CSC2556

Lecture 6

Fair Division 1: Cake-Cutting Indivisible Goods

[Some illustrations due to: Ariel Procaccia]

Announcements

- Reminder
 - Project proposal due by March 3st by 11:59PM
 - If you want to run your idea by me, this is a good time to approach me (email me and we'll setup a time to chat).

Fair Division

Cake-Cutting

- A heterogeneous, divisible good
 - Heterogeneous: it may be valued differently by different individuals
 - Divisible: we can share/divide it between individuals
- Represented as [0,1]

> Almost without loss of generality

- Set of players $N = \{1, ..., n\}$
- Piece of cake $X \subseteq [0,1]$

> A finite union of disjoint intervals

Agent Valuations

- Each player *i* has a valuation V_i that is very much like a probability distribution over [0,1]
- Additive: For $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ and X, $\exists Y \subseteq X$ s.t. $V_i(Y) = \lambda V_i(X)$

Fairness Goals

- An allocation is a disjoint partition $A = (A_1, ..., A_n)$ of the cake
- We desire the following fairness properties from our allocation *A*:
- Proportionality (Prop):

$$\forall i \in N: V_i(A_i) \ge \frac{1}{n}$$

• Envy-Freeness (EF):

$$\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$$

Fairness Goals

- Prop: $\forall i \in N: V_i(A_i) \ge 1/n$
- EF: $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$
- Question: What is the relation between proportionality and EF?
 - 1. **Prop** \Rightarrow EF
 - 2.) EF \Rightarrow Prop
 - 3. Equivalent
 - 4. Incomparable

CUT-AND-CHOOSE

- Algorithm for n = 2 players
- Player 1 divides the cake into two pieces X, Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Player 2 chooses the piece she prefers.
- This is EF and therefore proportional.
 > Why?

Input Model

- How do we measure the "time complexity" of a cake-cutting algorithm for *n* players?
- Typically, time complexity is a function of the length of input encoded as binary.
- Our input consists of functions V_i , which requires infinite bits to encode.
- We want running time just as a function of *n*.

Robertson-Webb Model

- We restrict access to valuations V_i's through two types of queries:
 - > $Eval_i(x, y)$ returns $V_i([x, y])$
 - > $\operatorname{Cut}_i(x, \alpha)$ returns y such that $V_i([x, y]) = \alpha$

Robertson-Webb Model

- Two types of queries:
 - > $\operatorname{Eval}_i(x, y) = V_i([x, y])$ > $\operatorname{Cut}_i(x, \alpha) = y$ s.t. $V_i([x, y]) = \alpha$
- Question: How many queries are needed to find an EF allocation when n = 2?
- Answer: 2
 - ≻ Why?

- Protocol for finding a proportional allocation for n players
- Referee starts at 0, and continuously moves knife to the right.
- Repeat: when the piece to the left of knife is worth 1/n to a player, the player shouts "stop", gets the piece, and exits.
- The last player gets the remaining piece.

- Moving knife is not really needed.
- At each stage, we can ask each remaining player a cut query to mark his 1/n point in the remaining cake.
- Move the knife to the leftmost mark.

- Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$
 - 2. $\Theta(n \log n)$
 - 3. $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

Even-Paz

- Input: Interval [x, y], number of players n
 Assume n = 2^k for some k
- If n = 1, give [x, y] to the single player.
- Otherwise, let each player *i* mark z_i s.t. $V_i([x, z_i]) = \frac{1}{2} V_i([x, y])$
- Let z^* be the n/2 mark from the left.
- Recurse on $[x, z^*]$ with the left n/2 players, and on $[z^*, y]$ with the right n/2 players.

Even-Paz

• Theorem: EVEN-PAZ returns a Prop allocation.

• Proof:

> Inductive proof. We want to prove that if player *i* is allocated piece A_i when [x, y] is divided between *n* players, $V_i(A_i) \ge (1/n)V_i([x, y])$

• Then Prop follows because initially $V_i([x, y]) = V_i([0, 1]) = 1$

> Base case: n = 1 is trivial.

