasible)
fairness property, the maximin share guarantee, in theory and — even more so — in practice. While finding
the MNW solution is computationally hard, we develop a nontrivial implementation, and demonstrate that
it scales well on real data. These results establish MNW as a compelling solution for allocating indivisible
goods, and underlie its deployment on a popular fair division website.
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1. INTRODUCTION

We are interested in the problem of fairly allocating indivisible goods, such as jewelry
or artworks. But to better understand the context for our work, let us start with an ea-
sier problem: fairly allocating divisible goods. Specifically, let there be m homogeneous
divisible goods, and n players with linear valuations over these goods, that is, if player
i receives an z;4 fraction of good g, her value is v;(z;) = >_  zi4vi(g), where v;(g) is her
non-negative value for the (entire) good g alone.

The question, of course, is what fraction of each good to allocate to each player;
and it has an elegant answer, given more than four decades ago by Varian [1974].
Under his competitive equilibrium from equal incomes (CEEI) solution, all players are
endowed with an equal budget, say $1 each. The equilibrium is an allocation coupled
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with (virtual) prices for the goods, such that each player buys her favorite bundle of
goods for the given prices, and the market clears (all goods are sold). One formal way to
argue that this solution is fair is through the compelling notion of envy freeness [Foley
1967]: Each player weakly prefers her own bundle to the bundle of any other player.
This property is obviously satisfied by CEEI, as each player can afford the bundle of
any other player, but instead chooses to buy her own bundle.

While the CEEI solution may seem technically unwieldy at first glance, it always
exists, and, in fact, has a very simple structure in the foregoing setting: the CEEI allo-
cations (which are what we care about, as the prices are virtual) exactly coincide with
allocations = that maximize the Nash social welfare ], vi(x;) [Arrow and Intriliga-
tor 1982, Volume 2, Chapter 14]. Consequently, a CEEI allocation can be computed in
polynomial time via the convex program of Eisenberg and Gale [1959].

Let us now revisit our original problem — that of allocating indivisible goods, under
additive valuations: the utility of a player for her bundle of goods is simply the sum of
her values for the individual goods she receives. This is an inhospitable world where
central fairness notions like envy freeness cannot be guaranteed (just think of a single
indivisible good and two players). Needless to say, the existence of a CEEI allocation
is no longer assured.

Nevertheless, the idea of maximizing the Nash social welfare (that is, the product of
utilities) seems natural in and of itself [Ramezani and Endriss 2010; Cole and Gkat-
zelis 2015]. Informally, it hits a sweet spot between Bentham’s utilitarian notion of
social welfare — maximize the sum of utilities — and the egalitarian notion of Ra-
wls — maximize the minimum utility. Moreover, this solution is scale-free, in the sense
that scaling a player’s valuation function would not change the outcome [Moulin 2003].
But, when the maximum Nash welfare solution is wrenched from the world of divisible
goods, it seems to lose its potency. Or does it?

Our goal in this paper is to demonstrate the “unreasonable effectiveness” [Wigner
1960] — or unreasonable fairness, if you will — of the maximum Nash welfare (MNW)
solution, even when the goods are indivisible. We wish to convince the reader that

... the MNW solution exhibits an elusive combination of fairness and efficiency properties,
and can be easily computed in practice. It provides the most practicable approach to date
— arguably, the ultimate solution — for the division of indivisible goods under additive
valuations.

1.1. Real-World Connections and Implications

Our quest for fairer algorithms is part of the growing body of work on practical appli-
cations of computational fair division [Budish 2011; Ghodsi et al. 2011; Aleksandrov
et al. 2015; Procaccia and Wang 2014; Kurokawa et al. 2015]. We are especially exci-
ted about making a real-world impact through Spliddit (www.spliddit.org), a not-for-
profit fair division website [Goldman and Procaccia 2014]. Since its launch in Novem-
ber 2014, the website has attracted more than 90,000 users. The motto of Spliddit is
provably fair solutions, meaning that the solutions obtained from each of the website’s
five applications satisfy guaranteed fairness properties. These properties are carefully
explained to users, thereby helping users understand why the solutions are fair and
increasing the likelihood that they would be adopted (in contrast, trying to explain the
algorithms themselves would be much trickier).

One of Spliddit’s five applications is allocating goods. In our view it is the hardest
problem Spliddit attempts to solve, and the previous solution left something to be de-
sired; here is how it worked. First, to express their preferences, users simply need to
divide 1000 points between the goods. This simple elicitation process relies on the as-
sumption of additive preferences, and is the reason why, in our view, this assumption
is indispensable in practical applications. Given these inputs, the algorithm considers
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three levels of fairness: envy freeness (explained above), proportionality (each player
receives 1/n of her value for all the goods) , and maximin share guarantee (each player
AAAA x,, min; v;(X;), where X;,..., X,, is a par-
tition of the goods into n bundles). The algorithm finds the highest feasible level of
fairness, and subject to that, maximizes utilitarian social welfare. Importantly, a max-
imin share allocation (which gives each player her maximin share guarantee) may not
exist, but a (2/3)-approximation thereof is always feasible, that is, each player can re-
ceive at least 2/3 of her maximin share guarantee [Procaccia and Wang 2014]. This
allowed Spliddit to provide a provable fairness guarantee for indivisible goods. That
said, a (full) maximin share allocation can always be found in practice [Bouveret and
Lemaitre 2016; Kurokawa et al. 2016].

While the algorithm generally provided good solutions, it was highly discontinuous,
and its direct reliance on the maximin share alone — when envy freeness and propor-
tionality cannot be obtained — sometimes led to nonintuitive outcomes. For example,
consider this excerpt from an email from sent by a Spliddit user on January 7, 2016:

“Hi! Great app :) We’re 4 brothers that need to divide an inheritance of 30+ furniture items.
This will save us a fist fight ;) I played around with the demo app and it seems there are
non-optimal results for at least two cases where everyone distributes the same amount of
value onto the same goods. ... Try 3 people, 5 goods, with everyone placing 200 on every
good. ... [This] case gives 3 to one person and 1 to each of the others. Why is that?”

The answer to the user’s question is that envy freeness and proportionality are in-
feasible in the example, so the algorithm sought a maximin share allocation. In every
partition of the five goods into three bundles there is a bundle with at most one good
(worth 200 points), hence the maximin share guarantee of each player is 200 points.
Therefore, giving three goods to one player and one good to each of the others indeed
maximizes utilitarian social welfare subject to giving each player her maximin share
guarantee. Note that the MNW solution produces the intuitively fair allocation in this
example (two players receive two goods each, one player receives one good).

Based on the results described below, we firmly believe that the MNW solution is
superior to the previous algorithm for allocating goods (and to every other approach
we know of, as we discuss below). It has been deployed on Spliddit since May 24, 2016.

1.2. Our Results

In order to circumvent the possible nonexistence of envy-free allocations, we consider
a slightly relaxed version, envy freeness up to one good (EF1) [Lipton et al. 2004]. In
an allocation satisfying this property, player i may envy player j, but the envy can
be eliminated by removing a single good from the bundle of player j. We show that
the MNW solution always outputs an allocation that is envy free up to one good, as
well as Pareto optimal — a well-known notion of economic efficiency. And while envy
freeness up to one good is straightforward to obtain in isolation, achieving it together
with Pareto optimality is challenging; the fact that the MNW solution does so is a
strong argument in its favor. In particular, as discussed in Section 1.1, on Spliddit it is
crucial to be able to explain to users what the guarantees of each method are; in our
view, these two properties are especially compelling and easy to understand.

As another measure for the fairness of the MNW solution, we study the maximin
share property. As mentioned earlier, the algorithm currently deployed on Spliddit
relies on the existence of an approximate version of this property [Procaccia and Wang
2014]. With this in mind, we show that the MNW solution always guarantees each
of the n players a m,-fraction of her maximin share guarantee, where m,, = 2/(1 +
V4dn — 3). Strikingly, this ratio is completely tight. Furthermore, we introduce a novel
and equally attractive variant, pairwise maximin share, which is incomparable to the
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original property. Using the previous result, we prove that under the MNW solution,
each player receives at least a ®-fraction of her pairwise maximin share guarantee,
where ® = (/5 — 1)/2 ~ 0.618 is the golden ratio conjugate, and that this ratio is also
tight. Experiments provide further evidence in favor of the MNW solution: it gives an
excellent approximation to both MMS and pairwise MMS in practice. Among the 1281
real-world fair division instances we recorded on Spliddit, it achieves full MMS and
pairwise MMS on more than 95% and 90% of the instances, respectively, and never
worse than a 3/4-approximation on any instance.

The problem of computing an MNW allocation is known to be strongly N7P-
hard [Nguyen et al. 2013]. One of our main contributions is the algorithm we devised
for computing an MNW allocation for the form of valuations elicited on Spliddit, in
which a player is required to divide 1000 points among the available goods. Our algo-
rithm scales very well, solving relatively large instances with 50 players and 150 goods
in less than 30 seconds, while other candidate algorithms we describe fail to solve even
small instances with 5 players and 15 goods in twice as much time.

1.3. Related Work

The concept of envy freeness up to one good originates in the work of Lipton et al.
[2004]. They deal with general combinatorial valuations, and give a polynomial-time
algorithm that guarantees that the maximum envy is bounded by the maximum mar-
ginal value of any player for any good; this guarantee reduces to EF1 in the case of
additive valuations. However, in the additive case, EF1 alone can be achieved by sim-
ply allocating the goods to players in a round-robin fashion, as we discuss below. The
algorithm of Lipton et al. [2004] does not guarantee additional properties.

Budish [2011] introduces the concept of approximate CEEI, which is an adaptation
of CEEI to the setting of indivisible goods (among other contributions in this beautiful
paper, he also introduces the notion of maximin share guarantee). He shows that an
approximate CEEI exists and (approximately) guarantees certain properties. The ap-
proximation error goes to zero when the number of goods is fixed, whereas the number
of players, as well as the number of copies of each good, go to infinity. His approach
is practicable in the MBA course allocation setting, which motivates his work — there
are many students, many seats in each course, and relatively few courses. But it does
not give useful guarantees for the type of instances we encounter on Spliddit, where
the number of players is small, and there is typically one copy of each good.

Maximizing Nash welfare is known to be appealing in settings with divisible goods.
Varian [1974] shows that in a setting almost identical to ours, except that each good is
perfectly divisible, maximizing Nash welfare produces a CEEI allocation, which im-
plies that it is envy-free and Pareto optimal. Weller [1985] generalizes this to the
cake-cutting setting [Steinhaus 1948], in which a heterogeneous good is to be divi-
ded. For cake cutting, Berliant et al. [1992] strengthen the fairness guarantee by sho-
wing that maximizing Nash welfare satisfies “group envy-freeness”, and Sziklai and
Segal-Halevi [2015] show that maximizing Nash welfare satisfies intuitive resource
and population monotonicity properties.

Little is known about the axiomatic properties of maximizing Nash welfare with
indivisible goods. From an algorithmic perspective, Ramezani and Endriss [2010]
show that maximizing Nash welfare is NP-hard under certain combinatorial bid-
ding languages (including, under additive valuations). Cole and Gkatzelis [2015] give
a polynomial-time constant-factor approximation under additive valuations (to be pre-
cise, their objective function is the geometric mean of the utilities). Anari et al. [2017]
and Cole et al. [2017] improve the approximation ratio, and Anari et al. [2018] provide
a constant-factor approximation for more general piecewise-linear concave valuations.
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Lee [2015] shows that the problem is APX-hard, that is, a constant-factor approxima-
tion is the best one can hope to achieve in polynomial time. However, a constant-factor
approximation need not satisfy any of the theoretical guarantees we establish in this
paper for the MNW solution.

