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Cake-Cutting

Indivisible Goods

[Some illustrations due to: Ariel Procaccia]
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Announcements
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• Reminder
➢ Project proposal due by March 3st by 11:59PM

➢ If you want to run your idea by me, this is a good time to 
approach me (email me and we’ll setup a time to chat). 



Fair Division
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Cake-Cutting
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• A heterogeneous, divisible good
➢ Heterogeneous: it may be valued 

differently by different individuals

➢ Divisible: we can share/divide 
it between individuals

• Represented as [0,1]
➢ Almost without loss of generality

• Set of players 𝑁 = {1,… , 𝑛}

• Piece of cake 𝑋 ⊆ [0,1]
➢ A finite union of disjoint intervals 



Agent Valuations
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• Each player 𝑖 has a valuation 𝑉𝑖 that 
is very much like a probability 
distribution over [0,1]

• Additive: For 𝑋 ∩ 𝑌 = ∅,
𝑉𝑖 𝑋 + 𝑉𝑖 𝑌 = 𝑉𝑖 𝑋 ∪ 𝑌

• Normalized: 𝑉𝑖 0,1 = 1

• Divisible: ∀𝜆 ∈ [0,1] and 𝑋,
∃𝑌 ⊆ 𝑋 s.t. 𝑉𝑖 𝑌 = 𝜆𝑉𝑖(𝑋)

𝛼

𝜆𝛼

𝛼 β

β𝛼 + 𝛽



Fairness Goals
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• An allocation is a disjoint partition 𝐴 = (𝐴1, … , 𝐴𝑛)
of the cake

• We desire the following fairness properties from 
our allocation 𝐴:

• Proportionality (Prop):

∀𝑖 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥
1

𝑛
• Envy-Freeness (EF):

∀𝑖, 𝑗 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖(𝐴𝑗)



Fairness Goals
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• Prop: ∀𝑖 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥ Τ1 𝑛

• EF: ∀𝑖, 𝑗 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗

• Question: What is the relation between 
proportionality and EF?
1. Prop ⇒ EF

2. EF ⇒ Prop

3. Equivalent

4. Incomparable



CUT-AND-CHOOSE
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• Algorithm for 𝑛 = 2 players

• Player 1 divides the cake into two pieces 𝑋, 𝑌 s.t.
𝑉1 𝑋 = 𝑉1 𝑌 = Τ1 2

• Player 2 chooses the piece she prefers.

• This is EF and therefore proportional.
➢ Why?



Input Model
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• How do we measure the “time complexity” of a 
cake-cutting algorithm for 𝑛 players?

• Typically, time complexity is a function of the 
length of input encoded as binary.

• Our input consists of functions 𝑉𝑖, which requires 
infinite bits to encode.

• We want running time just as a function of 𝑛.



Robertson-Webb Model
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• We restrict access to valuations 𝑉𝑖’s through two 
types of queries:
➢ Eval𝑖(𝑥, 𝑦) returns 𝑉𝑖 𝑥, 𝑦

➢ Cut𝑖(𝑥, 𝛼) returns 𝑦 such that 𝑉𝑖 𝑥, 𝑦 = 𝛼

𝑥 𝑦

𝛼eval output

cut output



Robertson-Webb Model
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• Two types of queries:
➢ Eval𝑖 𝑥, 𝑦 = 𝑉𝑖 𝑥, 𝑦

➢ Cut𝑖 𝑥, 𝛼 = 𝑦 s.t. 𝑉𝑖 𝑥, 𝑦 = 𝛼

• Question: How many queries are needed to find an 
EF allocation when 𝑛 = 2?

• Answer: 2
➢ Why?



DUBINS-SPANIER
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• Protocol for finding a proportional allocation for 𝑛
players

• Referee starts at 0, and continuously moves knife 
to the right.

• Repeat: when the piece to the left of knife is worth 
1/𝑛 to a player, the player shouts “stop”, gets the 
piece, and exits.

• The last player gets the remaining piece.



DUBINS-SPANIER
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1/3 1/3 ≥ 1/3

CSC2556 - Nisarg Shah



DUBINS-SPANIER
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• Moving knife is not really needed.

• At each stage, we can ask each remaining player a 
cut query to mark his 1/𝑛 point in the remaining 
cake.

