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 Econometrica, Vol. 45, No. 3 (April, 1977)

 MANIPULATION OF SCHEMES THAT MIX

 VOTING WITH CHANCE'

 BY ALLAN GIBBARD

 A decision scheme makes the probabilities of alternatives depend on individual strong
 orderings of them. It is strategy-proof if it logically precludes anyone's advantageously
 misrepresenting his preferences. It is unilateral if only one individual can affect the
 outcome, and duple if it restricts the final outcome to a fixed pair of alternatives. Any
 strategy-proof decision scheme, it is shown, is a probability mixture of schemes each of
 which is unilateral or duple. If it guarantees Pareto optimal outcomes, it is a probability
 mixture of dictatorial schemes. If it guarantees ex ante Pareto optimal lotteries, it is
 dictatorial.

 1. INTRODUCTION

 AN INDIVIDUAL manipulates a system of voting if, by misrepresenting his
 preferences, he secures a result he prefers to the result that would obtain if he

 expressed his true preferences. For systems of pure voting, where chance plays no

 role in settling which alternative is adopted, the following result is known: such a
 scheme, if it is to preclude individual strategic manipulation, must either make
 someone dictator, or restrict the possible outcome to a fixed pair of alternatives.
 (See Gibbard [6] and Satterthwaite [13]). This paper deals with systems of voting
 of a more general kind: systems by which a social decision is made through a

 combination of voting and chance. It will be shown that any such scheme, if it is to
 preclude individual strategic manipulation, must be a probability mixture of

 schemes, each of which either (i) accords a monopoly of influence to a single voter,
 or (ii) restricts the final outcome to a fixed pair of alternatives. Schemes of the first
 kind I shall call unilateral; of the second kind, duple.

 What is meant here by a combination of voting with chance? Suppose a decision
 is made in the following way: first, voting of some kind is used to pick out a set of
 one or more winning alternatives; then, in case there is more than one such
 winner, one of them is chosen by lot. Such a scheme, in effect, uses the way people
 vote to determine the probability each alternative has of being adopted. This I
 shall take as the defining feature of a scheme which combines voting with chance:
 on the basis of the way people vote, it assigns to each alternative a probability of
 being adopted.

 This paper deals only with voting by rank order ballot: in the schemes to be
 considered here, voting consists in each voter's ranking the alternatives in a
 professed order of preference. An individual is not allowed to express indifference
 between alternatives. The theorem in this paper applies to all systems of the kind I
 have characterized: to all systems by which voters' rank order ballots-no

 ' I have been helped in revising this paper by conversations with Mark Satterthwaite, Thomas
 Schwartz, and Hugo Sonnenschein, and by letters from Peter Fishburn and Richard Zeckhauser. I am
 grateful to the referee for remarkably detailed suggestions for shortening the proof of the main
 theorem.
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 666 ALLAN GIBBARD

 indifference allowed-determine the probability of each alternative's being

 adopted.

 Systems of this kind will be called decision schemes, and they are defined, more
 precisely, as follows. Let there be a finite set of mutually exclusive alternatives,
 from which the community must select exactly one. Each voter ranks the

 alternatives on his ballot in professed order of preference. On the basis of these

 orderings, a probability of being adopted is assigned to each alternative, and the
 final choice is made by a suitable chance device. A decision scheme, then, is a
 function of the following kind. Let there be n voters, and let V be the set of

 mutually incompatible alternatives open to the community. Call an ordering of V
 with no tries a ranking and call an n-tuple of rankings a ranking n-tuple. Finally,
 let a lottery be an assignment of a probability to each alternative, with the
 probabilities adding up to one. A decision scheme is a function d whose domain is

 the set of all preference n-tuples, and whose values are lotteries.
 How can manipulability be defined for decision schemes? A decision scheme is

 manipulable if there is a logically possible situation in which someone manipulates
 it, and an individual manipulates a decision scheme if, by misrepresenting his
 preferences, he secures a lottery he prefers to the lottery that would have obtained
 if he had expressed his true preferences. Whether he manipulates the scheme,
 then, depends on his preferences among lotteries. Now if an ordering of lotteries
 satisfies rationality conditions such as those of von Neumann and Morgenstern [8,
 p. 26], then it can most conveniently be given by an assignment of cardinal utilities
 to the alternatives. Whether individual k manipulates the scheme to his advan-
 tage, then, depends not only on the way everyone else votes, the way k votes, and
 the way k genuinely orders the alternatives; it depends further on the way k
 genuinely orders lotteries-on k's cardinal utilities.

 Manipulability, then, can be characterized as follows. In the first place, k
 manipulates decision scheme d if (i) where the actual votes are given by ranking
 n-tuple (P1, . . . , Pn) and k's true utility scale is U, k's avowed ranking Pk is not
 the ranking of the alternatives given by scale U, and (ii) if k had voted the ranking
 given by scale U, he would have secured a lottery of lower expected utility, as

 reckoned by U, than the lottery he actually secures. A decision scheme d is

 manipulable, then, if for some ranking n-tuple (P1, ... ., Pn) for some person k,
 and for some utility scale U, k manipulates d. If it is not manipulable, it will be
 called strategy-proof. These definitions are given explicitly in Section 4.

 Unattractive examples of strategy-proof decision schemes are not hard to find.
 Here are three:

 SCHEME 1: Put everyone's ballot in a hat, draw one at random, and choose the
 alternative which is ranked first on that ballot. (For a discussion of this scheme, see
 Gibbard, [6, pp. 592-593], and Zeckhauser, [18, pp. 938-940].)

 SCHEME 2: First collect the ballots. Next, put the names of the alternatives in a
 hat and select two at random. Then use the collected ballots to decide between
 those two alternatives by majority vote. This amounts to a decision scheme, since
 under it, the ballots cast determine the probability of each alternative's being
 adopted. Now if a voter misrepresents his preferences under this scheme, it can
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 SCHEMES THAT MIX VOTING WITH CHANCE 667

 affect the outcome only to his disadvantage. His misrepresentation can affect the
 outcome only if the following holds: for some pair of alternatives x and y, he
 prefers x to y but ranks y above x on his ballot, the names of x and y are drawn
 from the hat, and he swings the outcome from x to y by his vote-thus getting an
 outcome he likes less than the honest outcome.2

 SCHEME 3: A coin is flipped, and Scheme 1 is used if the coin lands heads;
 Scheme 2 if the coin lands tails.

