CSC2556

Lecture 8

Mechanism Design with Money: VCG

Announcements

• Mid-project Check-in:

- > Sent out a sign-up sheet.
- > If you think it would help, sign up for a 30-minute slot and we can chat about your project.

Presentations:

We'll have presentations in the last 1.5 lectures with about 20 minutes per group (17 minutes of presentation followed by 3 minutes of class discussion).

Reports: due April 15

- > 4-5 pages
- > Introduction, related work, model, results, future work

Framework

- Set N of n agents
- Set A of m alternatives
- Valuations $v = (v_i)_{i \in N}$
 - \succ Agent i's valuation: v_i : $A \rightarrow \mathbb{R}$
- Mechanism M = (f, p)
 - \triangleright Social Choice Function: $f(v) \in A$ is implemented
 - \triangleright Payment Vector: Agent i pays $p_i(v)$

Framework

- Quasi-linear utilities: $v_i(f(v)) p_i(v)$
- Goal 1: Social Welfare Maximization
 - \triangleright Maximize $\sum_i v_i(f(v))$
 - > Can think of welfare with auctioneer. Also important to generate high-quality ads in ad auctions.
- Goal 2: Revenue Maximization (we'll skip this)
 - \triangleright Maximize $\sum_i p_i(v)$
- Individual Rationality (IR)
 - > Non-negative utilities: $v_i(f(v)) p_i(v) \ge 0$, $\forall i \in N$
 - > Bounds the revenue in goal 2.

Framework

• Difficulty:

- > Agents may report incorrect valuations $\widetilde{v} = (\widetilde{v_i})_{i \in N}$
- > Agent i, given the reports of other agents \tilde{v}_{-i} , wants to maximize her own utility $v_i(f(\tilde{v}_i, \tilde{v}_{-i})) p_i(\tilde{v}_i, \tilde{v}_{-i})$

Strategyproofness (SP)

 \succ Each agent i maximizes her utility by reporting her true valuation v_i , regardless of what other agents report.

$$v_i \in \operatorname{argmax}_{\tilde{v}_i} v_i (f(\tilde{v}_i, \tilde{v}_{-i})) - p_i(\tilde{v}_i, \tilde{v}_{-i}), \forall i, \tilde{v}_{-i})$$

Achieving SP is why we'll need to charge payments in Goal 1.

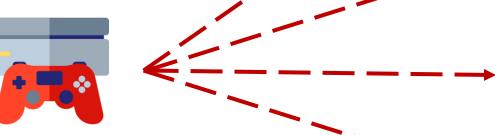
Auctions

- Sell a set of goods to a set of agents
 - > Similar to fair division, but now with payments
 - \rightarrow Alternative $a \rightarrow$ allocation A
 - > Standard assumption:
 - \circ Agent *i*'s value only depends on A_i
 - \circ Instead of $v_i(a)$, we use $v_i(A_i)$
- Single-item Auction
 - \triangleright Alternative a_i : "agent i gets the item"
 - $> v_i(a_i) \rightarrow v_i$ (shorthand), $v_i(a_j) = 0, \forall i \neq j$

Objective: The one who really needs it more should have it.

Rule 1: Each would tell me his/her value.

I'll give it to the one with the higher value.



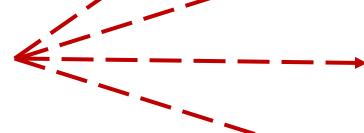


Image Courtesy: Freepik

Objective: The one who really needs it more should have it.

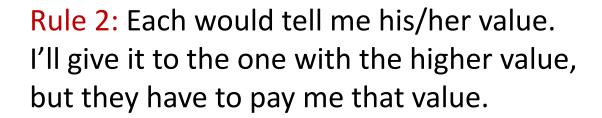


Image Courtesy: Freepik

Objective: The one who really needs it more should have it.



Image Courtesy: Freepik

Objective: The one who really needs it more should have it.