When there are only two players, other compelling approaches for allocating goods
are available. In fact, Spliddit used to handle this case separately, via the Adjusted
Winner algorithm [Brams and Taylor 1996]. The shortcoming of Adjusted Winner is
that, except in knife-edge situations, it has to split one of the goods between the two
players. Adjusted Winner can be interpreted as a special case of the Egalitarian Equi-
valent rule of Pazner and Schmeidler [1978], which is defined for any number of play-
ers. For n > 2 players, it may need to split up to n — 1 goods (or all the goods if m < n);
thus it is impractical to apply it to indivisible goods.

Let us briefly mention two additional models for the division of indivisible goods.
First, some papers assume that the players express ordinal preferences (i.e., a ran-
king) over the goods [Brams and King 2005; Bouveret et al. 2010; Brams et al. 2015;
Aziz et al. 2015]. This assumption (arguably) does not lead to crisp fairness guarantees
— the goal is typically to design algorithms that compute fair allocations if they exist.
Second, it is possible to allow randomized allocations [Bogomolnaia and Moulin 2001,
2004; Budish et al. 2013]; this is hardly appropriate for the cases we find on Spliddit
in which the outcome is used only once. We also remark that in work that builds on
the conference version of this paper, Conitzer et al. [2017] study a public decision set-
ting that is more general than our indivisible goods allocation setting, and establish
attractive properties (though weaker than ours) of the MNW allocation.

Finally, it is worth noting that the idea of maximizing the product of utilities was
studied by Nash [1950], in the context of his classic bargaining problem. This is why
this notion of social welfare is named after him. In the networking community, the
same solution goes by the name of proportional fairness, due to another property that it
satisfies when goods are divisible [Kelly 1997]: when switching to any other allocation,
the total percentage gains for players whose utilities increased sum to at most the total
percentage losses for players whose utilities decreased; thus, in some sense, no such
switch would be socially preferable.

2. MODEL

Let [k] = {1,...,k}. Let V' = [n] denote the set of players, and M denote the set of goods
with m = |M|. Throughout the paper, we assume the goods to be indivisible (i.e., each
good must be entirely allocated to a single player), but our method and its guarantees
extend seamlessly to the case where some of the goods are divisible (see Section 6).
Each player i is endowed with a valuation function v; : 2 — R+ such that v;(})) = 0.
With the exception of Section 3.1, throughout the paper we assume that players’ va-
luations are additive: VS C M, v;(S) = > csvi({g}). To simplify notation, we write
v;(g) instead of v;({g}) for a good g € M. The assumption of additive valuations is com-
mon in the literature on the fair allocation of indivisible goods [Bouveret and Lemaitre
2016; Procaccia and Wang 2014]. Furthermore, eliciting more general combinatorial
preferences is often difficult in practice, which is why, to our knowledge, all of the
deployed implementations of fair division methods for indivisible goods — including
Adjusted Winner [Brams and Taylor 1996] and the algorithm implemented on Splid-
dit (see Section 1.1) — also rely on additive valuations. That said, our main result
(Theorem 3.2) generalizes to more expressive submodular valuations (see Section 3.1).
Given the valuations of the players, we are interested in finding a feasible allocation.
For a set of goods S C M and k € N, let II;(S) denote the set of ordered partitions of
S into k bundles. A feasible allocation A = (Ay,...,A,) € I1,(M) is a partition of the
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goods that assigns a subset A; of goods to each player i. Under this allocation, the
utility to player i is v;(A;) (her value for the set of goods she receives).

Our goal is to find a fair allocation. The fair division literature often takes an axio-
matic approach to defining fairness; the most compelling definition is envy freeness.

Definition 2.1 (EF: Envy-Freeness). An allocation A € II,, (M) is called envy free if
for all players 4,5 € N, we have v;(A4;) > v;(4;). That is, each player values her own
bundle at least as much as she values any other player’s bundle.

Envy freeness cannot be guaranteed in general; for example, allocating a single indivi-
sible good among two players who value it positively would inevitably result in envy. In
fact, it is computationally hard to determine whether an EF allocation exists [de Kei-
jzer et al. 2009]. To guarantee existence, a somewhat weaker definition is called for;
the following definition is a rather minimal relaxation that is still interesting when
the number of goods is larger than the number of players.

Definition 2.2 (EF1: Envy-Freeness up to One Good). An allocation A € II,(M) is
called envy free up to one good (EF1) if?

Vi,j € N,3g € Aj,vi(Ai) = vi(A;\ {g})-

In words, i may envy j, but the envy can be eliminated by removing a single good
from the bundle of j. More generally, one can define envy freeness up to k& goods for
every k € N, but as we show in this paper, EF1 can always be guaranteed along with
other desirable properties, eliminating the need to relax the requirement further.

Another relaxation of envy freeness is known as the maximin share guarantee [Bu-
dish 2011]. It is a natural extension of the 2-player cut-and-choose idea to the case of
n players. Informally, the maximin share guarantee of a player is the value she can
secure if she were allowed to divide the set of goods into n bundles, but then chose a
bundle last (thus possibly ending up with her least valued bundle).

Definition 2.3 (MMS: Maximin Share). The maximin share (MMS) guarantee of
player i is given by

MMS; = max min v;(Ag).
A€ll, (M) ken]

We say that A is an o-MMS allocation if v;(A;) > « - MMS; for all players i € N.

Note that, in principle, MMS; depends on v; and n; these parameters are not part of
the notation as they will always be clear from the context. While it is impossible to
guarantee all players their full maximin share [Procaccia and Wang 2014; Kurokawa
et al. 2016], a (2/3+0O(1/n))-MMS allocation always exists [Procaccia and Wang 2014],
and can be computed in polynomial time [Amanatidis et al. 2015]. We use both EF1
and an approximation of the MMS guarantee as measures of fairness.

Additionally, we also want our solution to be economically efficient.? To this end, we
use the rather unrestrictive notion of Pareto optimality.

Definition 2.4 (PO: Pareto Optimality). An allocation A € II,,(M) is called Pareto
optimal if no alternative allocation A’ € II,,(M) can make some players strictly better
off without making any player strictly worse off. Formally, we require that

VA’ € 11, (M), (Hi e N, vi(A) > vi(Ai)> — (Elj € N, v;(A)) < vj(Aj))‘

1To be perfectly accurate, this is not satisfied if A; is empty, but, clearly, in this case i does not envy j.
2In the absence of this requirement, even envy freeness can be achieved by simply not allocating any goods.
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3. MAXIMUM NASH WELFARE IS EF1 AND PO

The gold standard of fairness — envy freeness (EF) — cannot be guaranteed in the con-
text of indivisible goods. In contrast, envy freeness up to one good (EF1) is surprisingly
easy to achieve under additive valuations.

Indeed, under the draft mechanism, the goods are allocated in a round-robin fashion:
each of the players 1, ..., n selects her most preferred good in that order, and we repeat
this process until all the goods have been selected. To see why this allocation is EF1,
consider some player i € /. We can partition the sequence of choices 1,...,i — 1,4,7 +
1,...,n,1,...,i — 1,... into phases i,...,i — 1, each starting when player : makes a
choice, and ending just before she makes the next choice. In each phase, i receives a
good that she (weakly) prefers to each of the n—1 goods selected by subsequent players.
The only potential source of envy is the goods selected by players 1,...,7 — 1 before the
beginning of the first phase (that is, before i ever chose a good); but there is at most one
such good per player j € [i — 1], and removing that good from the bundle of j eliminates
any envy that : might have had towards j.

However, it is clear that the allocation returned by the draft mechanism is not gua-
ranteed to be Pareto optimal. One intuitive way to see this is that the draft outcome is
highly constrained, in that all players receive almost the same number of goods; and
mutually beneficial swaps of one good in return for multiple goods are possible.

Is there a different approach for generating allocations that are EF1 and PO? Surpri-
singly, several natural candidates fail. For example, maximizing the utilitarian welfare
(the sum of utilities to the players) or the egalitarian welfare (the minimum utility to
any player) is not EF1 (see Example B.2 in Appendix B). Interestingly, maximizing
these objectives subject to the constraint that the allocation is EF1 violates PO (see
Example B.3 in Appendix B, which was generated through computer simulations).

An especially promising idea — which was our starting point for the research repor-
ted herein — is to compute a CEEI allocation assuming the goods are divisible, and
then to come up with an intelligent rounding scheme to allocate each good to one of
the players who received some fraction of it. The hope was that, because the CEEI
allocation is known to be EF for divisible goods [Varian 1974], some rounding scheme,
while inevitably violating EF, will only create envy up to one good, i.e., will still satisfy
EF1. But we found a counterexample in which every rounding of the “divisible CEEI”
allocation violates EF1; this is presented as Example B.1 in Appendix B.

As mentioned earlier, for divisible goods a CEEI allocation maximizes the Nash wel-
fare. And, although a CEEI allocation may not exist for indivisible goods, one can still
maximize the Nash welfare over all feasible allocations. Strikingly, this solution, which
we refer to as the maximum Nash welfare (MNW) solution, achieves both EF1 and PO.

Definition 3.1 (The MNW solution). The Nash welfare of allocation A € II,, (M) is
defined as NW(A) = [],c vi(A;). Given valuations {v; }icx, the MNW solution selects

an allocation AMNY maximizing the Nash welfare among all feasible allocations, i.e.,

AMNW ¢ g max g, (am) NW(A).

If it is possible to achieve positive Nash welfare (i.e., provide a positive utility
to every player simultaneously), any Nash-welfare-maximizing allocation can be se-
lected. The edge case in which every feasible allocation has zero Nash welfare (i.e., it
is impossible to provide positive utility to every player simultaneously) is highly un-
likely to appear in practice, but it must be handled carefully to retain the solution’s
attractive fairness and efficiency properties.

In more detail, computing the MNW solution consists of two stages: (i) finding a
largest set of players S to which one can simultaneously provide a positive utility (if
there are multiple such sets S, our results hold independently of the tie-breaking),
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and (ii) finding an allocation of the goods to players in S that maximizes their product
of utilities. The MNW solution is formally described in Algorithm 1. We say that an
allocation is a maximum Nash welfare (MNW) allocation if it can be selected by the
MNW solution.
ALGORITHM 1: The MNW solution
Input: The set of players N, the set of indivisible goods M, and players’ valuations {v; }icnr
Output: An MNW allocation AMNW
S € argmaxyc n3aer, (M), vieT,v(A;)>0 | L; // @ largest set of players that can be

// simultaneously given a positive utility

A argmax g, | (M) [Licsvi(Ai); // The MNW allocation to players in S
ANV A vie S
AV G Vie N\ S; // Players in N\ S do not receive any goods

We are now ready to state our first result, which is relatively simple yet, we believe,
especially compelling.

THEOREM 3.2. Every MNW allocation is envy free up to one good (EF1) and Pareto
optimal (PO) for additive valuations over indivisible goods.

PROOF. Let A denote an MNW allocation. First, let us assume NW(A) > 0. Pareto
optimality of A holds trivially because an alternative allocation that increases the
utility to some players without decreasing the utility to any player would increase the
Nash welfare, contradicting the optimality of the Nash welfare under A. Suppose, for
contradiction, that A is not EF1, and that player i envies player j even after removing
any single good from player j’s bundle.

Let g* = argminge 4, . (9)>0j(9)/vi(g). Note that g* is well-defined because player
1 envying player j implies that player i has a positive value for at least one good in
A;. Let A’ denote the allocation obtained by moving ¢* from player j to player i in A.
We now show that NW(A’) > NW(A), which gives the desired contradiction as the Nash
welfare is optimal under A. Specifically, we show that NW(A’)/NW(A) > 1. The ratio is
well-defined because we assumed NW(A) > 0.

Note that vi(A},) = v (Ax) for all k € N\ {7, j}, vi(A]) = vi(A;) +vi(g"), and v;(A) =
vj(4;) —v;(g*). Hence,

I\II\]V:V((:,)) >1& [1 — ;}j((i]l:))] . {1 + Z:Ejt))] >1s ZZE?:? . [Ui(Ai) +Ui(g*):| <w;i(4;), @

where the last transition follows using simple algebra. Due to our choice of ¢g*, we have
vi(97) _ 2gea, Vil9)  vi(4))

vilg*) T Lgea, vile) i)

Because player i envies player j even after removing ¢g* from player j’s bundle, we have

0 (A;) +vi(g") < vi(4;). 3)

Multiplying Equations (2) and (3) gives us the desired Equation (1).