 It might have been hoped that there were strategy-proof decision schemes

 more attractive than these: schemes, for instance, which select one or more
 optimal alternatives in a reasonable way on the basis of the way people vote, and
 then, in case there is more than one optimal alternative, choose the alternative
 actually to be adopted from among them by chance. The theorem in this paper
 shows, however, that all strategy-proof decision schemes are much like the
 unattractive schemes I have given as examples: all involve, in effect, selecting a
 ballot or a pair of alternatives by chance, and either ignoring all ballots but the one
 selected, or choosing somehow between the two selected alternatives. All, in
 other words, are probability mixtures of schemes, each of which is either unilateral
 or duple.

 The precise statement and proof of this theorem are given in Section 4. Three

 corollaries are stated and proved in Section 5. The first is this: suppose a decision
 scheme guarantees Pareto optimal outcomes. Suppose, in other words, that no
 matter how people vote, if one alternative is unanimously outranked by another,
 then it gets a probability of zero. Suppose also that there are at least three
 alternatives, and that the decision scheme is strategy-proof. Then the decision
 scheme is a probability mixture of dictatorial schemes.3

 The second corollary is this. Suppos& a decision scheme gives lotteries which are
 Pareto optimal ex ante, where a lottery is Pareto optimal ex ante if there is no other
 lottery which is unanimously preferred to it. Suppose, in other words, that no
 matter what each person's utility scale is, if each person votes the ranking of
 alternatives given by his utility scale, then the resulting lottery p has this property:
 there is no other lottery p' which ranks higher than p on everyone's utility scale.
 Suppose, as before, that there are at least three alternatives, and that the decision
 scheme is strategy-proof. Then the decision scheme is dictatorial-it is not, that is
 to say, merely a probability mixture of dictatorial schemes; it is itself dictatorial.
 This corollary extends to schemes which allow the expression of individual
 indifference.

 The third corollary is simply the earlier theorem on non-chance voting schemes
 [6]. The proof in this paper, then, constitutes a new proof of that earlier theorem.

 2 Zeckhauser [18, p. 939] describes an extension of the "random dictator system" as follows:
 "Provide each voter with q ballots for his first choice, r for his second, s for his third, etc., with q > r > s.
 The selection procedure is random as before." He goes on to say, "Thus we find that only variants of
 the random dictator system will elicit ballots unique with respect to individuals' . . . ordinal prefer-
 ences." (Being 'unique' in Zeckhauser's terminology is roughly the same as being "strategy-proof" in
 mine). If by "variants of the random dictator system" he means systems of the form specified in the
 passage I have quoted, then Scheme 2 is a counterexample to this claim.

 3 I owe this corollary to Hugo Sonnenschein.
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 2. BACKGROUND

 The notion of manipulability used in this paper is a variant of the one
 formulated by Dummett and Farquharson [2]. Manipulability and closely related
 matters are discussed by Arrow [1, p. 7], Vickrey [16], Murakami [7, pp. 74-81],
 Farquharson [3], Sen [15, pp. 192-196], and Pattanaik [9, 10, 11, and 12]. The
 theorem cited at the outset of this paper is proved independently, in quite different
 ways, by Gibbard [6] and Satterthwaite [13]. A precise statement of the theorem is
 this: any scheme which uses rank order balloting in a nonchance way to select a
 single alternative is either manipulable, dictatorial (in that someone is guaranteed
 his first choice from among the possible outcomes), or restricted to no more than
 two possible outcomes. This result holds both for schemes which allow individual
 indifference to be expressed and for schemes which do not. A streamlined proof of
 the theorem is given by Schmeidler and Sonnenschein [14]. This earlier theorem
 does not apply to systems of voting which allow tied outcomes. In my discussion of
 that theorem [6, pp. 592-593], I argued that it makes no sense to study the
 manipulability of schemes which allow ties unless one considers the system by
 which ties are to be broken. If ties are to be broken by chance, I argued, then the
 full system to be studied in effect yields outcomes which are lotteries among
 alternatives.

 It was Zeckhauser [17] who broached the study of voting with lotteries as
 alternatives. Fishburn [4 and 5] studies the subject further. A subsequent paper by
 Zeckhauser [18] is on virtually the topic of this paper. There Zeckhauser studies
 systems of voting which rely on individuals' self-interested balloting and may have
 lotteries as outcomes. He concludes [18, Theorem V, p. 945] that no such system
 can guarantee an outcome which is both ex ante Pareto optimal and, in a special
 sense, "nondictatorial". (For the case of two voters, an outcome is "dictatorial" in
 Zeckhauser's sense if it is the first choice of one voter and the last choice of the
 other). Zeckhauser's result is logically independent of the one in this paper. It is
 stronger in one respect: the results here are confined to systems with rank order
 balloting, whereas Zeckhauser's is not. Zeckhauser, on the other hand, requires
 that the lotteries that serve as outcomes of the schemes he considers be Pareto
 optimal ex ante, and, in his special sense, "nondictatorial". The main theorem in
 this paper does not invoke Pareto optimality, and whereas the second corollary
 here is suggested by Zeckhauser's result, Zeckhauser's nondictatorship condition
 is much stronger than the nondictatorship condition in the corollary. Zeckhauser's
 result, then, neither directly entails the results in this paper nor is directly entailed
 by them.