• Move the knife to the leftmost mark.



DUBINS-SPANIER
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DUBINS-SPANIER
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Τ1 3



DUBINS-SPANIER
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Τ1 3 Τ1 3



DUBINS-SPANIER
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Τ1 3 Τ1 3 ≥ Τ1 3



DUBINS-SPANIER
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• Question: What is the complexity of the Dubins-
Spanier protocol in the Robertson-Webb model?

1. Θ 𝑛

2. Θ 𝑛 log 𝑛

3. Θ 𝑛2

4. Θ 𝑛2 log 𝑛



EVEN-PAZ
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• Input: Interval [𝑥, 𝑦], number of players 𝑛
➢ Assume 𝑛 = 2𝑘 for some 𝑘

• If 𝑛 = 1, give [𝑥, 𝑦] to the single player.

• Otherwise, let each player 𝑖 mark 𝑧𝑖 s.t.

𝑉𝑖 𝑥, 𝑧𝑖 =
1

2
𝑉𝑖 𝑥, 𝑦

• Let 𝑧∗ be the 𝑛/2 mark from the left.

• Recurse on [𝑥, 𝑧∗] with the left 𝑛/2 players, and on 
[𝑧∗, 𝑦] with the right 𝑛/2 players.



EVEN-PAZ
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EVEN-PAZ
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• Theorem: EVEN-PAZ returns a Prop allocation.

• Proof:
➢ Inductive proof. We want to prove that if player 𝑖 is 

allocated piece 𝐴𝑖 when [𝑥, 𝑦] is divided between 𝑛
players, 𝑉𝑖 𝐴𝑖 ≥ Τ1 𝑛 𝑉𝑖 𝑥, 𝑦
o Then Prop follows because initially 𝑉𝑖 𝑥, 𝑦 = 𝑉𝑖 0,1 = 1

➢ Base case: 𝑛 = 1 is trivial.

➢ Suppose it holds for 𝑛 = 2𝑘−1. We prove for 𝑛 = 2𝑘.

➢ Take the 2𝑘−1 left players. 
o Every left player 𝑖 has 𝑉𝑖 𝑥, 𝑧∗ ≥ Τ1 2 𝑉𝑖 𝑥, 𝑦

o If it gets 𝐴𝑖, by induction, 𝑉𝑖 𝐴𝑖 ≥
1

2𝑘−1
𝑉𝑖 𝑥, 𝑧∗ ≥

1

2𝑘
𝑉𝑖 𝑥, 𝑦



EVEN-PAZ

CSC2556 - Nisarg Shah 23

• Question: What is the complexity of the Even-Paz 
protocol in the Robertson-Webb model?

1. Θ 𝑛

2. Θ 𝑛 log 𝑛

3. Θ 𝑛2

4. Θ 𝑛2 log 𝑛



Complexity of Proportionality
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• Theorem [Edmonds and Pruhs, 2006]: Any 
proportional protocol needs Ω(𝑛 log 𝑛) operations 
in the Robertson-Webb model.

• Thus, the EVEN-PAZ protocol is (asymptotically) 
provably optimal!



Envy-Freeness?
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• “I suppose you are also going to give such cute 
algorithms for finding envy-free allocations?”

• Bad luck. For 𝑛-player EF cake-cutting:
➢ [Brams and Taylor, 1995] give an unbounded EF protocol.

➢ [Procaccia 2009] shows Ω 𝑛2 lower bound for EF.

➢ Last year, the long-standing major open question of 
“bounded EF protocol” was resolved!

➢ [Aziz and Mackenzie, 2016]: 𝑂(𝑛𝑛
𝑛𝑛

𝑛𝑛

) protocol!
o Not a typo!



Other Desiderata
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• There are two more properties that we often 
desire from an allocation.

• Pareto optimality (PO)
➢ Notion of efficiency

➢ Informally, it says that there should be no “obviously 
better” allocation

• Strategyproofness (SP)
➢ No player should be able to gain by misreporting her 

valuation



Strategyproofness (SP)
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• For deterministic mechanisms
➢ “Strategyproof”: No player should be able to increase her 

utility by misreporting her valuation, irrespective of what 
other players report.

• For randomized mechanisms
➢ “Strategyproof-in-expectation”: No player should be able 

to increase her expected utility by misreporting.