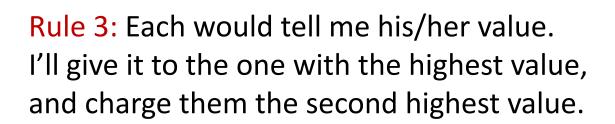


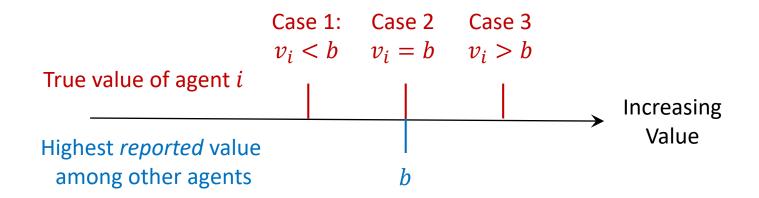
Image Courtesy: Freepik

VCG: Single-Item

- f: Give the item to agent $i^* \in \operatorname{argmax}_i v_i$
- $p: p_{i^*} = \max_{j \neq i^*} v_j$, other agents pay nothing

Theorem:

VCG for a single item is strategyproof.



VCG: Identical Items

Two identical Xboxes

- \triangleright Each agent i only wants one, has value v_i
- Goal: Give to the agents with the two highest values

Attempt 1:

- > Highest value → pay 2nd highest value
- > 2nd highest value → pay 3rd highest value

Attempt 2:

- > {Highest value, 2nd highest value} → pay 3rd highest value
- Question: Which would be strategyproof?

Vickrey Auction: General Case

For the general case with arbitrary alternatives

Vickrey Auction

$$> f(v) = \operatorname{argmax}_{a \in A} \sum_{i} v_i(a)$$

$$p_i(v) = -\sum_{j \neq i} v_j (f(v))$$

Maximize social welfare

Pay (not charge!) to each agent the total value to others

- Why is this SP?
 - > Suppose agent $j \neq i$ reports \tilde{v}_i
 - > Utility to agent i when reporting \widetilde{v}_i

$$\circ v_i(a) - \left(-\sum_{j \neq i} \tilde{v}_j(a)\right) = v_i(a) + \sum_{j \neq i} \tilde{v}_j(a)$$

- \circ Mechanism chooses a to maximize $\tilde{v}_i(a) + \sum_{i \neq i} \tilde{v}_i(a)$
- \circ Utility maximized when reporting $\widetilde{v}_i = v_i$

Vickrey Auction

- This achieves social welfare maximization and individual rationality (IR)
- But: To give away my single xbox, I need to pay each friend who doesn't get it the value of the friend who gets it (I'm not that rich!)
- Additional property:
 - \triangleright Agents pay the principal: $p_i(v) \ge 0$

Idea

Vickrey auction

$$f(v) = \operatorname{argmax}_{a \in A} \sum_{i} v_i(a)$$

$$f(v) = \sum_{i} v_i(f(v))$$

 $p_i(v) = -\sum_{j \neq i} v_j(f(v))$

A slight modification

$$f(v) = \operatorname{argmax}_{a \in A} \sum_{i} v_i(a)$$

$$p_i(v) = h_i(v_{-i}) - \sum_{j \neq i} v_j(f(v))$$

• Still truthful. Agent i has no control over his additional payment $h_i(v_{-i})$

VCG

- Clarke's pivot rule
 - $> h_i(v_{-i}) = \max_a \sum_{j \neq i} v_j(a)$
 - > Maximum welfare to others if agent i wasn't there
- VCG (Vickrey-Clarke-Groves Auction)
 - $f(v) = a^* = \operatorname{argmax}_{a \in A} \sum_{i} v_i(a)$ $f(v) = \left[\max_{a} \sum_{j \neq i} v_j(a) \right] \left[\sum_{j \neq i} v_j(a^*) \right]$
- Payment charged to agent i = harm imposed on the welfare of others by i's presence

VCG

•
$$f(v) = a^* = \operatorname{argmax}_{a \in A} \sum_i v_i(a)$$

•
$$p_i(v) = \left[\max_{a} \sum_{j \neq i} v_j(a)\right] - \left[\sum_{j \neq i} v_j(a^*)\right]$$

We already saw that this is strategyproof.