- > Suppose it holds for $n = 2^{k-1}$. We prove for $n = 2^k$.
- > Take the 2^{k-1} left players.

○ Every left player *i* has $V_i([x, z^*]) \ge (1/2) V_i([x, y])$

○ If it gets A_i , by induction, $V_i(A_i) \ge \frac{1}{2^{k-1}} V_i([x, z^*]) \ge \frac{1}{2^k} V_i([x, y])$

Even-Paz

- Question: What is the complexity of the Even-Paz protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$ 2. $\Theta(n \log n)$ 3. $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

Complexity of Proportionality

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the Robertson-Webb model.
- Thus, the EVEN-PAZ protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For *n*-player EF cake-cutting:
 - > [Brams and Taylor, 1995] give an unbounded EF protocol.
 - > [Procaccia 2009] shows $\Omega(n^2)$ lower bound for EF.
 - Last year, the long-standing major open question of "bounded EF protocol" was resolved!

Other Desiderata

- There are two more properties that we often desire from an allocation.
- Pareto optimality (PO)
 - > Notion of efficiency
 - Informally, it says that there should be no "obviously better" allocation

• Strategyproofness (SP)

No player should be able to gain by misreporting her valuation

Strategyproofness (SP)

- For deterministic mechanisms
 - Strategyproof": No player should be able to increase her utility by misreporting her valuation, irrespective of what other players report.
- For randomized mechanisms
 - Strategyproof-in-expectation": No player should be able to increase her *expected utility* by misreporting.
 - For simplicity, we'll call this strategyproofness, and assume we mean "in expectation" if the mechanism is randomized.

Strategyproofness (SP)

- Deterministic
 - > Bad news!
 - Theorem [Menon & Larson '17] : No deterministic SP mechanism is (even approximately) proportional.
- Randomized
 - Good news!
 - Theorem [Chen et al. '13, Mossel & Tamuz '10]: There is a randomized SP mechanism that always returns an envyfree allocation.

Perfect Partition

- Theorem [Lyapunov '40]:
 - > There always exists a "perfect partition" $(B_1, ..., B_n)$ of the cake such that $V_i(B_j) = \frac{1}{n}$ for every $i, j \in [n]$.
 - > Every agent values every bundle equally.
- Theorem [Alon '87]:
 - There exists a perfect partition that only cuts the cake at poly(n) points.
 - In contrast, Lyapunov's proof is non-constructive, and might need an unbounded number of cuts.

Perfect Partition

- Q: Can you use an algorithm for computing a perfect partition as a black-box to design a randomized SP-in-expectation+EF mechanism?
 - Yes! Compute a perfect partition, and assign the n bundles to the n players uniformly at random.
 - > Why is this EF?

 \circ Every agent values every bundle at 1/n.

- > Why is this SP-in-expectation?
 - Because an agent is assigned a random bundle, her expected utility is 1/n, irrespective of what she reports.

Pareto Optimality (PO)

Definition

- > We say that an allocation $A = (A_1, ..., A_n)$ is PO if there is no alternative allocation $B = (B_1, ..., B_n)$ such that
- 1. Every agent is at least as happy: $V_i(B_i) \ge V_i(A_i), \forall i \in N$
- 2. Some agent is strictly happier: $V_i(B_i) > V_i(A_i), \exists i \in N$

> I.e., an allocation is PO if there is no "better" allocation.

- Q: Is it PO to give the entire cake to player 1?
- A: Not necessarily. But yes if player 1 values "every part of the cake positively".