➢ For simplicity, we’ll call this strategyproofness, and 
assume we mean “in expectation” if the mechanism is 
randomized.



Strategyproofness (SP)
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• Deterministic
➢ Bad news!

➢ Theorem [Menon & Larson ‘17] : No deterministic SP 
mechanism is (even approximately) proportional.

• Randomized
➢ Good news!

➢ Theorem [Chen et al. ‘13, Mossel & Tamuz ‘10]: There is a 
randomized SP mechanism that always returns an envy-
free allocation.



Perfect Partition
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• Theorem [Lyapunov ’40]: 
➢ There always exists a “perfect partition” (𝐵1, … , 𝐵𝑛) of 

the cake such that 𝑉𝑖 𝐵𝑗 = Τ1 𝑛 for every 𝑖, 𝑗 ∈ [𝑛].

➢ Every agent values every bundle equally.

• Theorem [Alon ‘87]: 
➢ There exists a perfect partition that only cuts the cake at 
𝑝𝑜𝑙𝑦(𝑛) points.

➢ In contrast, Lyapunov’s proof is non-constructive, and 
might need an unbounded number of cuts.



Perfect Partition
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• Q: Can you use an algorithm for computing a 
perfect partition as a black-box to design a 
randomized SP-in-expectation+EF mechanism?

➢ Yes! Compute a perfect partition, and assign the 𝑛
bundles to the 𝑛 players uniformly at random.

➢ Why is this EF? 
o Every agent values every bundle at Τ1 𝑛.

➢ Why is this SP-in-expectation?
o Because an agent is assigned a random bundle, her expected 

utility is Τ1 𝑛, irrespective of what she reports.



Pareto Optimality (PO)
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• Definition
➢ We say that an allocation 𝐴 = (𝐴1, … , 𝐴𝑛) is PO if there is 

no alternative allocation 𝐵 = (𝐵1, … , 𝐵𝑛) such that 

1. Every agent is at least as happy: 𝑉𝑖 𝐵𝑖 ≥ 𝑉𝑖(𝐴𝑖), ∀𝑖 ∈ 𝑁

2. Some agent is strictly happier: 𝑉𝑖 𝐵𝑖 > 𝑉𝑖(𝐴𝑖), ∃𝑖 ∈ 𝑁

➢ I.e., an allocation is PO if there is no “better” allocation.

• Q: Is it PO to give the entire cake to player 1?

• A: Not necessarily. But yes if player 1 values “every 
part of the cake positively”.



PO + EF
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• Theorem [Weller ‘85]:
➢ There always exists an allocation of the cake that is both 

envy-free and Pareto optimal.

• One way to achieve PO+EF:
➢ Nash-optimal allocation: argmax𝐴 ς𝑖∈𝑁𝑉𝑖 𝐴𝑖
➢ Obviously, this is PO. The fact that it is EF is non-trivial.

➢ This is named after John Nash.
o Nash social welfare = product of utilities

o Different from utilitarian social welfare = sum of utilities



Nash-Optimal Allocation
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• Example:
➢ Green player has value 1 distributed over 0, Τ2 3

➢ Blue player has value 1 distributed over [0,1]

➢ Without loss of generality (why?) suppose: 
o Green player gets 𝑥 fraction of [0, Τ2 3]

o Blue player gets the remaining 1 − 𝑥 fraction of [0, Τ2 3] AND all of [ Τ2 3 , 1].

➢ Green’s utility = 𝑥,   blue’s utility = 1 − x ⋅
2

3
+

1

3
=

3−2𝑥

3

➢ Maximize: 𝑥 ⋅
3−2𝑥

3
⇒ 𝑥 = Τ3 4 ( Τ3 4 fraction of Τ2 3 is Τ1 2).

0 1
ൗ2 3

Allocation 0 1

ൗ1 2 Green has utility 
3

4

Blue has utility 
1

2



Problem with Nash Solution
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• Difficult to compute in general
➢ I believe it should require an unbounded number of 

queries in the Robertson-Webb model. But I can’t find 
such a result in the literature.

• Theorem [Aziz & Ye ‘14]:
➢ For piecewise constant valuations, the Nash-optimal 

solution can be computed in polynomial time.