 3. INDIVIDUAL INDIFFERENCE

 The main result in this paper fails when extended to systems that permit a voter
 to express indifference between alternatives. No doubt the easiest example of this
 failure is a serial dictatorship. Let a fixed "dictator" always get his first choice, and
 if more than one alternative ties as his first choice, let a "prime henchman" get his
 first choice from among the alternatives the dictator likes best. Let further ties be
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 broken arbitrarily, say by selecting the tying alternative which is first on some
 predetermined list. Now a serial dictatorship is clearly strategy-proof: neither the

 dictator, the prime henchman, nor anyone else can ever gain by misrepresenting
 his preferences. If there are more than two alternatives, however, then the serial
 dictatorship is not equivalent to any probability mixture of unilateral or duple
 schemes, as the following considerations show.

 Note at the outset that a serial dictatorship is not unilateral. A scheme is

 unilateral, in the sense the term has been given here, only if it accords a single
 voter-call him the ruler-a monopoly of influence, so that no matter how anyone

 votes, the ballots of all voters other than the ruler are ignored. Under a serial

 dictatorship, the ballot of the prime henchman is not invariably ignored, and
 hence a serial dictatorship is not itself unilateral.

 Now a serial dictatorship is not a probability mixture which has any duple
 scheme as a part. If it were, then for at least one fixed pair of alternatives, the
 probability of the adopted alternative's being in that pair would have to be

 nonzero independently of how anyone voted. Under a serial dictatorship, both
 alternatives in any pair have probability zero of being adopted whenever neither is
 a first choice of the dictator. Thus if a serial dictatorship is a probability mixture of

 schemes each of which is unilateral or duple, then it is a probability mixture of
 unilateral schemes alone.

 The only unilateral schemes that could be part of this mixture, though, are ones
 for which the dictator is ruler. Otherwise, there would be a nonzero chance that no
 matter what the dictator's ballot said, it would be ignored, so that for some way the
 dictator and others might vote, an alternative which was not the first choice of the
 dictator would be adopted with nonzero probability. Under a serial dictatorship,
 on the other hand, the probability that the dictator will fail to get his first choice (or
 one of his first choices in case he has no unique first choice) is always zero. Thus if a
 serial dictatorship were a probability mixture of unilateral and duple schemes, it
 would have to consist of a single unilateral scheme with the dictator as ruler-and
 we have already seen that it does not.

 A serial dictatorship, then, is not a probability mixture of schemes which are
 unilateral or duple, and hence the theorem in this paper does not in general
 extend to systems which allow individuals to express indifference.

 What, then, can be said about systems with ballots which do allow individual
 indifference to be expressed? What the theorem here tells us is this: if such a
 system s is strategy-proof, then there is a probability mixture m of unilateral and
 duple schemes which coincides with s whenever no one is indifferent between any
 pair of alternatives. For any ranking n-tuple P with no ties, in other words, m
 assigns the same prospect to P as does s.

 The force of the theorem, then, extends to systems which allow individuals to
 express indifference. For the force of the theorem lies in the judgment that any
 probability mixture of unilateral and duple schemes is grossly defective as a way of
 making community decisions. What the theorem says about systems with no
 individual indifference is, in effect, that nonmanipulability can be had only in
 systems which are otherwise grossly defective. Now take a system which is
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 670 ALLAN GIBBARD

 nonmanipulable and allows individual indifference. For all cases in which no one is

 indifferent between alternatives, the system is a fixed mixture of unilateral and

 duple schemes. That in itself is a gross defect: for a significant class of combina-
 tions of individual preferences, the system stands ready to make the community

 choice in an unacceptable way. The theorem in this paper shows, then, that even in

 systems which permit a voter to express indifference, nonmanipulability may be
 had only at an exhorbitant price.

 4. DEFINITIONS AND PROOFS

 Let V be a finite set, called the set of alternatives. Variables w, x, y, and z will
 have V as their range of values. A strict ordering of V is a binary relation P which,
 for all x, y, and z, satisfies:

 Asymmetry: xPy -* -yPx.
 Negative transitivity: xPy -> (xPz v zPy).

 Such a relation is transitive, and may allow indifference between alternatives.

 A ranking of V is a strict ordering of V which, for all x and y, satisfies:
 Connectedness: x ? y -> (xPy v yPx).
 A ranking n-tuple over V is an n-tuple (Pl, . .. , Pn) of rankings of V. Ranking

 n -tuples will be represented by bold type on the pattern: P = (Pl,... , PPn),
 P* = (Pt,... , P*), and the like. P and P' agree off k iff for all i # k, P' = Pi. P/kP is
 the preference n -tuple P' such that P' = P and P' agrees with P off k.

 We now define "proto-scheme", "scheme", and "decision scheme". A measure
 over V is a function p which assigns a nonnegative real number, p(x), to each

 member x of V. The sum :x p(x) of these numbers is called the weight of the
 measure. A lottery is a measure of weight one.

 A proto -scheme is a function d such that, for some positive integer n, called the
 number of voters of d, and for some finite set V, whose members are called
 alternatives of d, the domain of d is the set of all ranking n-tuples over V, and the
 values of d are measures over V. The value of d at P will be written dP, and the
 probability dP assigns to an alternative x will be written d(x, P). A scheme is a
 proto-scheme all of whose values have the same weight; this will be called the
 weight of the scheme. A decision scheme is a scheme of weight one. It thus assigns
 to each ranking n-tuple P a lottery over V.

 We consider, then, a fixed set V of alternatives and number n of voters. The
 variables will range as follows: w, x, y, and z are alternatives in V; X, Y, and Z are
 sets of alternatives, i.e., subsets of V; P and Q are rankings of V; P and Q are

 ranking n -tuples (Pi, . .. , Pn) over V; i, j, and k are integers from 1 to n which
 stand for voters; b, c, and d are schemes for n voters and set V of alternatives.
 Subscripts, superscripts, primes, and the like do not affect the range of variables.

 A utility scale U over V is an assignment of real numbers to the members of V.
 Where U is a utility scale over V and p is a lottery over V, we define the expected

 utility U(p) of p on scale U in this way: U(p) = Xx U(x)p(x). Utility scale Ufits a
 strict ordering P iff for all x and y, U(x) > U(y) <--xPy.
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 A decision scheme d is potentially manipulable by k at P iff there are a utility

 scale U which fits Pk and a ranking P, of V such that where P'=PlkPk,
 U(dP') > U(dP). A decision scheme d is manipulable iff there are a voter k and a
 ranking n -tuple P such that d is potentially manipulable by k at P. Otherwise, d is

 strategy-proof.
 We now give a number of definitions which will allow the theorem on strategy-

 proof decision schemes to be stated in a preliminary, weak version.