Let us now address the special case where Nii(A) = 0. Let S denote the set of players
to which the solution gives positive utility. Then, by the definition of the MNW solu-
tion (see Algorithm 1), S is a largest set of players to which one can provide positive
utility. Pareto optimality of A now follows easily. An alternative allocation that does
not reduce the utility to any player (and thus gives positive utility to each player in S)
cannot give positive utility to any player in '\ S. It also cannot increase the utility to
a player in S because that would increase the product of utilities to the players in .S,
which A already maximizes.

(2)
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From the proof of the case of NW(A) > 0, we already know that there is no envy up to
one good among players in S because A is an MNW allocation over these players, and
under A the product of utilities to the players in S is positive. Further, because players
in A"\ S do not receive any goods, we only need to show that player i € A\ S does not
envy player j € S up to one good. Suppose for contradiction that she does. Choose
g; € A; such that v;(g;) > 0. Such a good exists because we know v;(A4;) > 0. Because
player i envies player j up to one good, we have v;(A4; \ {g;}) > vi(4;) = 0. Hence,
there exists a good g; € A, \ {g;} such that v;(¢g;) > 0. However, in that case moving
good g; from player j to player i provides positive utility to player i while retaining
positive utility to player j (because player j still has good g; with v;(g;) > 0). This
contradicts the fact that S is a largest set of players to which one can provide positive
utility. Hence, the MNW allocation A is both EF1 and PO. B

3.1. General Valuations

Heretofore we have focused on the case of additive valuations. As we argued earlier,
this case is crucial in practice. But it is nevertheless of theoretical interest to under-
stand whether the guarantees extend to larger classes of combinatorial valuations.

Specifically, Theorem 3.2 states that MNW guarantees EF1 and PO under additive
valuations. We ask whether EF1 and PO can be achieved simultaneously by any algo-
rithm, not necessarily MNW, under subadditive, superadditive, submodular (a special
case of subadditive), and supermodular (a special case of superadditive) valuations.
The definitions of these valuation classes as well as the proofs of all the results in
this section are provided in Appendix C. Unfortunately, we obtain a negative result for
three of the four valuation classes.

THEOREM 3.3. For the classes of subadditive and supermodular (and thus supe-
radditive) valuations over indivisible goods, there exist instances that do not admit
allocations that are envy free up to one good and Pareto optimal.

We were unable to settle this question for the class of submodular valuations. And
although there exist examples with submodular valuations (see, e.g., Example C.3)
in which no MNW allocation satisfies EF1, we can show that every MNW allocation
satisfies a relaxation of EF1 together with PO.

Definition 3.4 (MEF1: Marginal Envy Freeness Up To One Good). We say that an
allocation A € II,,(M) satisfies MEF1 if

VZ,j c N, Eg S Aj,vi(Ai) 2 vz(Az U Aj \ {g}) — Ul(Al)

In comparing the definition of MEF1 to the definition of EF1, we see that on the
right hand side, v;(A4; \ {g}), i.e., the value of player i for A;\ {g}, is replaced by v;(A4; U
A;\{g}) —vi(A;), which is the marginal value of player i for A;\ {g} given that player ¢
is already allocated A;. For submodular valuations, MEF1 is strictly weaker than EF1,
while for additive valuations, MEF1 coincides with EF1. Hence, Theorem 3.2 follows
directly from the next result (although our direct proof of Theorem 3.2 is simpler).

THEOREM 3.5. Every MNW allocation satisfies marginal envy freeness up to one
good (MEF1) and Pareto optimality (PO) for submodular valuations over indivisible
goods.

4. MAXIMUM NASH WELFARE IS APPROXIMATELY MMS

In this section, we show that the fairness properties of the MNW solution extend to an
alternative relaxation of envy freeness — the maximin share guarantee, as well as a
variant thereof — in theory and practice.
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4.1. Approximate MMS, in Theory
From a technical viewpoint, our most involved result is the following theorem.

THEOREM 4.1. Every MNW allocation is mw,-maximin share (MMS) for additive va-
luations over indivisible goods, where

2
Ty = —————.
"1+ +4n -3

Further, the factor w, is tight, i.e., for every n € N and ¢ > 0, there exists an instance
with n players having additive valuations in which no MNW allocation is (7, +¢€)-MMS.

Before we provide a proof, let us recall that the best known approximation of the
MMS guarantee — to date — is 2/3 + O(1/n) [Procaccia and Wang 2014], where the
bound for n = 3 is 3/4. But the only known way to achieve a good bound is to build
the algorithm around the MMS approximation goal [Procaccia and Wang 2014; Ama-
natidis et al. 2015]. In contrast, the MNW solution achieves its m, = ©(1/y/n) ratio
“organically”, as one of several attractive properties. Moreover, in almost all real-world
instances, the number of players n is fairly small. For example, on Spliddit, the average
number of players is very close to 3, for which our worst-case approximation guarantee
is m3 = 1/2 — qualitatively similar to 3/4. That said, the approximation ratio achieved
on real-world instances is significantly better (see Section 4.3).

PROOF OF THEOREM 4.1. We first prove that an MNW allocation is 7,-MMS (lower
bound), and later prove tightness of the approximation ratio ,, (upper bound).

Proof of the lower bound: Let A be an MNW allocation. As in the proof of Theorem 3.2,
we begin by assuming NW(A) > 0, and handle the case of NW(A) = 0 later. Fix a player
i € N. For a player j € N\ {i}, let gj = argmax ¢ 4, vi(g) denote the good in player ;’s
bundle that player i values the most. We need to establish an important lemma.

LEMMA 4.2. It holds that

Ui(Aj \ {9;}) < min {Ui(Ai), (UZ(Al))} ’

vi(g})
where the RHS is defined to be v;(A;) if vi(g}) = 0.

PROOF. First, v;(A4;\{gj}) < vi(4;) follows directly from the fact that A is an MNW
allocation, and is therefore EF1 (Theorem 3.2). If v;(g;) = 0, then we are done. Assume
vi(g;) > 0. By the definition of an MNW allocation, moving good g; from player j to
player ¢ should not increase the Nash welfare. Thus,

vi(Ai) - v;(4)
vi(AiU{gi})

Note that the RHS in the above expression is positive because v;(g;) > 0. Hence, we
also have v;(g;) > 0. Similarly, moving all the goods in A; except g; from player j to
player ¢ should also not increase the Nash welfare. Hence,

vi(A; UA; \{g;}) -v;(g;) < viAi) - vi(4y).

vi(AiU{g;}) -vi (A3 \ {97 }) < vi(Ai) -vi(45) = vi(g;) = vi(As) — (4)
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We conclude that
% Vi AL vi(A v; Az (A
vl g < (v)(*j)(j) —vild) < ( )vi(ilf)ﬁ,-)(,qj) —vi(4;)
i\9; vi(Aj) — AT
i(Ai U{gj i(A;))?
LY 7503} vilg; vi(g;

where the second transition follows from Equation (4). B (Proof of Lemma 4.2)

Now, let us find an upper bound on the MMS guarantee for player i. Recall that
MMS; is the maximum value player i can guarantee herself if she partitions the set of
goods into n bundles but receives her least valued bundle. The key intuition is that
indivisibility of the goods only restricts the player in terms of the partitions she can
create. That is, if some of the goods become divisible, it can only increase the MMS
guarantee of the player as she can still create all the bundles that she could with
indivisible goods.

Suppose all the goods except goods in T = {g; : j € N\ {i},vi(g]) > MMS;} become
divisible. It is easy to see that in the following partition, player i’s value for each bundle
must be at least MMS;: put each good in T (entirely) in its own bundle, and divide the
rest of the goods into n — |T'| bundles of equal value to player i. Because each of the
latter n — |T| bundles must have value at least MMS; for player i, we get

0i(A) + e (0il0) T [or(g]) < MS:] + wi(A; \ {02 )
n— ZjeN\{i} [vz(g;) > MMSZ-}

where I(-) denotes the indicator function.

Next, we use the upper bound on v;(A; \ {g;}) from Lemma 4.2, and divide both
sides of Equation (5) by v;(4;). For simplicity, let us denote z; = v;(g;)/vi(A;), and
B = MMS, /v;(4;). Note that 3 is the reciprocal of the bound on the MMS approximation
that we are interested in. Then, we get

L+ en iy (:Uj Iz < B +min{1, é})
n=> jeniy Lz > Bl '

Let f(x; 8) denote the RHS of the inequality above. Then, we can write 5 < f(x; ) <
max, f(x; 8). Note that if 5 < 1 then player ¢ is already receiving her full maximin
share value, which gives a (stronger than) desired MMS approximation. Let us the-
refore assume that 8 > 1. To find the maximum value of f(x;53) over all z, let us
take its partial derivative with respect to zj, for k € '\ {i}. Note that the function is
differentiable at all points except 2, = 1 and x5, = 5.

B <

1 .
n=2jen iy 1z >Al if 0 <o < 1,
of 1—(zp) 2 .
87"516 T Y 2 ean o Hzi >0l ifl <z <8,
e if 8 < xy.

”_Eje/\/’\{i} I[z; > pB]

Note that 0f/0x), > 0 for z € (0,1) and = € (1, 3), and 0f/0zy, < 0 for z;, > 5. Further
note that f is continuous at z;, = 1. Hence, the maximum value of f is achieved either
at xy = ( or in the limit as x;, — 87 (i.e., when z;, converges to § from above). Suppose
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the maximum is achieved when ¢ of the z;’s are equal to 3, and the other n — ¢t — 1
approach 3 from above. Then, the value of f is

1+t (B+5)+(n—t—1)-%
9(t; B) = (n_‘;)l_t_l) °

We now have that 5 < max,¢qo,... n—1y 9(t; 5). Note that

89_5—1—(”—1)'%
E (t+1)2

If p = MMS; /v;(4;) < 1/m,, we already have the desired MMS approximation. Assume
B > 1/m,. It is easy to check that this implies g/t > 0. Thus, the maximum value of ¢
is achieved at t = n — 1, which gives 5 < (1/n)- (14 (n—1)-(8+1/8)), which simplifies
to 8 < 1/m,, which is a contradiction as we assumed 8 > 1/m,.

Recall that for the proof above, we assumed NW(A) > 0. Let us now handle the special
case where an MNW allocation A satisfies NW(A) = 0. Let S denote the set of players
that receive positive utility under A, where |S| < n. Due to the definition of an MNW
allocation (see Algorithm 1), A is an MNW allocation over the players in S. Thus, from
the proof of the previous case, we know that each player in S in fact achieves at least
a m|g|-fraction of her |S|-player MMS guarantee, which is at least a m,-fraction of her
n-player MMS guarantee. Players in A/ \ S receive zero utility. We now show that their
(n-player) MMS guarantee is also 0, which yields the required result.

Suppose a player i € A \ S has a positive value for at least n goods in M. Now,
because these goods are allocated to at most n — 1 players in S, at least one player
j € S must have received at least two goods ¢g; and g, both of which player i values
positively. Because player j receives positive utility under A (i.e., v;(A4;) > 0), it is easy
to check that there exists a good g € {g1, g2} such that v;(A; \ {¢g}) > 0. Thus, moving
good ¢ to player i provides positive utility to player i while retaining positive utility
to player j, which violates the fact that S is a largest set of players to which one can
simultaneously provide positive utility. This shows that player i has positive utility for
at most n — 1 goods in M, which immediately implies MMS; = 0, as required.

Proof of the upper bound (tightness): We now show that for every n € N and ¢ > 0,
there exists an instance with n players in which no MNW allocation is (7, + €)-MMS.
For n = 1, this is trivial because m; = 1. Hence, assume n > 2.