• We also have $p_i(v) \ge 0$. (Why?)

• We maintain IR: $p_i(v) \le v_i(a^*)$. (Why?)

Let's go back to giving away an xbox and a ps4.

	A1	A2	А3	A4
XBox	3	4	8	7
PS4	4	2	6	1

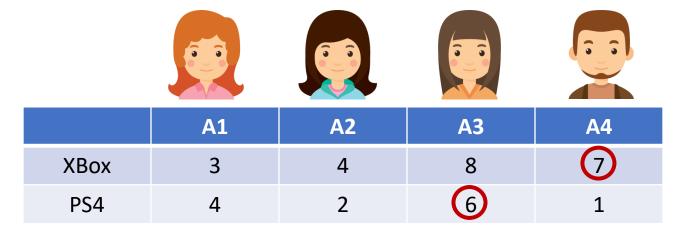
Q: Who gets the xbox and who gets the PS4?

Q: How much do they pay?

	A1	A2	А3	A4
XBox	3	4	8	7
PS4	4	2	6	1

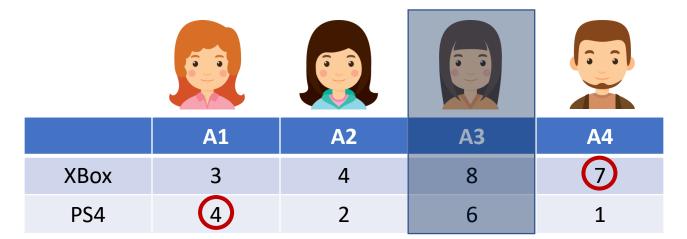
Allocation:

- A4 gets XBox, A3 gets PS4
- Achieves maximum welfare of 7 + 6 = 13



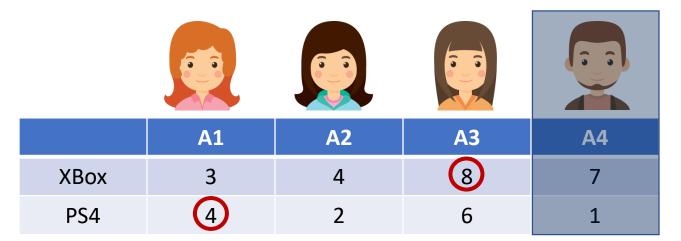
Payments:

- Zero payments charged to A1 and A2
- "Deleting" either of them does not change the outcome or payments for others
- Can also be seen by individual rationality



Payments:

- Payment charged to A3 = 11 7 = 4
- Max welfare to others if A3 absent: 7 + 4 = 11
 - Give XBox to A4 and PS4 to A1
- Welfare to others if A3 present: 7



Payments:

- Payment charged to A4 = 12 6 = 6
- Max welfare to others if A4 absent: 8 + 4 = 12
 - Give XBox to A3 and PS4 to A1
- Welfare to others if A4 present: 6

	A1	A2	А3	A4
XBox	3	4	8	7
PS4	4	2	6	1

Final Outcome:

Allocation: A3 gets PS4, A4 gets XBox

• Payments: A3 pays 4, A4 pays 6

• Net utilities: A3 gets 6 - 4 = 2, A4 gets 7 - 6 = 1

Problems with VCG

- Difficult to understand
 - > Must reason about what would maximize others' welfare
- Possibly low revenue
 - \triangleright [Bulow-Klemperer 96]: With i.i.d. valuations, $\mathbb{E}[VCG \text{ revenue}, n+1 \text{ agents}] \ge \mathbb{E}[OPT \text{ revenue}, n \text{ agents}]$
- Often NP-hard to implement
 - Even computing the welfare maximizing allocation may be computationally difficult

• ...