 DEFINITION 1: Scheme d is unilateral iff there is a k such that for all P and P', if

 P'= Pk, then dP'= dP.

 DEFINITION 2: Scheme d is duple iff there are alternatives x and y such that for
 every other alternative z, d(z, P) = 0 for all P.

 DEFINITION 3: Scheme d is a probability mixture of schemes d1, . . . , dm iff there
 is a sequence a1,..., am, with 0<a, < 1 for each t Ell,-, m} and Y.m=l a, = 1
 such that for each P and x,

 d(x, P) = a1d1(x, P)+. . a+mdm(x, P).

 Where d is such a probability mixture, we shall write

 d =ald1+. . .+amdm,

 and where d = b + c, we shall write b = d - c.

 THEOREM (weak version): If d is a strategy-proof decision scheme, then d is a
 probability mixture of decision schemes each of which is either unilateral or duple.

 This theorem can be strengthened to give conditions which are sufficient as well
 as necessary for a decision scheme's being strategy-proof. For any set X of

 alternatives and scheme d, we shall write d(X, P) for YZx,x d(x, P), the total
 probability assigned by measure dP to members of X. X heads ranking Pk iff for
 any x eX and y X, xPky.

 DEFINITION 4: Proto scheme d is localized iff for every k, P, P', and X such that
 X heads both Pk and P', d(X, P/kP') = d(X, P).

 A switch is a reversal of two adjacent alternatives in a ranking. A scheme is
 nonperverse if switching an alternative upward never decreases its probability.

 DEFINITION 5: XPk !y means that XPky and -(3z)(xPkz and zPky). Where
 xPk!y, P' is the ranking which switches xy in Pk and permutes no other
 alternative, pkY =P/kPk, and EY(d, P), the effect under d of k's switching y
 upward, is d(y, pky) - d(y, P). Scheme d is nonperverse iff for every P, k, and y
 such that {y} does not head Pk, E Y(d, P) - 0.

 THEOREM: A decision scheme d is strategy-proof if and only if it is a probability
 mixture of decision schemes, each of which is localized, non-perverse, and either
 unilateral or duple.
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 672 ALLAN GIBBARD

 The proof of the Theorem consists chiefly of five lemmas.

 DEFINITION 6: A proto-scheme d is pairwise responsive iff for every P, k, x, y,
 and z, if xPk !y and zZ {x, y}, then d(z, pkY) = d(z, P).

 LEMMA 1: The following are equivalent: (i) d is a localized proto -scheme; (ii) d
 is a pairwise responsive scheme; (iii) d is a pairwise responsive proto-scheme, and

 for all x, y, P, and k such that xPk !y, d ({x, y}, pky) = d({x, y}, P).

 PROOF. Suppose d is a localized proto-scheme. Then since V heads any P and

 P*, d(V, P) = d(V, P), and d is a scheme. Now suppose thatxPk!y, zj {x, y}, and
 W is the set of alternatives ranked above z in pk. Then both Wand Wu {z} head
 both Pk and Py. Thus since d is localized, k's switching y upward changes neither
 the total probability of W nor the total probability of Wu {z}. Thus it leaves the

 probability of z unchanged, and d is pairwise responsive. Thus (i) entails (ii). For
 any pairwise responsive scheme, a switch of xy changes neither the total probabil-

 ity of V- {x, y} nor that of V; thus it leaves that of {x, y} unchanged, and (ii) entails

 (iii). Now suppose (iii); it follows that if xPk!y and {x, y} c Z, then d(Z, pky) =
 d(Z, P). If Z heads both Pk and P', then P' can be formed from Pk by switches
 between members of Z and switches between nonmembers of Z, neither of which,
 we have seen, change the total probability of Z. Thus d is localized, and (iii) entails

 (i).

 LEMMA 2: A decision scheme d is strategy-proof iff d is localized and nonper-
 4

 verse.

 PROOF: Suppose that d is not localized, so that for some k, some P and P' that
 agree off k, and some X which heads both Pk and Pk, d(X, P') - d(X, P) = > 0.
 Let U fit Pk and be such that for all xeX, 1 U(x)<1+E, and for all yiX,
 0 - U(y) < E. Then

 U(dP) <(1 + E)d(X, P) +?E[l1- d(X, P)] = d(X, P)+?E.

 U(dP') ?_: 1 * d (X, P') + O * [ 1 - d (X, Pt)] = d (X, PI) = d (X, P) + ?.

 Therefore U(dP') > U(dP), and so d is potentially manipulable by k at P.
 If d is localized but perverse, then for some x, y, and k, XPk !y and k's switching y

 upwards lowers the probability of y by some amount E > 0. By (iii) of Lemma 1,
 the switch raises the probability of x by E, and changes no other probabilities.
 Hence, if U fits Pk, so that U(x) > U(y), then U(dpkY) - U(dP) =
 ?U(x) - ?U(y) > 0, and so d is potentially manipulable by k at P.

 Now suppose d is localized and nonperverse, and consider any k, P, P', and U
 which fits Pk. Where P' = P/kPk, we shall show that U(dP') - U(dP). Form Pk
 from Pk by successive switches as follows: take the top alternative in P' and switch

 4Zeckhauser [18, pp. 938-939] proves a similar result for systems that solicit individuals' first place
 preferences only.
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 it from its position in Pk successively to the top, then take the second alternative in

 P, and switch it successively up from its position in Pk to its position in P', and so
 forth. At each step, an alternative y is switched with an alternative which is above

 it in Pk. Since U fits Pk, U(x)> U(y), and so by (iii) of Lemma 1 and the
 nonperversity of d, utility on scale U cannot be increased by such steps. Hence
 U(dP') - U(dP). That proves the Lemma.