Let the set of players be N' = {1,...,n}, and the set of goods be M = {z} U
Uiega,....ny{hi, li}. Thus, we have m = 2n — 1 goods. We refer to h;’s as the “heavy”

goods and I;’s as the “light” goods. Let the valuations of the players for the goods be
as follows. Choose a sufficiently small ¢ > 0 (an upper bound on ¢’ will be determined
later in the proof).

1
Player 1: wvi(x) =1, andVj € {2,...,n},vi(h;) = - ¢ and vy (l;) =m, — €.

1 Tn
7Tn+17 Uz(lz) = P 1’
In particular, note that player 1 has a positive value for every good (for ¢’ < ,), while
for ¢ > 2, player i has a positive value for only two goods: h; and I;. Consider the
allocation A* that assigns good z to player 1, and for every i € N \ {1}, allocates
goods h; and I; to player i. We claim that A* is the unique MNW allocation but is not
(mn + €)-MMS.

First, note that an MNW allocation is Pareto optimal, and therefore it must allocate
good x to player 1 because no other player has a positive value for x. Further, NWw(A*) >

Player i, fori > 2: wv;(h;) = and Vg € M\ {h;,1;},vi(g) =0.
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0, which implies that every MNW allocation must also have a positive Nash welfare.
This in turn implies that an MNW allocation must assign to each player in A/ \ {1} at
least one of h; and I;. Subject to these constraints, consider a candidate allocation A.

Let p (resp. ¢) denote the number of players i € A\ {1} that only receive good h;
(resp. l;), and have utility 1/(m, + 1) (resp. 7, /(m, + 1)). Hence, exactly n — 1 —p — ¢
players i € A"\ {1} receive both h; and /;, and have utility 1. Player 1 receives good z,
q heavy goods, and p light goods, and has utility 1 + ¢ - (1/7, — €') + p- (7, — €). Thus,
the Nash welfare of A is given by

(oo (=)o) () (250) -

Using binomial expansion, it is easy to show that the denominator in the final expres-
sion above is at least 1 + p - 7, + ¢/m,, which is never less than the numerator, and is
equal to the numerator if and only if p = ¢ = 0. Note that p = ¢ = 0 indeed gives our
desired allocation A*. Hence, the maximum Nash welfare of 1 is uniquely achieved by
the allocation A*.

Next, let us analyze the MMS guarantee for player 1. In particular, consider the
partition of the set of goods into n bundles By, ..., B, such that By = {z,ls,...,l,} and
B; ={h;} foralli € {2,...,n}. Note that for alli € {2,...,n}, v1(B;) = 1/m, — €. Also,

vl(Bl)zl—i-(n—l)-(ﬂn—e’):1+(n—1)~ﬂ'n—(n—1)-e’:ﬂi—(n—l)-e',
where the final equality holds because 7, is chosen precisely to satisfy the equation
1+(n—1)-m, = 1/m,. As the MMS guarantee of player 1 is at least her minimum value
for any bundle in {B, ..., B,}, we have MMS; > 1/m, — (n—1)-€'. In contrast, under the
MNW allocation A* we have v1(A;) = 1. Thus, the MMS approximation ratio on this
instance is at most 1/(1/m, — (n — 1) - ). It is easy to check that for driving this ratio
below 7, + ¢, it is sufficient to set

! < mi " < .
€ min § . (n—1)~71'n-(71'n—‘,—€)

This completes the entire proof. B (Proof of Theorem 4.1)

A striking aspect of the proof of Theorem 4.1 is that, at first glance, the lower bound
of 7,, seems very loose. For example, key steps in the proof involve the derivation of an
upper bound on the MMS guarantee of player i by assuming that some of the goods
are divisible, and the maximization of the function f(-) over an unrestricted domain.
Yet the ratio 7, turns out to be completely tight.

4.2. Approximate Pairwise MMS, in Theory

Adding to the conceptual arguments in favor of Theorem 4.1 (see the discussion just af-
ter the theorem statement), we note that it also has some rather striking implications.
Let us first define a novel fairness property:

Definition 4.3 (a-Pairwise Maximin Share Guarantee). We say that an allocation
A €11,(M) is an a-pairwise maximin share (MMS) allocation if

Vi, j € i(Ai) 2 o in{v;(B1),vi(B2)}.
i,j € N,ui(4;) 2« Benrzr%%(UAj)mln{v( 1),v3(B2)}

We simply say that A is pairwise MMS if it is 1-pairwise MMS. Note that the pairwise
MMS guarantee is similar to the MMS guarantee, but instead of player i partitioning
the set of all items into n bundles, she partitions the combined bundle of herself and

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: February 2017.



A:14 Caragiannis et al.

another player into two bundles, and receives the one she values less. Although the
example below shows that neither the pairwise MMS guarantee nor the MMS gua-
rantee implies the other, we show in Theorem 4.6 that a pairwise MMS allocation is
(1/2)-MMS.

Example 4.4 (Neither pairwise MMS nor MMS implies the other). We show that
neither pairwise MMS nor MMS implies the other even when players have identical
valuations.

Showing that MMS does not imply pairwise MMS is easy. In fact, we can use our
motivating example from the introduction. Consider a set of three players N = {1, 2, 3},
and a set of five goods M. Let each player have value 1 for each good. Consider the
allocation A that assigns three goods to player 1, and a single good to each of players 2
and 3. Because the maximin share of each playeris 1, A is an MMS allocation. However,
it is easy to check that A violates pairwise MMS.

Next, we show that pairwise MMS does not imply MMS. Consider a set of three
players N = {1,2,3} and a set of seven goods M = {g; : i € [7]}. Let the players have
an identical valuation function v, where v(g;) = 1, v(g2) = v(g3) = 2, v(g4) = v(g5) = 3,
v(gs) = 4, and v(g7) = 6.

Consider the allocation A where Ay = {97}, A2 = {93,94,95}, and A3 = {g1,92, 96}
The values derived by the three players are 6, 8, and 7, respectively, while the MMS
guarantee of each player is 7 because the goods can be partitioned into three sets of
value 7 each. Thus, A is not an MMS allocation because the MMS guarantee of player
1 is violated. It is easy to check that A is nonetheless a pairwise MMS allocation.

We do not know whether a pairwise MMS allocation always exists (under the con-
straint that all goods must be allocated). In fact, there is an even more tantalizing and
elusive fairness notion that is strictly weaker than pairwise MMS, but strictly stronger
than EF1 (see Theorem 4.6 below, which, in particular, implies that pairwise MMS is
stronger than EF1).

Definition 4.5 (EFX: Envy freeness up to the Least Valued Good). We say that an
allocation A € II,,(M) is envy free up to the least (positively) valued good if

Vi,j € N,Vg € A; such that v;(g) > 0,v;(A4;) = vi(A; \ {g}).

While EF1 requires that player ¢ not envy player j after the removal of player i’s
most valued good from player j’s bundle, EFX requires that this no-envy condition
would hold even after the removal of player i’s least positively valued good from player
j’s bundle. Despite significant effort, we were not able to settle the question of whether
an EFX allocation always exists (assuming all goods must be allocated), and leave it
as an enigmatic open question.

At this point, the reader may be wondering about the abundance of fairness notions
we are considering. But they are all related, as the following result shows.

THEOREM 4.6. For additive valuations over indivisible goods, the pairwise maxi-
min share guarantee is implied by envy-freeness (EF), and implies 1/2-maximin share
guarantee, envy freeness up to the least valued good (EFX), and as a direct consequence,
envy-freeness up to one good (EF1).

PROOF. Let A be an EF allocation, i.e., v;(A4;) > v;(A;) for all pairs of players i, j €
N. Let PMMS; denote the pairwise MMS guarantee of player i:

PMMS; = max max  min{v;(B1),v;(B2)}.

a
JEN\{i} BEI2(A;UA;)
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Then, we have

PUMS; < may A T UilA)) vi(Ay),
FEN\{i} 2
where the first transition holds because its right hand side is the pairwise MMS gua-
rantee that player : would have if all goods were divisible, which is an upper bound on
PMMS; because divisible goods offer the player a greater flexibility in partitioning the
goods. The second transition follows directly from the envy-freeness of A.

Next, let A be a pairwise MMS allocation. It is easy to show that A must also be
EFX: if player ¢ envies player j after the removal of player i’s least positively valued
good g* from A, then it follows that player ’s pairwise MMS guarantee is at least
v;(A; U{g*}) > v;(A;) due to the partition (A4; U {g*}, 4; \ {9*}). However, this implies
that A is not pairwise MMS, which is a contradiction. Hence, A is also EFX. It is trivial
to check that EFX implies EF1 by definition; hence, A is also EF1.

Finally, we show that a pairwise MMS allocation A is also 1/2-MMS. Consider players
i and j. There are only two possible cases: (i) A; has at most one good that player :
values positively, i.e., [A; N {g € M | v;(g) > 0} < 1, or (ii) v;(4;) < 2 - v;(4;). Indeed,
if A; has at least two goods that player ¢ values positively, and v;(A4;) > 2 - v;(4;), then
consider the good ¢g* that is the least valuable among player i’s positively valued goods
in A;. In that case, player ¢ could partition A, UA; into (4;U{g*}, 4;\{g*}) and ensure
that her pairwise MMS value is strictly more than v;(4;), which is a contradiction
because A is pairwise MMS.

Now, if no player in A/ \ {i} falls into case (ii), then it is easy to see that the MMS
guarantee of player i is at most v;(4;). If a non-empty subset S C A \ {i} of players
fall into case (ii), then we can bound the MMS guarantee of player i from above by
assuming that all goods allocated to players S U {i} are divisible. However, this still
gives an MMS guarantee of at most 2 - v;(4;), because each player in j € S U {i}
satisfies v;(A4;) < 2-v;(A;). Thus, the MMS guarantee of player i is at most 2 - v;(4;),
which implies that A is !/2>-MMS. B

Given this backdrop for the pairwise MMS notion, it is interesting that our next re-
sult directly translates the MMS approximation bound of Theorem 4.1 into a pairwise
MMS approximation.

COROLLARY 4.7. Every MNW allocation is ®-pairwise MMS, where ® is the golden
ratio conjugate, i.e., ® = (/5 — 1)/2 ~ 0.618. Further, the factor ® is tight, i.e., for every
n € Nand € > 0, there exists an instance with n players having additive valuations in
which no MNW allocation is (® + ¢)-pairwise MMS.

PrOOF. An MNW allocation A has the following interesting property: Take the
goods allocated to players i and j, i.e.,, M’ = A, U A;, and take the set of players
N’ = {i,j}. Then the allocation given by A; and A; is also an MNW allocation for the
reduced instance of allocating the set of goods M’ to the set of players N’. This fact
is easy to see when either v;(4;) > 0 and v;(A4;) > 0 (otherwise we could achieve hig-
her Nash welfare), or v;(4;) = v;(A;) = 0. When v;(4;) = 0 but v;(4;) > 0 (without
loss of generality), every allocation of M’ to players {i,j} must provide zero utility to
at least one player, otherwise this part of the allocation could be used in the original
instance to increase the number of players that receive positive utility, contradicting
the fact that an MNW allocation provides positive utility to the maximum number of
players. Hence, the allocation in the reduced instance that provides all the goods in M’
to player j (which is exactly allocation A restricted to the reduced instance) is indeed
an MNW allocation, and is m5-MMS in the reduced instance (Theorem 4.1).
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We therefore conclude that the MNW allocation A is ®-pairwise MMS in the original
instance as m3 = ®. To establish tightness of the factor ®, for a givenn € Nand ¢ > 0,
we simply use the example from the proof of the upper bound in Theorem 4.1 after
replacing m, by 7o = @ in the valuations of the players. In the new example, now the
pairwise MMS approximation ratio (instead of the MMS approximation ratio in the
original example) can be driven below 75 + € for a value of ¢ less than min(my, €/(ms -
(m2 + €))), which is a bound obtained by substituting n = 2 in the upper bound on ¢
from the proof of Theorem 4.1. B

4.3. Approximate MMS and Pairwise MMS, in Practice

100 | 95.63% 100 | 90.94%
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Fig. 1: MMS and Pairwise MMS approximation of the MNW solution on real-world
data from Spliddit.