PO + EF

- Theorem [Weller '85]:
 - > There always exists an allocation of the cake that is both envy-free and Pareto optimal.
- One way to achieve PO+EF:
 - > Nash-optimal allocation: $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$
 - > Obviously, this is PO. The fact that it is EF is non-trivial.
 - > This is named after John Nash.
 - Nash social welfare = product of utilities
 - Different from utilitarian social welfare = sum of utilities

Nash-Optimal Allocation

• Example:

- > Green player has value 1 distributed over [0, 2/3]
- > Blue player has value 1 distributed over [0,1]
- > Without loss of generality (why?) suppose:
 - Green player gets x fraction of [0, 2/3]
 - Blue player gets the remaining 1 x fraction of [0, 2/3] AND all of [2/3, 1].
- > Green's utility = x, blue's utility = $(1 x) \cdot \frac{2}{3} + \frac{1}{3} = \frac{3 2x}{3}$
- > Maximize: $x \cdot \frac{3-2x}{3} \Rightarrow x = \frac{3}{4}$ ($\frac{3}{4}$ fraction of $\frac{2}{3}$ is $\frac{1}{2}$).

Allocation 0
$$1/2$$
 Green has utility $\frac{3}{4}$
Blue has utility $\frac{1}{2}$

Problem with Nash Solution

- Difficult to compute in general
 - I believe it should require an unbounded number of queries in the Robertson-Webb model. But I can't find such a result in the literature.
- Theorem [Aziz & Ye '14]:

For piecewise constant valuations, the Nash-optimal solution can be computed in polynomial time.

Interlude: Homogeneous Divisible Goods

- Suppose there are *m* homogeneous divisible goods
 Each good can be divided fractionally between the agents
- Let x_{i,g} = fraction of good g that agent i gets
 Homogeneous = agent doesn't care which "part"
 E.g., CPU or RAM
- Special case of cake-cutting
 - ≻ Line up the goods on [0,1] → piecewise uniform valuations

Interlude: Homogeneous Divisible Goods

• Nash-optimal solution:

Maximize $\sum_i \log U_i$

$$U_{i} = \Sigma_{g} x_{i,g} * v_{i,g} \quad \forall i$$

$$\Sigma_{i} x_{i,g} = 1 \qquad \forall g$$

- $x_{i,g} \in [0,1] \qquad \forall i,g$
- Gale-Eisenberg Convex Program

> Polynomial time solvable

- Goods which cannot be shared among players
 > E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!

Indivisible Goods: Setting

				V
	8	7	20	5
M	9	11	12	8
	9	10	18	3

Given such a matrix of numbers, assign each good to a player. We assume additive values. So, e.g., $V_{\odot}(\{\begin{array}{c} \end{array}\end{ar$

8	7	20	5
9	11	12	8
9	10	18	3

			V
8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

			V
8	7	20	5
9	11	12	8
9	10	18	3

• Envy-freeness up to one good (EF1):

 $\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$

- > Technically, we need either this or $A_j = \emptyset$.
- "If i envies j, there must be some good in j's bundle such that removing it would make i envy-free of j."
- Does there always exist an EF1 allocation?

EF1

- Yes! We can use Round Robin.
 - > Agents take turns in cyclic order: 1,2, ..., n, 1,2, ..., n, ...
 - In her turn, an agent picks the good she likes the most among the goods still not picked by anyone.
- Observation: This always yields an EF1 allocation.
 > Informal proof on the board.
- Sadly, on some instances, this returns an allocation that is not Pareto optimal.

EF1+PO?

- Nash welfare to rescue!
- Theorem [Caragiannis et al. '16]:
 - > The allocation $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$ is EF1 + PO.
 - Note: This maximization is over only "integral" allocations that assign each good to some player in whole.
 - Note: Subtle tie-breaking if all allocations have zero Nash welfare.
 - Step 1: Choose a subset of players $S \subseteq N$ with largest |S| such that it is possible to give a positive utility to every player in S simultaneously.
 - Step 2: Choose $\operatorname{argmax}_A \prod_{i \in S} V_i(A_i)$

Integral Nash Allocation

8	7	20	5
9	11	12	8
9	10	18	3

20 * 8 * (9+10) = 3040

8	7	20	5
9	11	12	8
9	10	18	3

(8+7) * 8 * 18 = 2160

			V
8	7	20	5
9	11	12	8
9	10	18	3

8 * (12+8) * 10 = 1600

20 * (11+8) * 9 = 3420

CSC2556 - Nisarg Shah

Computation

- For indivisible goods, Nash-optimal solution is strongly NP-hard to compute
 - > That is, remains NP-hard even if all values in the matrix are bounded
- Open Question: If our goal is EF1+PO, is there a different polynomial time algorithm?
 - > Not sure. But a recent paper gives a pseudo-polynomial time algorithm for EF1+PO

• Time is polynomial in *n*, *m*, and $\max_{i \in \mathcal{A}} V_i(\{g\})$.