 DEFINITION 7: Pi t {x, y} is Pi restricted to {x, y}, and P t {x, y}=
 (P1 t {x, y}, . . . , Pn t {x, y}). A scheme d is pairwise isolated iff for any k, P, P*, x,
 and y, if xPk ! y, P* = Pk, and P* t {x, y} = P t {x, y}, then E Y (d, P*) = E Y (d, P). d is
 decomposable iff for any fixed k, x, and y with x $ y, there are functions y and 8

 such that for all P with xPk!y, EY(d, P) = y(Pt{x, Y})+8(Pk)

 DEFINITION 8: Pkxy is Pk with x and y moved to the bottom, their ordering with
 respect to each other preserved, and the ordering of all other alternatives with

 respect to each other preserved. P,y is (Pixy, . .. , Pnxy), Pkx is Pkxx, and Px is Pxx

 LEMMA 3: Let scheme d be localized. Then d is pairwise isolated and
 decomposable.

 PROOF THAT d IS PAIRWISE ISOLATED: We first show that the switch of a pair by
 one person does not alter the effect of the switch of another pair by another

 person. Suppose j $ k, wPj!z, xPk!y, and {w, z}$ {x, y}.

 Case 1 (y i {w, z}): d is pairwise responsive and PJZ differs from P only in j's
 switching wz; thus d(y, PiZ) = d(y, P). Likewise, pjzky differs from pky only in j's
 switching wz; thus d(y, pizky) = d(y, pky). Hence,

 d(y, pjzky) - d (y, PJZ) = d (y, pky) - d (y, P),

 which is to say ?k (d, Piz) = ?(d, P).
 Case 2 (xi {w, z}): By an argument like that in Case 1, ?x(d, pjzky)=

 x (d, pkY). It follows from this and (iii) of Lemma 1 that ?(d, PIZ)= Y (d, P).
 Now let XPk !y, P* = Pk, and P* t {x, y} = P t {x, y}. Then P* can be formed from
 P by a sequence of switches by voters other than k, none of which switches x with
 y. We have just seen that none of these changes the value of 4 , and thus
 ?(d, P*) = k(d, P). Thus d is pairwise isolated.

 PROOF THAT d IS DECOMPOSABLE: Take k, x, and y with x $ y. For any P with

 XPk !y, define y(P t {x, y}) = EY(d, Pkxy). Now let P and P* be such that XPk !y and
 P* = Pk; we shall show

 (1) ? Y(d, P*)- y(P*1T{X, y} = ? Y(d, P)- y(Pt{x, y}).

 Since d is pairwise isolated, Y(d, P) depends only on Pk and P t {x, y}; thus we
 may suppose without loss of generality that ' teryone other than k ranks x and y

 last. Now form pk from Pk by the following sequence of switches.
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 (a) Progressively switch y to bottom.
 (b) Progressively switch x down to just above y.
 (c) Switch y with x.

 (d) Progressively switch y up to its original position.
 (e) Progressively switch x up to just below y.

 Call this sequence P?k,.. ., Pk, and consider the difference

 (2) d (y, P/kP) -d (y, P /kPk)

 as t goes from 0 to ,u. This difference changes only in step (c). For the steps in (a)
 and (d) consist of switching y with various alternatives z i {x, y}. Everyone except
 k ranks z above y in both P and P*, and so since d is pairwise isolated, both terms
 of (2) change by the same amount, and (2) is unchanged. The steps in (b) and (e)
 consist of switching x with alternatives other than y; since d is pairwise respon-
 sive, this changes neither term of (2). Now at step (c), x and y are switched in Pkxy.
 The change in (2) at step (c), then, is

 (3) ?y(d, P,Y) - ?E(d, Pxy)
 This, then, is the change in (2) from t = 0 to t = g,u that is,

 [d (y, pky) - d(y, p*ky)] - [d (y, P) - d (y, P*)],

 which is E Y(d, P) - E Y(d, P*). From the equality of this with (3), (1) follows. Since
 the quantity in (1) depends only on Pk, let 8(Pk) be this quantity; then 4Y(d, P) =
 y(P t {x, y}) + 8(Pk), and d is decomposable.

 DEFINITION 9: k's unilateral component of decision scheme d is the function dk
 such that for all x and P,

 dk (x, P) = minQ { d (x, Q/ kPk) -d (x, Q/ kPkX)}X

 Since the value of dk (x, P) depends only on x and Pk, this will be written dk (x, Pk).

 LEMMA 4: Let d be a strategy-proof decision scheme, and let dk be k's unilateral
 component of d. Then (i) if xPk !y, then

 ?k(dk, P) = minQ E Y (d, Q/ kPk).

 (ii) dk is a scheme which is unilateral, localized, and nonperverse.

 PROOF OF (i): Let xPk! y, let a = dk(y, Pk), and let 8 = dk(y, PY). Then
 4(dk, P) = - a. Let E = minQ Y4(d, Q/kPk); we are to prove that ? = - a.

 By the definition of ,3, for some Q,

 j6 = d(y, Q/kPk) - d(y, Q/kPky)

 and by the definitions of a and E,

 a d (y, Q/kPk)-d (y, Q/kPkx);

 ?E d(y, Q/kPk) -d(y, Q/kPk).
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 Therefore, by addition, a + E - ,8.

 We will have a + E ? ,8 if there is a Q such that

 (4) d (y, Q/kPk) - d (y, Q/kPky) = a + E,

 since ,8 is the minimal value of this difference. Construct such a Q as follows. By

 the definition of a, for some P* with P* = Pk, a = d(y, P*) - d(y, P*/kPky). This
 difference is the sum of the effects, in context P*, of k's successively switching y
 from bottom to just below x in Pk. Since d is pairwise isolated and y is not switched
 with x, each of these effects is independent of where others besides k place x in
 their rankings. On the other hand, since d is pairwise isolated, the effect under d of
 k's switching y with x is independent of the way others vote except for their
 ranking of x with respect to y. By the definition of E, for some F', Pk = Pk and

 Y= (d, P'). Form Q from P* by moving x, in the ranking of each voter i $ k, to
 just above y in P* or just below y in P* according as xP'y or yP'x. Then, we have
 seen,

 a = d(y, Q) - d(y, Q/kPky),

 ? =4?kY(d, Q) = d(y, Q/kPy-d(y, Q),

 and hence by addition, (4) holds.