Theorem 4.1 and Corollary 4.7 show that the MNW solution is guaranteed to be ,,-
MMS and ®-pairwise MMS. We now evaluate these approximation ratios in practice
using real-world data. Specifically, we use the 1281 instances created so far through
Spliddit’s “divide goods” application. The number of players in these instances ran-
ges from 2 to 10, and the number of goods ranges from 3 to 93. Figures 1(a) and 1(b)
show the histograms of the MMS and pairwise MMS approximation ratios, respecti-
vely, achieved by the MNW solution on these instances.

Most importantly, observe that the MNW solution provides every player her full
MMS (resp. pairwise MMS) guarantee, i.e., achieves the ideal 1-approximation, in
more than 95% (resp. 90%) of the instances. Further, in contrast to the tight worst-
case ratios of 7, = ©(1/y/n) and ® =~ 0.618, the MNW solution achieves a ratio of at
least 3/4 for both properties on all the real-world instances in our dataset.

5. IMPLEMENTATION

It is known that computing an exact MNW allocation is N"P-hard even for 2 players
with identical additive valuations, due to a simple reduction from the A/P-hard pro-
blem PARTITION [Nguyen et al. 2013; Ramezani and Endriss 2010]. Our goal in this
section is to develop a fast implementation of the MNW solution, despite this obsta-
cle. An existing approach to maximizing the Nash welfare [Nongaillard et al. 2009]
iteratively modifies an initial allocation to improve the Nash welfare at each step, but
may return a local maximum that does not provide any fairness or efficiency guaran-
tees. Instead, we use integer programming to find the global optimum in a scalable
way. Note that most real-world instances are relatively small, but response time can
be crucial. For example, Spliddit has a demo mode, where users expect almost instan-
taneous results. Moreover, some instances are actually very large, as we discuss below.
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Fig. 2: Nonlinear discrete optimization Fig. 3: Logarithm and its approximations
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Let us begin by recalling that the first step in computing an MNW allocation is to
find a largest set of players S that can be given positive utility simultaneously. For
submodular valuations (and hence, for additive valuations) it holds that if a player
has a positive value for a bundle of goods, there must exist a good g in the bundle such
that the player has a positive value for the singleton set {g}. Thus, at least for sub-
modular valuations, to provide a positive utility to the maximum number of players
it is sufficient to restrict our attention to allocations that assign at most one good to
each player. We create a bipartite graph G with the players on one side and the goods
on the other, and add an edge from player i to good g iff v;(g) > 0.2 Our desired set
S can now be computed as the set of players satisfied under a maximum cardinality
matching in G. There are many popular polynomial time algorithms that one can use
to find a maximum cardinality matching in a bipartite graph, e.g., the Hopcroft-Karp
method. While this shows that set S can be computed in polynomial time for submo-
dular (and thus for additive) valuations, the problem may be computationally hard for
other classes of valuation functions.

Once we find the set S, the task at hand reduces to computing an MNW allocation to
the players in S. Hereinafter, we focus on this reduced problem. Thus, without loss of
generality we can assume that for the given set of players A/, an MNW allocation will
achieve positive Nash welfare.

Figure 2 shows a simple mathematical program for computing an MNW allocation.
The binary variable z; , denotes whether player ¢ receives good g. Subject to feasibility
constraints, the program maximizes the sum of log of players’ utilities, or, equivalently,
the Nash welfare. Note that this is a discrete optimization program with a nonlinear
objective, which is typically very hard to solve.

Fortunately, we can leverage some additional properties of the problem that arise
in practice. Specifically, on Spliddit, users are required to submit integral additive
valuations by dividing 1000 points among the goods. This in turn ensures that the
utilities to the players will also be integral, and not more than 1000. In theory, this does

3Recall that v;(g) is shorthand for v;({g}).
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not help us: due to a known reduction from a strongly NP-complete problem — Exact
Cover by 3-Sets (X3C) — to the problem of computing an MNW allocation [Nguyen
et al. 2013], we cannot hope for a pseudopolynomial-time algorithm (i.e., a polynomial-
time algorithm for Spliddit-like valuations). In practice, however, this structure of the
valuations can be leveraged to convert the non-linear objective into a linear objective:

Sien Sy (logt — log(t — 1)) - Uy, where U, = I[> e Tig - vi(g) > t] for player
i € N and ¢t € [1000] is an additional variable that can be encoded using two linear
constraints. However, the introduction of 1000 - n additional binary variables makes
this approach impractical even for fairly small instances.

We therefore propose an alternative approach that introduces merely n continuous
variables and, crucially, no integral variables. The trick is to use a continuous variable
W; denoting the log of the utility to player i, and bound it from above using a set
of linear constraints such that the tightest bound at every integral point % is exactly
log k. This essentially replaces the log by a piecewise linear approximation thereof that
has zero error at integral points. Figure 3 shows two such approximations of the log
function (the red line): one that uses the tangent to the log curve at the point (k,log k)
for each k£ € [1000] (the blue lines), and one that uses segments connecting points
(k,logk) and (k+1,log(k+1)) for each k € {1,3,...,999} (the green line). Each tangent
and each segment is guaranteed to be an upper bound on the log function at every
integral point due to the concavity of log.* Importantly, note that the tightest upper
bound at each positive integral point % is log k. These transformations do not work at
k = 0, i.e., they do not ensure W; = —oo if player ¢ gets zero utility. However, recall that
in our subproblem each player can achieve a positive utility. Hence, we eliminate this
concern by adding the constraints that each player must receive value at least 1. We
employ the transformation that uses segments as it requires half as many constraints
(and, incidentally, runs nearly twice as fast). Figure 4 shows the final mixed-integer
linear program (MILP) with only n continuous and n - m binary variables, which is key
to the practicability of this approach.

To assess how scalable our implementation is, we measure its running time on uni-
formly random Spliddit-like valuations, that is, uniformly random integral valuations
that sum to 1000. We vary the number of players n from 5 to 50 in increments of 5, and
keep the number of goods at m = 3 - n to match data from Spliddit, in which m/n ~ 3
on average. The experiments were performed on a 2.9 GHz quad-core computer with 32
GB RAM, using CPLEX to solve the MILPs. The indicator-variables-based approach
failed to run within our time limit (60 seconds) even for 5 players. Figure 5 shows the
running time (averaged over 100 simulations, with the 5th and 95th percentiles) of the
MILP formulation from Figure 4. Satisfyingly, we can solve instances with 50 players
in less than 30 seconds (whereas even the largest of the 1281 instances on Spliddit has
10 players). In fact, the algorithm solves every Spliddit instance in less than 3 seconds.

The largest real-world instance we have seen was actually reported offline by a Sp-
liddit user. He needed to split an inheritance of roughly 1400 goods with his 9 siblings.
Our implementation solves an instance of this size in roughly 15 seconds.

5.1. Precision Requirements

As our optimization program involves real-valued quantities (e.g., the logarithms), we
must carefully set the precision level such that the optimal allocation computed up
to the precision is guaranteed to be an MNW allocation. This is because an allocation

4In fact, this transformation is useful in maximizing any concave function, or minimizing any convex
function, and thus may be of independent interest.
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that only approximately maximizes the Nash welfare may fail to satisfy the theoretical
guarantees of an MNW allocation (Theorems 3.2 and 4.1, and Corollary 4.7).

Recall that our objective function is the log of the Nash welfare. Hence, the difference
between the objective values of an (optimal) MNW allocation and any suboptimal al-
location is at least log(1000™) — log(1000™ — 1) > 1/1000™ — (1/2)/1000", which can be
captured using O(n) bits of precision. This simple observation can be easily formalized
to show that there exists p € O(n) such that if all the coefficients in the optimization
program are computed up to p bits, and if the program is solved with p bits of precision
(i.e., with an absolute error of at most 277 in the objective function), then the solution
returned will indeed correspond to an MNW allocation. Crucially, p is independent of
the number of goods. We expect the number of players n to be fairly small in everyday
fair division problems. For example, as previously mentioned, on Spliddit more than
95% of the instances for allocating indivisible goods have n < 3.

Nonetheless, if one’s goal is solely to find an allocation that is EF1 and PO, a con-
stant number of bits of precision would suffice. This is because capturing differences
in objective values that are at least log(1000?) — log(1000% — 1) — a constant — ensures
that the resulting allocation is EF1 and PO, as we show below.

(1) EF1: Suppose the allocation is not EF1, and player i envies player j even after
the removal of any single good from player j’s bundle. Then, our proof of Theo-
rem 3.2 shows that we can increase the Nash welfare by moving a specific good
from player j to player i. Because this operation does not alter the utilities to all
but two players, it must increase the logarithm of the Nash welfare by at least
log(1000%) — 1og(1000% — 1), which is a contradiction because our sensitivity level is
sufficient to find this improvement.

(2) PO: Suppose the allocation is not PO. Then there exists an alternative allocation
that increases the utility to at least one player without decreasing the utility to any
player. This must increase the logarithm of the Nash welfare by at least log(1000) —
log (1000 — 1) > log(1000%) — log(1000? — 1), which is again a contradiction because
our sensitivity level is sufficient to find this improvement.

6. DISCUSSION

The goal of this paper is to advocate for the Maximum Nash Welfare (MNW) solution
for the fair allocation of goods. While it is justified by elegant fairness (EF1) and ef-
ficiency (PO) properties, these properties are not “sufficient” in and of themselves —
they may allow undesirable outcomes (see Example B.4 in Appendix B). What makes
the MNW solution compelling is that it provides intuitively fair outcomes, yet organi-
cally satisfies these formal fairness properties. Moreover, the MNW solution provides
a ©(1/y/n)-approximation to the MMS guarantee (Theorem 4.1), whereas an arbitrary
EF1 and PO allocation only provides a 1/n-approximation (Theorem B.5 in Appen-
dix B).

Throughout the paper we assumed that the goods are indivisible, but our results
directly extend to the case where we have a mix of divisible and indivisible goods.
The MNW solution in this case can be seen as the limit of the MNW solution on the
instance where each divisible good is partitioned into k indivisible goods, as k goes to
infinity. Theorem 3.2 therefore implies that the MNW solution is envy free up to one
indivisible good, that is, player i would not envy player j (who may have both divisible
and indivisible goods) if one indivisible good is removed from the bundle of j. This
provides an alternative proof for envy-freeness of the MNW/CEEI solution when all
goods are divisible. The results of Section 4 also directly go through — in fact, the
proof of the MMS approximation result (Theorem 4.1) already “liquidates” some of the
goods as a technical tool. Appendix A outlines the modified and scalable version of the
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implementation described in Section 5, which we have deployed on Spliddit, that can
allocate a mix of divisible and indivisible goods.

It is remarkable that when all goods are divisible, three seemingly distinct solution
concepts — the MNW solution, the CEEI solution, and proportional fairness (PF) —
coincide. This is certainly not the case for indivisible goods: while a CEEI solution
and a PF solution may not exist, the MNW solution always does. Nonetheless, our
investigation revealed that even for indivisible goods, the PF solution and the MNW
solution are closely related via a spectrum of solutions, which offers two advantages.
First, it allows us to view the MNW solution as the optimal solution among those that
lie on this spectrum and are guaranteed to exist. Second, it also gives a way to break
ties — possibly even choose a unique allocation — among all MNW allocations. See
Appendix D for a detailed analysis. This connection between MNW and PF raises an
interesting question: Is it possible to relate the MNW solution to the CEEI solution
when the goods are indivisible?