Single-Minded Bidders

- Allocate a set S of m items
- Each agent i is described by (v_i, S_i)
 - \triangleright Gets value v_i if she receives all items in $S_i \subseteq S$ (and possibly some other items)
 - \triangleright Gets value 0 if she doesn't receive even one item in S_i
 - "Single-minded"
- Welfare-maximizing allocation:
 - Find a subset of players with the highest total value such that their desired sets are disjoint

Single-Minded Bidders

- Reduction to the Weighted Independent Set (WIS) problem in graphs
 - > NP-hard
 - > No $O(m^{\frac{1}{2}-\epsilon})$ approximation (unless $NP \subseteq ZPP$)
- \sqrt{m} -approximation through a simple greedy algorithm in a strategyproof way

Greedy Algorithm

- Input: (v_i, S_i) for each agent i
- Output: Agents with mutually independent S_i

- Greedy Algorithm:
 - > Sort the agents in a specific order (we'll see).
 - \triangleright Relabel them as 1,2, ..., n in this order.
 - $> W \leftarrow \emptyset$
 - > For i = 1, ..., n:
 - If $S_i \cap S_j = \emptyset$ for every $j \in W$, then $W \leftarrow W \cup \{i\}$
 - \triangleright Give agents in W their desired items.

Greedy Algorithm

- Sort by what?
- We want to satisfy agents with higher values.

>
$$v_1 \ge v_2 \ge \cdots \ge v_n$$
? m -approximation

• But we don't want to exhaust too many items.

$$\Rightarrow \frac{v_1}{|S_1|} \ge \frac{v_2}{|S_2|} \ge \cdots \frac{v_n}{|S_n|}$$
 ? *m*-approximation

•
$$\sqrt{m}$$
-approximation : $\frac{v_1}{\sqrt{|S_1|}} \ge \frac{v_2}{\sqrt{|S_2|}} \ge \cdots \frac{v_n}{\sqrt{|S_n|}}$?

[Lehmann et al. 2011]

Proof of Approximation

- OPT = Set of agents satisfied by optimal alg
- W = Set of agents satisfied by greedy alg
- For $i \in W$, let $OPT_i = \{j \in OPT, j \ge i : S_i \cap S_j \ne \emptyset\}$
- $OPT \subseteq \bigcup_{i \in W} OPT_i$, so it suffices to show $\sqrt{m} \cdot v_i \ge \sum_{j \in OPT_i} v_j$
- For each $j \in OPT_i : v_j \le v_i \cdot \frac{\sqrt{|S_j|}}{\sqrt{|S_i|}}$

Proof of Approximation

• Summing over all $j \in OPT_i$:

$$\Sigma_{j \in OPT_i} v_j \leq \frac{v_i}{\sqrt{|S_i|}} \cdot \Sigma_{j \in OPT_i} \sqrt{|S_j|}$$

• Using Cauchy-Schwarz
$$(\Sigma_i x_i y_i \leq \sqrt{\Sigma_i x_i^2} \cdot \sqrt{\Sigma_i y_i^2})$$

$$\Sigma_{j \in OPT_i} \sqrt{|S_j|} \leq \sqrt{|OPT_i|} \cdot \sqrt{\Sigma_{j \in OPT_i} |S_j|}$$

$$\leq \sqrt{|S_i|} \cdot \sqrt{m}$$

Strategyproofness

- Agent i pays $p_i = v_{j^*} \cdot \sqrt{\frac{|S_i|}{|S_{j^*}|}}$
 - $> j^*$ is the smallest index j > i such that $S_j \cap S_i \neq \emptyset$ and $S_j \cap S_k = \emptyset$ for all $k < j, k \neq i$
 - > This is not an arbitrary value.
 - \circ It is the lowest \tilde{v}_i that agent i can report, and still win.
 - \circ With a lower value, j^* goes first, wins, prevents i from winning.
 - o "Critical payment"
 - \succ Greedy rule is also monotonic: If agent i wins reporting (v_i, S_i) , she also wins reporting $v_i' > v_i$ and $S_i' \subset S_i$.
- Critical payment + monotonic ⇒ SP

Take-Away

- VCG can sometimes be too difficult to implement
 - Find a monotonic allocation rule that approximately maximizes welfare
 - > Charge critical payments to agents

- In this case, we used approximation for computational reasons
 - > In facility location, we used approximation because we couldn't use monetary payments to get SP