 PROOF OF (ii): Since d is nonperverse, d (x, Q/kPk) -d (x, Q/kPkx) ; 0 for all Q.
 Hence its minimal value dk (x, Pk) is nonnegative, and dk is a proto-scheme. Now
 let XPk !y. By (i),

 dk (x, Pk) -dk (x, PY) = minQF x (d, Q/ kPk);

 dk (y, PY) -dk (Y, Pk) = minQF Y (d, Q/ kPk)

 By (iii) of Lemma 1, these two minima must be equal, and hence

 d,({x, y}, Pk) = dk({x, y}, Pk).

 Now let zi {x, y}, and take any Q. Since d is pairwise responsive, d(z, Q/kPky) =
 d(z, Q/kPk). By (iii) of Lemma 1, d(z, Q/kPykz) = d(z, Q/kPkz). Therefore,

 d (z, Q/ kPk) -d (z, Q/ kPkz) = d (z, Q/ kPk) -d (z, Q/ k Pkz),

 and so the minima are equal: dk (z, Pk) = dk (z, Pk). Thus (iii) in Lemma 1 is
 satisfied for dk, and so dk is a localized scheme. Finally, by (i), if xPk!y, then for
 some Q, 4Y(dk, Pk) = 4Y(d, Q), and since d is nonperverse, this is nonnegative;
 therefore dk is nonperverse. dk is clearly unilateral, and the lemma is proved.

 DEFINITION 10: A scheme d ignores external comparisons iff for any x, y, k, P,
 and P*, if xPk,!y and P* t {x, y} = P t {x, y}, then EY4(d, P*) = 4(d, P).

 LEMMA 5: Suppose d is a strategy-proof decision scheme. For each k, let dk be k's
 unilateral component of d, and define functions do, c, and cyz for each {y, z} such
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 that y ? z as follows.

 do(x, P) = d(x, PJ);

 c(x, P) = d (x, P) -do(x, P)-. *dn, (x P);

 cyz(x,P)=c(x,Pyz) for xe{y,z} and 0 for xL {y, z}.

 Then c ignores external comparisons. Each function do. ..., dn, c, and each c,y is a
 localized, nonperverse scheme, do, . . . , dn are unilateral, each c., is duple, and for
 all x and P,

 (5) d(x, P) = do(x, P)+Zkdk(x, P) + Z cyz(x, P),

 where Xyz sums over all pairs {y, z} with y ? z.

 PROOF: do is constant for each x, and thus, like each dk, a unilateral, localized,
 nonperverse scheme. Now consider c, and let XPk !y.

 4k(di, P) = 0 for i ? k,

 and thus

 sy(c, P) = Ey(d, P) - Ey(dk, P).

 By Lemma 4(i),

 Y (dk, P) % ? Y(d, P); hence, ? Y(c, P) : 0

 and c is nonperverse. Since do(x, P) =d(x, PF) and di(x, PF) =0 for i #0,
 c(x, PF) = 0 for all x and P. Thus since c is nonperverse, c(x, P) ? 0 for all x and P,
 and c is a proto-scheme. Since d, do, . . ., dn are all localized, c is localized and,
 hence, a scheme.

 The function c ignores external comparisons. For, let XPk !y. Since d is decom-
 posable, there are functions y and 8 such that for any Q with xQk !y, syj(d, Q) =
 y(Q t {x, y})+ 6(Qk). Thus 8Y(d, P) = y(P Tj {x, y}) + 6(Pk). Let Q minimize
 4y(d, Q) for Qk = Pk; then by Lemma 4(i), 8Y(dk, P) = 4(d, Q) =
 y(Q t {x, y}) + 8(Pk). Therefore E (c, P) = y(P t {x, y}) - y(Q t {x, y}).

 Now let P* t {x, y} = P Tj {x, y}; by a like argument, where Q* minimizes
 4Y(d, Q*) for Q* = Pk, sy(c p*) = y(P* T {x, y})-y(Q* T {x, y}). Since Q
 minimizes 4Y (d, Q) = y(Q {x, y}) +8(Pk) for Qk = Pk, Q minimizes y(Q {x, y})
 for xQky, and since xP*y, Q*= Q/kPk minimizes y(Q*T{x, y}) for Qk* -
 Pk. For this Q*, Q*t{x, Y} = QI{x, y}, and so 4k(c, P*)=
 Y(F*I {x Y}) -Y(Q* T {x, y}) y(P 1 {x, y}) -y(Q 1 {x, y}) =4(c, P). Thus c
 ignores external comparisons.

 Since c(z, P) 0 for all z and P, from the way c.y is defined, c'y(z, P)0.
 Moreover, cY ( V, P) = c({x, y}, P,y) and since c is localized, this is constant for all
 P, and cy is a scheme. cry is pairwise responsive and, hence, localized: an xy
 switch leaves all other probabilities zero, and any other switch leaves all prob-
 abilities unchanged. c. is nonperverse: if wPk !z and {w, z} # {x, y}, ?(c P) =
 0, and if XPk !y, ?Y(cxy, P) = eY(c, F.y) : 0, since c is nonperverse.
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 Finally, c(x, P) = I cyz(x, P) for y # z. We noted earlier that c(x, PF) =0 for all
 x and P; thus cyz(x, PF) = 0. For if x {y, z}, then cyz(x, P) = 0 for all P, and
 cyz(y, Py) = c(y, (Py)yz) = 0, since (Py)yz has y uniformly on the bottom. There-
 fore, c(x, PF) = 0 = yzCyz(x, Px). Now form P from PF by successively shifting x
 upward in each ranking; call the resulting sequence Po, . . . , PF. At each step from

 Pt to P+ some k switches x with a w such that wP Ix. Now cw.(x,F+l>
 cwx(x, Pt) = c(x, PF+1)-c(x, PFX) = Ex(c, PFX) = =E(c, Pt) since c ignores external
 comparisons; thus c(x, PF+?)-c(x, PF) = cwx (x, pt+1)-cWX (x, Pt). For {y, z} A
 {x, w}, PI kyz-= Pk, and so cyz (x,P'+') = cyz (x,Ft). Therefore,
 c(x, p?+l) -c (x, PF) = yzcyz (X, +l) -yzcyz (x, FPt). Since c (x, PF) =
 yzcyz (x, PO), by induction c (x, P) =yzcyz (X, PL) for all PF, and thus c (x, P) =
 ;yzcyz (x, P). Equation (5) follows immediately.