Finally, we have not addressed game-theoretic questions regarding the manipula-
bility of the MNW solution. The reason is twofold. First, there are strong impossibi-
lity results that rule out reasonable strategyproof solutions. For example, Schummer
[1997] shows that the only strategyproof and Pareto optimal solutions are dictatorial
— which means they are maximally unfair, if you will — even when there are only two
players with linear utilities over divisible goods; clearly a similar result holds for indi-
visible goods (at least in an approximate sense).® Second, we do not view manipulation
as a major issue on Spliddit, because users are not fully aware of each other’s prefe-
rences (they submit their evaluations in private), and — presumably, in most cases —
have a very partial understanding of how the algorithm works.
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APPENDIX
A. IMPLEMENTATION ON SPLIDDIT

Section 5 outlines an implementation of the MNW solution when all the goods are
indivisible. In contrast, our fair division website Spliddit allows an arbitrary mix of
divisible and indivisible goods, for which we designed an implementation that builds
on the implementation of Section 5.

Splitting divisible goods:

As described in Section 6, one approach is to split each divisible good into % identical
indivisible goods, and apply the MNW solution on the resulting set of indivisible goods.
When k& goes to infinity, this approach perfectly simulates the divisible goods, and gives
the following relaxation of EF in addition to Pareto optimality (PO):

For every pair of players 7 and j, there exists an indivisible good in player j’s bundle such
that player i does not envy player j after removing it from player j’s bundle.

However, splitting each divisible good into infinitely many indivisible goods is com-
putationally not feasible. In practice, it suffices to split each divisible good into 100
indivisible goods, which provides the following relaxation of EF in addition to PO:
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For every pair of players ¢ and j, there exists either an indivisible good or 1% of a divisible
good in player j’s bundle such that player i does not envy player j after removing it from
player j’s bundle.

Final implementation:

Explicitly splitting each divisible good into 100 identical indivisible goods results in
two computational challenges:

(1) The number of goods, and, as a result, the number of decision variables in the
resulting MILP increase significantly.

(2) The number of constraints required to encode the piecewise-linear approximation
of the logarithm function (in the form of segments or tangents on the log curve)
is proportional to the number of possible utility levels that a player can achieve,
which also increases from 1000 to 1000 x 100.

The former can be alleviated almost completely. Recall that the first step to compu-
ting the MNW solution is to find a largest set of players that can simultaneously derive
a positive utility. This requires computing a maximum-cardinality matching, for which
we use the MatlabBGL library.® Since the maximum-cardinality algorithm works on
sparse graphs and is extremely fast in practice, the increased number of goods is not
an issue in this step.

The next step is to compute the MNW solution for the reduced set of players using
the MILP of Figure 4. Here, the increased number of goods could affect the running
time significantly. However, note that the indivisible goods created from a divisible
good g are identical. Hence, we can retain the original decision variables z; 4, but use
them to denote the number of parts (out of 100) of good g that player i receives, rather
than denoting whether player i receives good g entirely. In particular, for each divisible
good ¢ and each player ¢, we replace all the occurrences of z; ;, in the MILP of Figure 4
with x; ,/100, and replace z; , € {0,1} with z; ;, € {0,1,...,100}. The resulting MILP
still has n - m integer (though, not binary) variables and n continuous variables, and
we solve it using CPLEX.

Finally, for the latter challenge, note that although the number of possible utility
levels that a player can achieve could, in the worst case, be 10, in practice it is signi-
ficantly smaller. We use a preprocessing step to identify the possible utility levels for
each player using a variant of the standard dynamic programming algorithm for the
Knapsack problem, implemented efficiently in MATLAB through vectorization.

B. THE ELUSIVE COMBINATION OF EF1 AND PO

In this section, we provide examples of several candidate solutions that fail to achieve
EF1 and PO together for additive valuations — two properties that are fairly easy to
achieve individually. This serves as a backdrop to our argument that it is compelling
— even surprising — that the MNW solution achieves the two properties together
(Theorem 3.2).

Example B.1 (Rounding any MNW allocation for divisible goods violates EF1).
The example we provide requires only 3 players but 31 goods. Let the set of players
be N' = {1,2,3}. Suppose we have four types of goods: a single good of type a, and 10
goods each of types b, ¢, and d. Each player identically values all goods of the same
type. Let the valuations of the players (specified only as a function of the type of the
good) be as follows:

Shttps:/www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl
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| Typea Typeb Typec Typed

Player 1 20 1 1.3 1.3
Player 2 15 0 1 1.3
Player 3 10 0 0 1

We show that when the goods are divisible, under the unique MNW allocation A*,
all goods of type b, ¢, and d are allocated entirely to players 1, 2, and 3, respectively,
and the single good of type a is divided between players 1, 2, and 3 in fractions 10/18,
7/18, and 1/18, respectively.

To verify this, we can use the KKT conditions. In allocation A*, let U, Us, and Uz
denote the utilities to the three players; thus, U; = 10+20-(10/18), Uz = 10+15-(7/18),
and Us = 10 + 10 - (1/18).

Now, the KKT condition at the good of type a is 20/U; = 15/Us = 10/Us, which is
satisfied under A*. The KKT condition at each good of type b is trivially satisfied under
A* because no player other than player 1 likes goods of type b. At each good of type c,
we need 1/U, > 1.3/U;, which is also satisfied under A*. Finally, at each good of type
d, we need 1/U; > max{1.3/Uy,1.3/Us}, which is also satisfied under A*. Hence, A* is
the MNW allocation with divisible goods.

Let us now find an allocation for indivisible goods by rounding A*. Because the allo-
cation for divisible goods does not divide goods of types b, ¢, and d, no rounding scheme
can alter the allocation of these goods. However, we now show that subject to this con-
straint, allocating the single good of type a entirely to any single player violates EF1.
Indeed, if we allocate the good to player 1 (resp. player 2), player 2 (resp. player 1) en-
vies player 3 even after removing any single good from player 3’s bundle. If we allocate
the good to player 3, player 1 envies player 2 even after removing any single good from
player 2’s bundle.

This shows that in this example, no rounding scheme applied to the unique MNW
allocation for divisible goods can produce an EF1 allocation of indivisible goods. Be-
cause Theorem 3.2 asserts that an MNW allocation of indivisible goods is guaranteed
to be EF1 and PO, this is also a fascinating example in which no way of rounding the
MNW allocation for divisible goods produces an MNW allocation for indivisible goods.
In other words, an MNW allocation for indivisible goods inevitably gives at least one
good to a player that receives a zero fraction of that good under the MNW solution for
divisible goods.

Indeed, in this example, the unique MNW allocation for indivisible goods is as fol-
lows. Like the MNW allocation for divisible goods, it allocates all goods of types b and
d to players 1 and 3, respectively. It allocates the good of type a to player 2, and to
balance that, it allocates 9 out of the 10 goods of type ¢ to player 1, and a single good of
type c to player 2. Note that the 9 goods of type c that are now fully allocated to player
1 were fully allocated to player 2 in the MNW allocation for divisible goods.

In the economics literature, three popular notions of welfare — utilitarian, Nash,
and egalitarian — are often arranged on a spectrum in which maximizing the utili-
tarian welfare is considered the most efficient, maximizing the egalitarian welfare is
considered the fairest, and maximizing the Nash welfare is considered a good tradeoff
between efficiency and fairness. In contrast, in our setting, maximizing Nash welfare
is the only solution out of the three that achieves our desired fairness notion (EF1).

Example B.2 (Maximizing the utilitarian or the egalitarian welfare violates EF1).
The fact that maximizing the utilitarian welfare violates EF1 is very easy to see. Let
the set of players be N' = {1,2}, the set of goods be M = {g1, 92,93}, and the additive
valuations of the players be as follows:
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\ g1 g2 93

Player1 | 1/2 1/2 0
Player2 | 2/5 2/5 1/5

Note that the unique allocation that maximizes the utilitarian welfare allocates goods
g1 and g to player 1, and good g3 to player 2, causing player 2 to envy player 1 even
after removal of any single good from player 1’s bundle.

To show that maximizing the egalitarian welfare violates EF1, we use a slightly
more involved example. Let the set of players be NV = {1,2,3}, the set of goods be
M ={q,92,93,94}, and the additive valuations of the players be as follows:

\ g1 g2 g3 94
Player1 | 1 0 0 0
Player2 | 2/3 0 1/6 1/6
Player3 | 0 1/5 2/5 2/5

First, to achieve a positive egalitarian welfare we must allocate good 1 to player 1.
Subject to this, the egalitarian welfare is uniquely maximized when good g5 is allocated
to player 3, and both goods g3 and g, are allocated to player 2. However, this causes
player 3 to envy player 2 even after removal of any single good from player 2’s bundle.

Example B.3 (Maximizing the utilitarian /egalitarian welfare subject to EF1). The
following counterexample shows that maximizing the utilitarian welfare subject to
EF1 violates PO. This example was discovered using computer simulations. Let the
set of players be N' = {1,2,3,4}, the set of goods be M = {g;}ic[10, and the additive
valuations of the players be as follows:

\ g1 g2 g3 g4 95 ge g7 gs g9 gio
0.0426 0.0004 0.1019 0.1503 0.0541 0.1782 0.1212 0.0259 0.1574 0.1681
0.0365 0.0004 0.2311 0.1479 0.0649 0.1150 0.1501 0.1894 0.0285 0.0362
0.1124 0.0972 0.0574 0.0956 0.1441 0.1461 0.0674 0.1272 0.0254 0.1273
0.0368 0.0582 0.0242 0.0784 0.1844 0.1260 0.1124 0.1121 0.1610 0.1064

W =

It can be checked that maximizing the utilitarian welfare subject to the EF1 con-
straint results in the following allocation A:

Al = {967977910}7A2 = {93794598}a‘43 = {91792}5 and A4 = {95799}'

However, this allocation is not Pareto optimal. An alternative allocation in which
players 1 and 2 exchange goods g7 and g4 improves the utility to both players 1 and 2
while keeping the utility to both players 3 and 4 unaltered. This alternative allocation
is not selected in the first place because it violates EF1 (player 3 now envies player 1
even after the removal of any single good from player 1’s bundle).

It is easy to see why maximizing the egalitarian welfare subject to EF1 violates PO.
Suppose the set of players is N' = {1,2, 3}, and the set of goods is M = {g1, g2, 93}. Let
the valuations of the players be as follows:

\ 91 92 g3
Player1 | 2/3 1/3 0
Player2 | 1/3 2/3 0
Player3 | 1/3 1/3 1/3

Clearly the optimal egalitarian welfare is 1/3 in this example. An EF1 allocation A
that achieves this optimal welfare is given by 41 = {¢2}, A2 = {g1}, and A3 = {g3}.
However, this is clearly not PO: if players 1 and 2 exchange their bundles, they can both
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be better off without reducing the utility to player 3. Hence, maximizing the egalitarian
welfare (at least naively) subject to EF1 is not PO.

It is worth remarking that in this example, replacing the egalitarian solution with
its refinement, the leximin solution,” produces an allocation that is EF1 and PO. While
it is not clear if choosing the leximin-optimal allocation among the set of EF1 alloca-
tions satisfies PO, we conjecture that it does not. However, this will require a more
complicated example.

While EF1 and PO are both mild properties by themselves, their combination is
surprisingly elusive, which provides a justification for the MNW solution. However,
EF1 and PO by themselves are not sufficient to always guarantee a desirable outcome.
The following observations illustrate why.

Example B.4. Imagine we have a set of two players NV = {1,2}, and a set of two
goods M = {g1,g92}. Suppose player 1 values both goods equally, and player 2 only
values good ¢-.

In this case, the only intuitively fair outcome (which is also the outcome that the
MNW solution selects) assigns good ¢; to player 1, and good g2 to player 2. However,
note that assigning both goods to player 1 also satisfies EF1 and PO, but is clearly
undesirable.

More formally, we can argue that, while the MNW solution provides m, = 1/0(y/n)-
approximation of the MMS guarantee, simply restricting the allocation to be EF1 and
PO gives a worse 1/n-approximation of MMS.