Other Fairness Notions

- Maximin Share Guarantee (MMS):
 - Generalization of "cut and choose" for n players
 - > MMS value of player i =
 - \circ The highest value player *i* can get...
 - \circ If *she* divides the goods into *n* bundles...
 - But receives the worst bundle for her ("worst case guarantee")
 - > Let $\mathcal{P}_n(M)$ denote the family of partitions of the set of goods M into n bundles.

 $MMS_i = \max_{(B_1,...,B_n) \in \mathcal{P}_n(M)} \min_{k \in \{1,...,n\}} V_i(B_k).$

> An allocation is α -MMS if every player *i* receives value at least $\alpha * MMS_i$.

Other Fairness Notions

- Maximin Share Guarantee (MMS)
 - > [Procaccia, Wang '14]:

There is an example in which no MMS allocation exists.

Procaccia, Wang '14]:
A 2 / AAAS allocation always

 $A^2/_3$ - MMS allocation always exists.

> [Ghodsi et al. '17]:

A $^{3}/_{4}$ - MMS allocation always exists.

> [Caragiannis et al. '16]:

The Nash-optimal solution is $\frac{2}{1+\sqrt{4n-3}}$ –MMS, and this is the best possible guarantee.

Stronger Fairness

- Open Question: Does there always exist an EFx allocation?
- EF1: $\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$

Intuitively, i doesn't envy j if she gets to remove her most valued item from j's bundle.

- EFx: $\forall i, j \in N, \forall g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - > Note: Need to quantify over g such that $V_i(\{g\}) > 0$.
 - Intuitively, i doesn't envy j even if she removes her least positively valued item from j's bundle.

Stronger Fairness

- The difference between EF1 and EFx:
 - Suppose there are two players and three goods with values as follows.

- > If you give {A} → P1 and {B,C} → P2, it's EF1 but not EFx.
 EF1 because if P1 removes C from P2's bundle, all is fine.
 Not EFx because removing B doesn't eliminate envy.
- > Instead, $\{A,B\} \rightarrow P1$ and $\{C\} \rightarrow P2$ would be EFx.

Allocation of Bads

- Negative utilities (costs instead of values)
 - > Let $c_{i,b}$ be the cost of player *i* for bad *b*.
 - $\circ C_i(S) = \sum_{b \in S} c_{i,b}$
 - \succ EF: $\forall i, j \ C_i(A_i) \leq C_i(A_j)$
 - PO: There should be no alternative allocation in which no player has more cost, and some player has less cost.
- Divisible bads
 - EF + PO allocation always exists, like for divisible goods.
 - \circ One way to achieve is through "Competitive Equilibria" (CE).
 - $\,\circ\,$ For divisible goods, Nash-optimal allocation is the unique CE.
 - $\,\circ\,$ For bads, there are exponentially many CE.

Allocation of Bads

Indivisible bads

 $\succ \mathsf{EF1:} \forall i, j \; \exists b \in A_i \; c_i(A_i \setminus \{b\}) \leq c_i(A_j)$

 $\succ \mathsf{EFx:} \forall i, j \ \forall b \in A_i \ c_i(A_i \setminus \{b\}) \le c_i(A_j)$

 \circ Note: Again, we need to restrict to b such that $c_{i,b} > 0$

> Open Question 1:

o Does an EF1 + PO allocation always exist?

> Open Question 2:

o Does an EFx allocation always exist?

> More open questions related to relaxations of proportionality