 PROOF OF THEOREM: In (5), drop schemes of weight zero, so that d is a sum
 b*+... + b* of schemes of positive weight 1, .. ., am, respectively. Let each
 decision scheme b, = (1/aj)b; then d = ab1+ .b . . +ambm, and each bL is
 localized, nonperverse, and either unilateral or duple. Conversely, if decision
 scheme d is a probability mixture of this kind, then d is clearly localized and
 nonperverse; hence, by Lemma 2, d is strategy-proof. That completes the proof of
 the theorem.

 5. COROLLARIES

 DEFINITION 11: k is dictator for decision scheme d iff for every P, x and y, if
 XPky then d(y,P) = 0. d is dictatorial iff there is a dictator for d.

 DEFINITION 12: Lottery p is Pareto optimal ex post for ranking n-tuple P iff for
 any x, if there is a y such that yPix for all i, then p(x) = 0. Decision scheme d is
 Pareto optimific ex post iff for every P, lottery dPis Pareto optimal ex post for P.

 COROLLARY 1 (Sonnenschein): Let decision scheme d be strategy-proof and
 Pareto optimific ex post. Let the set V of alternatives for d have at least three
 members. Then d is a probability mixture of dictatorial decision schemes.

 PROOF: Since d is strategy-proof, d is a probability mixture of decision
 schemes, each of which is unilateral or duple. Let

 d= aid,+.. .+ amdm,

 where for each t E {1, . .. , m}, a, > 0 and de is nonnull and either unilateral or
 duple. Then no d, is duple. For since d is Pareto optimific ex post, the alternatives
 in any pair {x, y} get a probability of zero whenever some alternative z is

 unanimously preferred to them. Thus for any pair {x, y}, d,({x, y}, P) = 0
 whenever zP,x and zPiy for each i; therefore d, is not an xy duple scheme. Hence,
 each de is unilateral.
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 Now let d, be unilateral on the part of k and let XPky. Then, we shall show,
 d,(y, P) = 0. For let P' be such that P'k = Pk and for all i, xPiy. Then since d is
 Pareto optimific ex post, d(y, P') = 0, and thus d,(y, P') = 0. Since d, is unilateral

 on the part of k and P'k = Pk, d,(y, P) = 0. We have shown that for any P, x, and y,
 if XPky then d, (y, P) = 0. Thus k is dictator for d,. We have shown that each d, is
 dictatorial, and the corollary is proved.

 DEFINITION 13: Lottery p is Pareto optimal ex ante for utility scales U1, . . ., Un
 iff there is no lottery p' such that for each i, Ui(p') > Ui(p). Decision scheme d is
 Pareto optimific ex ante iff for every ranking n-tuple P and every n-tuple
 (U1, . . ., Un) of utility scales such that for each i, Pi fits Ui, lottery dP is Pareto
 optimal ex ante for U1, . . ., Un.

 COROLLARY 2: Let decision scheme d be strategy -proof and Pareto optimific ex
 ante. Let the set V of alternatives for d have at least three members. Then d is
 dictatorial.

 Proof: Note first that if d is Pareto optimific ex ante, then d is Pareto optimific ex

 post. For, let preference rankings P1, . .. , Pn fit U1, . ..., Um, respectively, and
 suppose lottery p is not Pareto optimal ex post for P1, . .. , Pn. Then for some pair
 of alternatives x and y, yPix for all i, but p(x) $ 0. Now let p' give x's probability to
 y, so that p'(x) = 0, p'(y) = p(x) + p(y), and p'(z) = p(z) for all z E {x, y}. Then for
 each i, since Pi fits Ui, Ui(y)> Ui(x), and so Ui(p')> Ui(p). Therefore p is not
 Pareto optimal ex ante for U1, . . ., Un, and d is not Pareto optimific ex ante.

 Suppose now that d is Pareto optimific ex ante, and therefore Pareto optimific
 ex post. Then d is a probability mixture of dictatorial decision schemes. Let

 d =ald?+. . .+andn,

 where for each i, ai - 0 and i is dictator for di.
 Suppose that d is not itself dictatorial, so that ai > 0 for more than one i. Let

 axk > 0, let x, y, and z be distinct alternatives, and let the utility scales U1, .. ., Un
 be as follows.

 Uk (x) = 1, 1 > Uk (y) > ak, Uk (Z) =0,
 and for all wi{x, y, z}, Uk(w)<0.

 For all i $ k,

 Ui(z)=1, 1>U1(y)>1-ak, Ui(x)=0,
 and for all wi{x, y, z}, Ui(w)<0.

 For each i, let Pi fit Ui, so that {x} heads Pk and {z} heads Pi for all i $ k. Then
 d(x, P) = ak, d(z, P) = 1- ak, and d(w, P) =0 for all w distinct from x and y.
 Therefore Uk (dP) = ak, and for i ? k, Ui (d, P) = 1 - ak.