THEOREM B.5. Every allocation that is envy free up to one good (EF1) and Pareto
optimal (PO) is 1/n-maximin share (MMS) for additive valuations over indivisible
goods. Further, the factor 1/n is tight, i.e., for every n € N and ¢ > 0, there exists an
instance with n players having additive valuations and an allocation satisfying EF'1
and PO that is not (1/n + €)-MMS.

PROOF. We first prove that every allocation satisfying EF1 and PO is 1/n-MMS,
and later prove tightness of the approximation ratio (upper bound).

Proof of the lower bound: Let A be an allocation satisfying EF1 and PO. Fix a player
i € N. Because A is EF1, for every player j € N\ {i} there exists a good g;; € A; such
that

vi(Ai) 2 vi(4;) — vi(gi5)- (6)

Let T; = > erpvilg), and let E; = 7.\ (3 vi(gi;). Then, summing Equation (6)
over all j € N\ {i}, we get

(n — 1) . UZ(AL) = Z]EN\{Z} ’U,(A]) —FE,=n- UZ(AL) > T, — F;. )

On the other hand, consider any partition of the set of goods M into n bundles. Due
to the pigeonhole principle, there must exist a bundle that does not contain good g;;
for any j € N\ {i}. Since the value of this bundle according to player i can be at
most T; — E;, the MMS guarantee of player i is also at most T; — F;. Equation (7) now
implies that under A, each player i receives at least 1/n of her MMS guarantee, i.e., A
is 1/n-MMS.

Proof of the upper bound: We now show that for every n € N and ¢ > 0, there exists
an instance with n players for which some allocation satisfying EF1 and PO is not
(1/n + ¢)-MMS.

"The leximin solution maximizes the egalitarian welfare, but breaks ties among all allocations with the
highest minimum utility in favor of those with a higher second minimum utility, and so on.
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Construct an instance with n players and 2n—1 goods. Let there be n—1 “high” goods
that each player values at n, and n “low” goods that each player values at 1. The MMS
guarantee of each player is n: the player can put each “high” good in its own bundle,
and all “low” goods in a single bundle.

However, one can check that giving n — 1 of the players a high and a low good each,
and giving the remaining player the remaining single low good also satisfies EF1 and
PO, but gives the last player exactly 1/n of her MMS guarantee. B

C. GENERAL VALUATIONS

In this section, we provide the definitions of the families of valuation functions men-
tioned in Section 3.1, and provide the missing proofs and examples. Let us begin by
formally defining subadditive, superadditive, submodular, and supermodular valuati-
ons.

Definition C.1 (Subadditive and Superadditive Valuations). A valuation function
v : 2M — Ry is called subadditive (resp. superadditive) if for every pair of disjoint
sets 5,7 C M, we have v(SUT) < v(S) +v(T) (resp. v(SUT) = v(S) + v(T)).

Definition C.2 (Submodular and Supermodular Valuations). A valuation function
v : 2M — Ry is called submodular (resp. supermodular) if for every pair S,T C M, we
have v(SUT) < v(S) +v(T) —v(SNT) (resp. v(SUT) = v(S) +v(T) —v(SNT)).

It is clear that submodular (resp. supermodular) valuations are a special case of
subadditive (resp. superadditive) valuations. We now provide a proof of Theorem 3.3,
which asserts that for supermodular (and thus superadditive) valuations and subad-
ditive valuations, EF1 and PO are incompatible.

PROOF OF THEOREM 3.3. Let the set of players be /' = {1, 2}, and the set of goods
be M = {a,b,c,d}. We use a common valuation for both players. Figures 7 and 6 define
the supermodular (thus superadditive) valuation v*"? and the subadditive valuation
v*% | respectively, through their value for a set S C M.

10 if|S| =4, 4 if |S]| =4,

7 if S| =3, 3 if|S| =3,

6 if[S[=2anda¢s, wp(g) — )2 if|S|=2andag s,
v(S) =44 if|S|=2andac S, v =4 if|S|=2andac S,

4 if S ={a}, 1 ifS={al},

3 if §={b}, {c}, or {d}, 0 if S ={b}, {c}, {d}, or 0.

0 ifS=0.

Fig. 7: Supermodular (thus superadditive)
Fig. 6: Subadditive valuation valuation

In each case, under a PO allocation, player 1 receives one of the following sets of
goods: 0, {a}, {b,c,d}, and M; and player 2 receives the set of remaining goods. It is
easy to check that these are the only four PO allocation. Note that EF1 is violated in
the first two allocations due to player 1 envying player 2 (and in last two allocations
due to player 2 envying player 1) even after removal of any single good from the envied
player’s bundle. ®

We now focus on the interesting case of submodular valuations, which are charac-
teristic of substitute goods, and are alternatively defined via diminishing marginal
utility. Examples of submodular valuations include unit demand valuations, strong
valuations with no complementarities, and gross substitutes.
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As mentioned in Section 3.1, we were unable to settle the question of the compa-
tibility of EF1 and PO for submodular valuations. We know that an MNW allocation
does not guarantee EF1 and PO for submodular valuations, but we can show that it
guarantees MEF1 (a relaxation of EF1 that coincides with EF1 for additive valuations)
and PO.

Example C.3 (MNW is not EF1 and PO for submodular valuations). Let the set of
players be A = {1,2}, and the set of goods be M = {a, b, ¢, d}. The submodular valua-
tions v; and v, of players 1 and 2, respectively, are as follows:

Player 1: First, let us define the value of the player for individual goods.
vi(a) = 1,v1(b) = 1,v1(c) =0, and vy (d) = 0.

For S C M with |S| > 2, define v;(5) to be the sum of the values of the two goods in
S that are the most valuable to player 1. It is easy to check that this is a submodular
valuation.

Player 2: Let the value of the player for individual goods be as follows.
va(a) = 2.5,v2(b) = 2.5,v2(c) = 1, and va(d) = 1.

Once again, for S C M with |S| > 2, define v3(S) to be the sum of the values of the
two goods in S that are the most valuable to player 2. Similarly to v, vo is also a
submodular valuation.

Note that an MNW allocation must allocate at least one of the goods in {a,b} to
player 1 to achieve positive Nash welfare. If player 1 receives only one of these two
goods, the Nash welfare can be at most 1 - 3.5 = 3.5. In contrast, the allocation A that
gives both a and b to player 1 (A; = {a,b}), and the rest to player 2 (4> = {c,d}),
achieves Nash welfare of 2 - 2 = 4. Hence, A is the unique MNW allocation.

However, this violates envy-freeness up to one good (EF1). In particular, player 2
envies player 1 even after removal of any single good from player 1’s bundle because
’UQ(AQ) =2< ’Ug(Al \ {a}) = ’UQ(Al \{b}) = 2.5.

In contrast, marginal envy-freeness up to one good (MEF1) is satisfied because
UQ(AQ) =2> UQ(AQ U A1 \ {a}) — UQ(AQ) =35—-2=1.5.

We end this section with a proof of Theorem 3.5, which asserts that every MNW
allocation is MEF1 and PO for submodular valuations.

PRrROOF OF THEOREM 3.5. Let A be an MNW allocation. First, let us prove the re-
sult for the case of NW(A) > 0. In this case, the Pareto optimality of A is obvious due to
the fact that A maximizes the Nash welfare. Suppose, for contradiction, that A is not
MEF1. Then, there exist players i,j € N such that

Vg € Aj,vi(A; U A\ {g}) — vi(Ai) > vi(Ai). (8)
Next, for every r € A;, let us define
di(g9) = vi(A; U{g}) — vi(4;), and 6;(g) = v;(4;) — v;(4; \ {g})

Note that d;(g) and §,(g) are generalizations of v;(g) and v;(g) from additive valuations
to submodular valuations. Also, observe that they are defined a bit differently for i and

We now derive two key results.

LEMMA C.4. Forevery g* € Aj, we have 3 . 4 0i(g) > vi(4; U{g"}).
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PROOF. Fix ¢g* € A;. Let us enumerate the elements of A; as g1,...,g; where k =
|A;| and g = g*. Also, for ¢ € [k] define A% = {g1,...,9:}, and A} = (. Then,
k-1
Z ZUZAU{gt})—vZ i) Z’UZAUA)—’UZ(A UAt D)
9€4;\{g" } t=1 t=1

=vi(A; UA; \{g"}) —vi(Ai) > vi(A),

where the second transition holds due to submodularity of v; because the marginal
value of adding g; to A; should be at least as much as the marginal value of adding g,
to A; U A;fl (note that A% = A;fl U{g:})- The final transition follows from Equation (8).

Adding 6;(g*) = v;(A; U{g*}) — v;(A;) on both sides yields the desired result. B (Proof
of Lemma C.4)

LEMMA C.5. We have deA i(9) < v;i(4)).

PROOF. Once again, let A; = {g1,...,9r}, where k = |4;|, A} = {g1,...,9:} for
t € [k], and A9 = 0. Then,

k
> 6i(g) Zv] v (A5 \ {g:}) <3 vi(AL) — v (A7) = v(4;),
t=1

gEA;
where the inequality follows from the submodularity of v;. B (Proof of Lemma C.5)
From Lemma C.4, it is clear that }_ A, 0;(g) > 0. Thus, there exists g € A; such

that 6;(g) > 0. Fix ¢ = argmingc 4 .5,(4)>09;(9)/0i(9). We now take the ratio of the

inequality in Lemma C.5 to the inequality in Lemma C.4 applied to our chosen g*.
This is well-defined because we already showed }° A, di(g) > 0, and we also have

vilA) o 2eea, 5509 8i(e7) _ ui(Ay) (45 \ {g"})
vi(A;U{g"}) ~ Xyea, 0ilg) T dilgr) w4 U{g*}) —vi(4i)’

where the second transition holds due to our choice of g*. Upon rearranging the terms,
we get

vi(A; U{g"}) -v;(4; \ {g"}) > vi(A:) - v;(4;),
which is a contradiction because it implies that shifting ¢* from player j to player i
would increase the Nash welfare, which is in direct violation of the optimality of the
Nash welfare under the MNW allocation A.

Let us now handle the case of NW(A) = 0. Let S denote the set of players that receive
positive utility under A. The proof of Pareto optimality of A for submodular valuations
is identical to the proof of Pareto optimality of an MNW allocation for additive valua-
tions, which does not use additivity of the valuations. We now show that A is MEF1.
Note that MEF1 holds among players in S due to the proof of the previous case, and
holds trivially among players in '\ S. Hence, the only case we need to address is when
a player i € N'\ S (with A; = () marginally envies player j € S (with v;(A;) > 0) up to
one good. Then, by the definition of MEF1, we have

Vg € Aj,vi(A;\ {g}) > 0. 9

Submodularity of v; implies that > ., v;({g;}) = v;(4;) > 0. Hence, there exists a
good § € A; such that v;({§}) > 0. Applying Equation (9) to g, we get v;(4; \ {¢}) >
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0. But then moving all goods in A; except § from player j to player i gives positive
utility to player ¢ while still giving positive utility to player 7, which violates the fact
that A provides positive utility to the maximum number of players. Hence, A must be
MEF1. B (Proof of Theorem 3.5)

D. A SPECTRUM OF FAIR AND EFFICIENT SOLUTIONS

In this paper we focused on the MNW solution that maximizes the Nash welfare,
i.e., selects an allocation A that maximizes ][, vi(A;). For simplicity, let us assume
N = [n]. Another popular solution concept for fair allocation, originally used in the
networking literature, is proportional fairness [Kelly 1997].

Definition D.1 (Proportional Fairness). An allocation A is said to satisfy proportio-
nal fairness if for any alternative allocation A’, it holds that

n ) AN, )
Z vi (A7) — vi(4s) < 0.
—  (4)

In words, an allocation is proportionally fair if, when switching to an alternative allo-
cation, the total percentage change in players’ utilities is non-positive. This, in some
sense, indicates that A is socially preferred to every other allocation.