0 1

The density function of a 
piecewise constant 
valuation looks like this



Interlude: 
Homogeneous Divisible Goods
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• Suppose there are 𝑚 homogeneous divisible goods
➢ Each good can be divided fractionally between the agents

• Let 𝑥𝑖,𝑔 = fraction of good 𝑔 that agent 𝑖 gets
➢ Homogeneous = agent doesn’t care which “part”
o E.g., CPU or RAM

• Special case of cake-cutting
➢ Line up the goods on [0,1] → piecewise uniform 

valuations



Interlude: 
Homogeneous Divisible Goods
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• Nash-optimal solution:

Maximize σ𝑖 log 𝑈𝑖

𝑈𝑖 = Σ𝑔 𝑥𝑖,𝑔 ∗ 𝑣𝑖,𝑔 ∀𝑖

Σ𝑖 𝑥𝑖,𝑔 = 1 ∀𝑔

𝑥𝑖,𝑔 ∈ [0,1] ∀𝑖, 𝑔

• Gale-Eisenberg Convex Program

➢ Polynomial time solvable



Indivisible Goods
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• Goods which cannot be shared among players
➢ E.g., house, painting, car, jewelry, …

• Problem: Envy-free allocations may not exist!



Indivisible Goods: Setting
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8 7 20 5

9 11 12 8

9 10 18 3

We assume additive values. So, e.g., 𝑉 , = 8 + 7 = 15

Given such a matrix of numbers, assign each good to a player.



8 7 20 5

9 11 12 8

9 10 18 3

Indivisible Goods
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8 7 20 5

9 11 12 8

9 10 18 3

Indivisible Goods
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8 7 20 5

9 11 12 8

9 10 18 3

Indivisible Goods
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8 7 20 5

9 11 12 8

9 10 18 3

Indivisible Goods
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Indivisible Goods
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• Envy-freeness up to one good (EF1): 

∀𝑖, 𝑗 ∈ 𝑁, ∃𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗\{𝑔}

➢ Technically, we need either this or 𝐴𝑗 = ∅.

➢ “If 𝑖 envies 𝑗, there must be some good in 𝑗’s bundle such 
that removing it would make 𝑖 envy-free of 𝑗.”

• Does there always exist an EF1 allocation?



EF1
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• Yes! We can use Round Robin.

➢ Agents take turns in cyclic order: 1,2,… , 𝑛, 1,2,… , 𝑛, …

➢ In her turn, an agent picks the good she likes the most 
among the goods still not picked by anyone.

• Observation: This always yields an EF1 allocation.
➢ Informal proof on the board.

• Sadly, on some instances, this returns an allocation 
that is not Pareto optimal.



EF1+PO?
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• Nash welfare to rescue!

• Theorem [Caragiannis et al. ‘16]:
➢ The allocation argmax𝐴 ς𝑖∈𝑁𝑉𝑖 𝐴𝑖 is EF1 + PO.

➢ Note: This maximization is over only “integral” allocations 
that assign each good to some player in whole. 

➢ Note: Subtle tie-breaking if all allocations have zero Nash 
welfare.
o Step 1: Choose a subset of players 𝑆 ⊆ 𝑁 with largest |𝑆| such that 

it is possible to give a positive utility to every player in 𝑆
simultaneously.

o Step 2: Choose argmax𝐴 ς𝑖∈𝑆𝑉𝑖 𝐴𝑖



8 7 20 5

9 11 12 8

9 10 18 3

Integral Nash Allocation

CSC2556 - Nisarg Shah 47



8 7 20 5

9 11 12 8

9 10 18 3

20 * 8 * (9+10) = 3040
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8 7 20 5

9 11 12 8

9 10 18 3

(8+7) * 8 * 18 = 2160
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8 7 20 5

9 11 12 8

9 10 18 3

8 * (12+8) * 10 = 1600
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8 7 20 5

9 11 12 8

9 10 18 3

20 * (11+8) * 9 = 3420
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Computation
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• For indivisible goods, Nash-optimal solution is 
strongly NP-hard to compute
➢ That is, remains NP-hard even if all values in the matrix 

are bounded

• Open Question: If our goal is EF1+PO, is there a 
different polynomial time algorithm? 
➢ Not sure. But a recent paper gives a pseudo-polynomial 

time algorithm for EF1+PO
o Time is polynomial in 𝑛, 𝑚, and max

𝑖,𝑔
𝑉𝑖 𝑔 .