 Now let 9 be the lottery that gives y as a sure thing. Then Uk (9) > ak and for
 i$# k, U1(9) > 1- xak. Therefore for all i, iJ(9) > Ui(dP), and so dP is not Pareto

 optimal ex ante for U1, . . ., Un. On the supposition that d is not dictatorial, we
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 have shown that d is not Pareto optimific ex ante. Therefore d is dictatorial, and
 the corollary is proved.5

 Corollary 2 can be extended to schemes that allow individual indifference. Let a
 preference n-tuple over Vbe an n-tuple of strict orderings of V. Let an unrestricted
 decision scheme (UDS) be a function which, for some finite set V of alternatives
 and number n, takes as arguments all preference n-tuples over V, and takes as
 values lotteries over V. Manipulability is defined as before, with the term
 "ranking" replaced by "strict ordering".

 The following Lemma allows us both to extend Corollary 2 to UDS's, and to
 derive the old theorem on non-chance voting schemes. Where d is a decision
 scheme or UDS, a possible outcome for d is an alternative x such that for some P
 in the domain of d, d (x, P) > 0. A weak dictator for d is a voter k such that for

 every P, where X is the set of possible outcomes which are first among possible
 outcomes in Pk, d(X, P) = 1. d is weakly dictatorial iff there is a weak dictator for
 d.

 LEMMA 6: Letd be a strategy-proof UDS, and letd' be the decision scheme which
 is d with its domain restricted to ranking n-tuples. Then (i) any possible outcome of d
 is a possible outcome of d', and (ii) a weak dictator for d' is weak dictator for d.

 PROOF OF (i): Suppose x is a possible outcome of d but not of d'. Let P be a
 ranking n-tuple such that x ranks first in every Pi, and let P* be a preference
 n-tuple such that d(x, P*) >O. Form a sequence of preference n-tuples
 pO... Xpn as follows: let Po = P, and for each i, let P = Pil/IPi*, so that
 pn p*. Then since Po is a ranking n-tuple and x is not a possible outcome of d',
 we have that d(x, PF) =0, whereas d(x, pn) >0. Take the least j such that

 d(x, Fi) >O, and let d(x, Pi) = e. Then d(x, PI-) =O, and P'-j P,. Since P1 ranks
 x first, there is a utility scale U which fits Pj, such that U(x) = 1 and for all y ? x,
 0 S U(y) < E. Since d (x, Pi) = E, U(x) = 1, and for all y ? x, U(y) 3 0, we have that
 U(dPi) - E. Since d(x, PF-') = 0 and for all y ? x, U(y) < E, we have that
 U(dP-') < E. Thus U(dP') > U(dP'-1), and since U fits Pj and Pj1= Pj, d is
 potentially manipulable by j at P'-1.

 PROOF OF (ii): From (i), the possible outcomes of d and d' are the same. Now
 suppose k is weak dictator for d' but not for d. Then for some preference n-tuple

 P, where Xis the set of possible outcomes ranked first in Pk, d(X, P) ? 1. For some
 x E X, let P* rank x first, and for every i $ k, let P* rank x last. Let P0= P/kPk*.
 Then d(x, PO) ? 1, for otherwise, on any utility scale U which fits Pk, we would
 have that U(dP?) = U(x) and U(dP) < U(x), so that U(dP?) > U(dP). Thus d
 would be potentially manipulable by k at P. Now form sequence po,.. ., pn by
 letting Pi = Pil/P* for each i, so that PF = P*. Then since P" is a ranking
 n-tuple with k, who is weak dictator for d', ranking possible outcome x first, we
 have that d(x, pn) = 1. Take the least j such that d(x, Pi) = 1; then d(x, Pi1) < 1.
 We know that j ? k, since from the way Pi is defined, pk = pk-l. Therefore x is at

 S Aspects of this proof are suggested by arguments in Zeckhauser [18].
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 the bottom of P*, and so on any utility scale U which fits P*, U(dP'-1) > U(x),
 whereas U(dP') = U(x). Thus U(dP 1)> U(dP'), and since P = P* and U fits
 P*, d is potentially manipulable by j at Pi. That proves the lemma.

 COROLLARY 2': Let UDS d be strategy-proof and Pareto optimific ex ante, and let
 d cover at least three alternatives. Then d is dictatorial.

 PROOF: Since d is Pareto optimific ex ante, all alternatives are possible
 outcomes, and so a weak dictator is dictator. By Corollary 2, d with its domain
 restricted to ranking n -tuples is dictatorial, and thus by Lemma 6, d is dictatorial.

 DEFINITION 14: A voting scheme is a UDS v such that for every x and
 preference n-tuple P, either v(x, P) = 1 or v(x, P) = 0.

 COROLLARY 3: If a voting scheme is strategy-proof, then it is either duple or
 weakly dictatorial.

 PROOF: Let voting scheme v be strategy-proof, and let v' be v with its domain
 restricted to ranking n-tuples. Then by the Theorem, v' is a probability mixture

 a Id, + . . . + amdm, where each a, is positive, la, = 1, and each d, is unilateral or
 duple. Now if v'(x, P) = 1, then for each L, dL(x, P) = 1, and if v'(x, P) = 0, then

 for each L, d, (x, P) =0. Hence, each d, is identical with v', and v' is either
 unilateral or duple.

 If v' is duple-that is, has at most two possible outcomes-then by (i) of Lemma
 6, v is duple.

 Let v' be unilateral, with k as ruler. Then v' is weakly dictatorial. For let x be a
 possible outcome. Then for some ranking n-tuple P*, v'(x, P*) > 0, and, hence,
 v'(x, P*) = 1. Thus since v' is unilateral, v'(x, P) = 1 wherever Pk = Pk. Suppose,
 then, that v' is not weakly dictatorial, so that for some alternative x and ranking

 n-tuple P, x is first in P. but v'(x, P') # 1. Where P= P'/kPk, we know that
 v'(x, P) = 1. Thus for any utility scale U which fits P', U(vP) > U(vP'), and v' is
 potentially manipulable by k at P. The supposition that v' is not weakly dictatorial
 has been shown false. It follows from (ii) of Lemma 6 that v itself is weakly
 dictatorial. That proves the corollary.

 University of Pittsburgh

 Manuscriptreceived October, 1975; last revision received April, 1976.
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