The proportional fairness requirement can be equivalently written as

— vi(4)) n
; Uz(Az) Sne Zn (vi(Ai))_l 2 1

i=1 \ v, (A7)

That is, proportional fairness requires that the Aarmonic mean of the set of quantities
{vi(As)/vi(A}) Yicn) be at least 1 for every other allocation A’. Let us compare this to the
requirement for an allocation A to be an MNW allocation: For every other allocation
A’, we must have

n

[[vi4) > Hvi(A;) &

=1

That is, the MNW solution requires that the geometric mean of the same set of quan-
tities {v;(A;)/vi(A]) }icn) be at least 1 for all other allocations A’.

This inspires us to define a spectrum of properties for the allocation of indivisible
goods where we require that the p-th power mean of the same set of quantities be at
least 1. Recall that the p-th power mean of a set of non-negative numbers {z; };c[, is de-

K3
mean corresponds to p = 0.

Definition D.2. For p € R, define I'(p) to be the set of allocations A € II,,(M) such
that for every other allocation A’ € II,,(M), we have

1
1 (a7
- Z : > 1.
n— Ui(Ai>
D.1. Relations Among I'(p)

We now observe relations between the sets I'(p) for different values of p. First, the
power-mean inequality states that for p > p’, the p-th power mean is no less than the
p’-th power mean. This directly yields that I'(p) becomes stricter as p decreases.

fined as (% > a) /P The harmonic mean corresponds to p = —1, and the geometric
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THEOREM D.3 (DECREASING POWER). For p,p’ € Rwith p’ > p, I'(p) C I'(p').

The limiting cases of p — —oc and p — oo are interesting. Due to Theorem D.3, we
say that an allocation A belongs to I'(—c0) if it belongs to I'(p) for all p € R, and say that
A belongs to I'(+00) if it belongs to I'(p) for some p € R. It is easy to observe that A €
I'(—o0) if it weakly Pareto dominates every other allocation A’, i.e., if v;(A;) > v;(A})
for all : € N and A’. This is an extremely stringent requirement. On the other end,
an allocation A € I'(+o00) if it is Pareto optimal, which is a much weaker requirement.
Consequently, we have the following result.

THEOREM D.4 (EFFICIENCY). For every p € R, every allocation A € T'(p) is Pareto
optimal (PO).

PROOF. Indeed, assume that an allocation A € T'(p) is not PO. Let A’ € IL,,(M) be
an allocation that Pareto dominates A, i.e., v;(A}) > v;(4;) for all i € N, and v;» (A}.) >
v« (A~ ) for some i* € N. Then, we would have

> (25) <

i=1

which is a contradiction because A € I'(p). B

D.2. T'(0) is Special

I'(0), which is the set of MNW allocations, not only lies at the center of the spectrum,
it is also special in two other ways. First, it is the strictest set that is guaranteed to be
non-empty. We know that there trivially exists an MNW allocation, which belongs to
I'(0). In contrast, there exist instances in which I'(p) is empty for every p < 0; simply
consider a single good and two players having value 1 for the good.

THEOREM D.5 (EXISTENCE). For p € R, I'(p) # 0 if and only if p > 0.

Second, in a given instance, even if I'(p) # () for p < 0, this does not offer a refinement
of I'(0), as the following result shows. For an allocation A, we refer to the vector of
player utilities (v;(A;)):en as the utility vector of A. Note that the definition of I'(p)
only relies on the utility vector of an allocation; thus, two allocations with identical
utility vectors are essentially equivalent.

THEOREM D.6 (NO REFINEMENT). If T'(0) contains two allocations with distinct
utility vectors, then T'(p) = 0 for all p < 0.

PROOF. Let A and A’ be two arbitrary allocations in I'(0) with distinct utility vec-
tors. Then, [ ],y vi(4i) = [[;cn vi(A}), implying that the geometric mean of X4 4 =
{wi(As)/vi(A]) }ien as well as the geometric mean of X 4/ 4 = {vi(A])/vi(A;)}ien are
both 1. Because A and A’ have distinct utility vectors in I'(0), we know that not all
the numbers is X 4 4/ (resp. X 4/ 4) are identical. Then, due to power-mean inequality,
we have that for any p < 0, the p-th power mean of X, 4. and the p-th power mean
of X 4/ 4 are both strictly less than 1, implying that neither A nor A’ belongs to I'(p).

Because we chose A and A’ to be arbitrary, it follows that I'(p) = 0, as required. B

In other words, for p < 0, I'(p) can be non-empty only if all MNW allocations yield
identical utility vectors, and I'(p) = I'(0). This has several interesting consequences.
First, we know that I'(0) is the strictest refinement that the spectrum offers. Second,
if there exists a proportionally fair allocation (in the sense of Definition D.1), then an
allocation is proportionally fair if and only if it is an MNW allocation.
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D.3. Fairness Properties of the Spectrum

While Theorem D.4 establishes an allocation in I'(p) (for any value of p) is always
Pareto optimal, it is unclear if an allocation in I'(p) is always fair. We already know that
an MNW allocation (i.e., an allocation in I'(0)) is EF1 (Theorem 3.2). A folklore result
(for which we provide a simple proof below) states that a proportionally fair allocation
(i.e., an allocation in I'(—1)) is EF. We somewhat extend this fairness guarantee to the
positive side of the spectrum (p > 0) by showing that an allocation in I'(1) is “EF2”.

Let us first introduce a family of relaxations of envy-freeness: We say that an alloca-
tion A is envy-free up to k goods (EFk) if

Vi _] 6./\/ a5 - A with |S| k UZ(AL) ’U,(A]\S)

THEOREM D.7 (FAIRNESS). For p € [—1,1], every allocation in I'(p) is envy free up
to 1+ [p| goods, where [-] is the ceiling function.

PROOF. Due to Theorem D.3, we only need to prove this theorem for p € {—1,0,1}.
For p = 0, we already showed that every MNW allocation is EF1 (Theorem 3.2).

Let us now consider p = —1. Let allocation A € I'(—1). Consider a pair of players
j,j'. For every good ¢ € A;/, we apply the inequality in the definition of I'(—1) using the
allocation A and the allocation A’ obtained by moving good ¢ from player j’ to player
j. We have

N2

— vi(4 vilAi) | w4 U{t}) oo (A \ {t})
; vi(A) 7; w@) ) T @) T Ay
vit) _vy(t)

J(A]) vy (4y)
which implies that v;(t) < vj/(t) - vj(A;)/vj (A;). Summing over all ¢t € A;/, we get

ud) = Y < Y <t>§f4”) — uj(4,).

tGAj/ tGAj/

=n+

i.e., player j is not envious for player j'.

Let us now consider p = 1. Consider an allocation A € I'(1). Consider players 7 and
j. We want to show that player i would not envy j if we are allowed to remove (up to)
two goods from player j’s bundle. If |A;| < 2, we are done. Assume |A;| > 3. We now
show that there are goods ¢1,t; € A; such that v;(A4;) > v;(4; \ {t1,t2}.

Consider a good ¢t € Aj, and define the allocation A’ obtained by moving good ¢ from
player j to player i in A. By the definition of I'(1), we get

vi(A;) Uj (Aj)
+ > 2.
vi(A ) v; (k) Uj(Aj)—Uj(f)
Setting ©; = vi( A and y; = (
1 n 1 S 9
I4a, 1—y
which implies that
Yt
< 1
Ty 1= 25, (10)

whenever y;, < 1/3. Now let ¢; and ¢, be the goods in A; for which player j has the
highest and second highest value, respectively. Hence, for every good t € A; \ {t1,t2},
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we have y; < 1/3. Using Equation (10), we obtain that the value of player ¢ for the
goods in A, \ {t1,t2} is

s\ ) = ua) Y Shua) ¥ w

t€A;\{t1,t2} vi teAj\{t1,t2}
Yt Yt
< vi(4i) Z T2y < vi(4;) Z T
teA;\{t1,t2} t teA;\{t1,t2} t2
< vi(4),

where the second inequality holds because y;, < y;, for ¢t € A; \ {t1,t2}, and the final
transition follows due to the definitions of y, ¢;, and ¢;. We thus have that A is EF2. B

D.4. Computational Properties of the Spectrum

We proved that an allocation in I'(1) provides a slightly weaker fairness guarantee
(EF2) than an MNW allocation in I'(0) does (EF1). Because computing an MNW allo-
cation is A'P-hard [Nguyen et al. 2013], one may wonder if an allocation in I'(1) can be
computed in polynomial time, thus offering a computational advantage over the MNW
solution at the expense of the fairness guarantee. Interestingly, a polynomial-time Tu-
ring reduction from the popular A'P-hard PARTITION problem shows that computing
an allocation in I'(p) is N'P-hard for p € (0, 1]. Note that it is the search problem (of
actually finding the allocation) that is A"P-hard rather than the decision problem of
determining the existence of such an allocation (which is a trivial problem as such an
allocation always exists).

THEOREM D.8 (COMPUTATIONAL HARDNESS). For p € [0, 1], computing an alloca-
tion in I'(p) is N'P-hard.

PROOF. Due to Theorem D.3, we only need to show the hardness for p = 1. We
show that a polynomial-time algorithm to compute an allocation in I'(1) can be used
to decide the PARTITION problem in polynomial time. The input in an instance of the
PARTITION problem is a set of m positive integers S = {z1,...,z,,}, and our goal is
to decide whether there exists a perfect partition of S, i.e., a partition of S into two
exclusive and exhaustive subsets whose sum of elements is equal. Let T" = 3", z;.

We say that a partition of S is a minimum-difference partition if the difference between
the sums of the two subsets is the least possible among all partitions of S into two
subsets.

Let us first construct a new set of m’ = m + 2 positive integers S’ = {]};c[m/] Where
z; = 5z; for i € [m], i1 =1, and @yq2 = 2. Let 77" = 37, ¥; = 5T + 3. Note that
S’ does not have a perfect partition. Further, it has a minimum-difference partition
with difference 1 if and only if S has a perfect partition. Note that a partition of S’
with difference 1 can only be created by taking a perfect partition of S, replacing the
elements of S by the corresponding elements of S’, and then adding ], , and 2, ,, in
different subsets.

Next, we construct an instance of our fair allocation problem as follows. We have two
players with the identical valuation v over the set of goods M = [m/] under which v(i) =
x} for each good i € M. We can interpret an allocation A of this instance as a partition
of S, in which each subset is formed by taking the elements of S’ corresponding to
the goods in a player’s bundle. Thus, the sums of the two subsets in the partition are
exactly v(4;) and v(Az), and v(A;) + v(A2) =T".

We now show that every allocation in I'(1) produces a minimum-difference parti-
tion of S’. To see this, consider an allocation A in I'(1), and without loss of generality,
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assume v(A;) — v(A2) = § > 0. Thus, v(4;) = (T’ + 6)/2 and v(A;y) = (IT" — §)/2.
Now, suppose for contradiction that there exists another allocation A’ under which
|[v(A}) — v(A45)] = € < §. Because S’ does not admit a perfect partition, we have ¢ > 0.
Without loss of generality, let v(A]) — v(A4%) = € (otherwise we can switch the bundles
of the two players). Hence, v(A]) = (T + ¢€)/2 and v(A4%) = (T — €)/2. However, in this
case

A A T+46 T'—9§ 1 1
vid) w(de) ,  T'40 2= (5—e)- -
v(A])  v(4h) T +e T —e¢ T +e¢ T —e¢
which contradicts the fact that A is an allocation in I'(1). Hence, A must produce a
minimum-difference partition of S’.

To solve the original PARTITION instance, we compute an allocation in I'(1), use it to
produce a minimum-difference partition of S’, and check if its difference is 1. H

} <0,

Thus, proportional fairness and the MNW solution, which coincide for allocation
of divisible goods, are connected on a spectrum in the case of indivisible goods. The
spectrum allows us to view the MNW solution as a strictest refinement of the set of Pa-
reto optimal allocations that is guaranteed to be non-empty. Further, weaker solutions
on the spectrum that exhibit weaker fairness guarantee do not offer a computational
advantage over the MNW solution.

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: February 2017.