Other Fairness Notions

CSC2556 - Nisarg Shah 53

• Maximin Share Guarantee (MMS):
➢ Generalization of “cut and choose” for 𝑛 players

➢ MMS value of player 𝑖 = 
o The highest value player 𝑖 can get…

o If she divides the goods into 𝑛 bundles…

o But receives the worst bundle for her (“worst case guarantee”)

➢ Let 𝒫𝑛 𝑀 denote the family of partitions of the set of 
goods 𝑀 into 𝑛 bundles.

𝑀𝑀𝑆𝑖 = max
𝐵1,…,𝐵𝑛 ∈𝒫𝑛 𝑀

min
𝑘∈ 1,…,𝑛

𝑉𝑖(𝐵𝑘) .

➢ An allocation is 𝛼-MMS if every player 𝑖 receives value at 
least 𝛼 ∗ 𝑀𝑀𝑆𝑖.



Other Fairness Notions
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• Maximin Share Guarantee (MMS)
➢ [Procaccia, Wang ’14]: 

There is an example in which no MMS allocation exists.

➢ [Procaccia, Wang ’14]: 
A Τ2 3 - MMS allocation always exists.

➢ [Ghodsi et al. ‘17]:
A Τ3 4 - MMS allocation always exists.

➢ [Caragiannis et al. ’16]: 

The Nash-optimal solution is 
2

1+ 4𝑛−3
−MMS, and this is 

the best possible guarantee.



Stronger Fairness
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• Open Question: Does there always exist an EFx
allocation?

• EF1: ∀𝑖, 𝑗 ∈ 𝑁, ∃𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗\{𝑔}
➢ Intuitively, 𝑖 doesn’t envy 𝑗 if she gets to remove her most 

valued item from 𝑗’s bundle.

• EFx: ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗\{𝑔}
➢ Note: Need to quantify over 𝑔 such that 𝑉𝑖 𝑔 > 0.

➢ Intuitively, 𝑖 doesn’t envy 𝑗 even if she removes her least 
positively valued item from 𝑗’s bundle.



Stronger Fairness
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• The difference between EF1 and EFx:
➢ Suppose there are two players and three goods with 

values as follows.

➢ If you give {A} → P1 and {B,C} → P2, it’s EF1 but not EFx.
o EF1 because if P1 removes C from P2’s bundle, all is fine.

o Not EFx because removing B doesn’t eliminate envy.

➢ Instead, {A,B} → P1 and {C} → P2 would be EFx.

A B C

P1 5 1 10

P2 0 1 10



Allocation of Bads
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• Negative utilities (costs instead of values)
➢ Let 𝑐𝑖,𝑏 be the cost of player 𝑖 for bad 𝑏.
o 𝐶𝑖 𝑆 = σ𝑏∈𝑆 𝑐𝑖,𝑏

➢ EF: ∀𝑖, 𝑗 𝐶𝑖 𝐴𝑖 ≤ 𝐶𝑖 𝐴𝑗
➢ PO: There should be no alternative allocation in which no 

player has more cost, and some player has less cost.

• Divisible bads
➢ EF + PO allocation always exists, like for divisible goods.
o One way to achieve is through “Competitive Equilibria” (CE).

o For divisible goods, Nash-optimal allocation is the unique CE.

o For bads, there are exponentially many CE.



Allocation of Bads
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• Indivisible bads
➢ EF1: ∀𝑖, 𝑗 ∃𝑏 ∈ 𝐴𝑖 𝑐𝑖 𝐴𝑖\ 𝑏 ≤ 𝑐𝑖 𝐴𝑗

➢ EFx: ∀𝑖, 𝑗 ∀𝑏 ∈ 𝐴𝑖 𝑐𝑖 𝐴𝑖\ 𝑏 ≤ 𝑐𝑖 𝐴𝑗
o Note: Again, we need to restrict to 𝑏 such that 𝑐𝑖,𝑏 > 0

➢ Open Question 1: 
o Does an EF1 + PO allocation always exist?

➢ Open Question 2:
o Does an EFx allocation always exist?

➢ More open questions related to relaxations of 
proportionality


