CSC2556

Lecture 4

Impartial Selection; PageRank; Facility Location

Announcements

- Proposal tentatively due around the end of Feb
 - > But it will help to decide the topic earlier, and start working.
- I'll put up a list of possible project ideas (in case you cannot find something related to your research)
 - > Will also be available to have more meetings during the next two months to help select projects

Impartial Selection

Impartial Selection

- "How can we select k people out of n people?"
 - Applications: electing a student representation committee, selecting k out of n grant applications to fund using peer review, ...

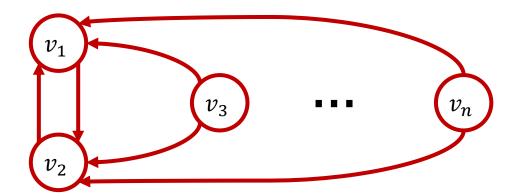
Model

- \triangleright Input: a *directed* graph G = (V, E)
- \triangleright Nodes $V = \{v_1, \dots, v_n\}$ are the n people
- \gt Edge $e = (v_i, v_j) \in E$: v_i supports/approves of v_j
 - \circ We do not allow or ignore self-edges (v_i, v_i)
- \triangleright Output: a subset $V' \subseteq V$ with |V'| = k
- $> k \in \{1, ..., n-1\}$ is given

Impartial Selection

- Impartiality: A k-selection rule f is impartial if $v_i \in f(G)$ does not depend on the outgoing edges of v_i
 - $>v_i$ cannot manipulate his outgoing edges to get selected
 - ▶ Q: But the definition says v_i can neither go from $v_i \notin f(G)$ to $v_i \in f(G)$, nor from $v_i \in f(G)$ to $v_i \notin f(G)$. Why?
- Societal goal: maximize the sum of in-degrees of selected agents $\sum_{v \in f(G)} |in(v)|$
 - in(v) = set of nodes that have an edge to v
 - $\rightarrow out(v)$ = set of nodes that v has an edge to
 - \triangleright Note: OPT will pick the k nodes with the highest indegrees

Optimal ≠ Impartial



- An optimal 1-selecton rule must select v_1 or v_2
- The other node can remove his edge to the winner, and make sure the optimal rule selects him instead
- This violates impartiality

Goal: Approximately Optimal

- α -approximation: We want a k-selection system that always returns a set with total indegree at least α times the total indegree of the optimal set
- Q: For k=1, what about the following rule? Rule: "Select the lowest index vertex in $out(v_1)$. If $out(v_1) = \emptyset$, select v_2 ."
 - > A. Impartial + constant approximation
 - B. Impartial + bad approximation
 - > C. Not impartial + constant approximation
 - > D. Not impartial + bad approximation

No Finite Approximation ³

• Theorem [Alon et al. 2011] For every $k \in \{1, ..., n-1\}$, there is no impartial k-selection rule with a finite approximation ratio.

• Proof:

- \triangleright For small k, this is trivial. E.g., consider k=1.
 - \circ What if G has two nodes v_1 and v_2 that point to each other, and there are no other edges?
 - \circ For finite approximation, the rule must choose either v_1 or v_2
 - \circ Say it chooses v_1 . If v_2 now removes his edge to v_1 , the rule must choose v_2 for any finite approximation.
 - Same argument as before. But applies to any "finite approximation rule", and not just the optimal rule.

No Finite Approximation ⁽²⁾

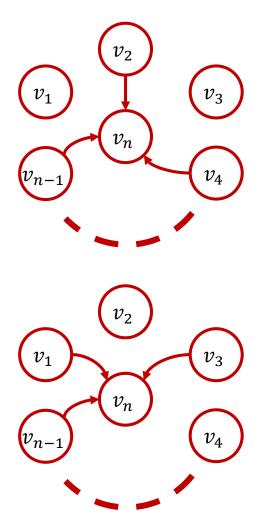
• Theorem [Alon et al. 2011] For every $k \in \{1, ..., n-1\}$, there is no impartial k-selection rule with a finite approximation ratio.

Proof:

- > Proof is more intricate for larger k. Let's do k = n 1. o k = n - 1: given a graph, "eliminate" a node.
- \triangleright Suppose for contradiction that there is such a rule f.
- \triangleright W.l.o.g., say v_n is eliminated in the empty graph.
- > Consider a family of graphs in which a subset of $\{v_1, \dots, v_{n-1}\}$ have edges to v_n .

No Finite Approximation ³

- Proof (k = n 1 continued):
 - > Consider star graphs in which a non-empty subset of $\{v_1, \dots, v_{n-1}\}$ have edge to v_n , and there are no other edges
 - \circ Represented by bit strings $\{0,1\}^{n-1}\setminus\{\vec{0}\}$
 - $> v_n$ cannot be eliminated in any star graph
 - Otherwise we have infinite approximation
 - > $f \text{ maps } \{0,1\}^{n-1} \setminus \{\vec{0}\} \text{ to } \{1, ..., n-1\}$
 - "Who will be eliminated?"
 - > Impartiality: $f(\vec{x}) = i \Leftrightarrow f(\vec{x} + \vec{e}_i) = i$
 - $\circ \vec{e}_i$ has 1 at i^{th} coordinate, 0 elsewhere
 - \circ In words, i cannot prevent elimination by adding or removing his edge to v_n

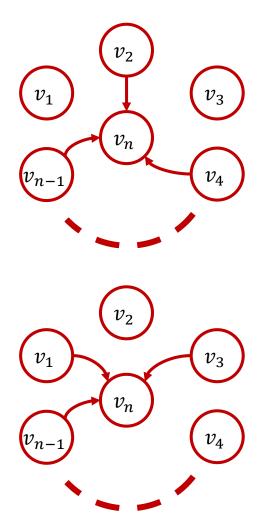


No Finite Approximation ³

• Proof (k = n - 1 continued):

$$> f: \{0,1\}^{n-1} \setminus \{\overrightarrow{0}\} \rightarrow \{1, ..., n-1\}$$

- $> f(\vec{x}) = i \Leftrightarrow f(\vec{x} + \vec{e}_i) = i$
 - $\circ \vec{e}_i$ has 1 only in i^{th} coordinate
- > Pairing implies...
 - \circ The number of strings on which f outputs i is even, for every i.
 - Thus, total number of strings in the domain must be even too.
 - o But total number of strings is $2^{n-1} 1$ (odd)
- > So impartiality must be violated for some pair of \vec{x} and $\vec{x} + \vec{e}_i$



Back to Impartial Selection

- Question: So what can we do to select impartially?
- Answer: Randomization!
 - > Impartiality now requires that the probability of an agent being selected be independent of his outgoing edges.
- Examples: Randomized Impartial Mechanisms
 - > Choose k nodes uniformly at random
 - Sadly, this still has arbitrarily bad approximation.
 - o Imagine having k special nodes with indegree n-1, and all other nodes having indegree 0.
 - Mechanism achieves $(k/n) * OPT \Rightarrow$ approximation = n/k
 - \circ Good when k is comparable to n, but bad when k is small.

Random Partition

• Idea:

> What if we partition V into V_1 and V_2 , and select k nodes from V_1 based only on edges coming to them from V_2 ?

Mechanism:

- \triangleright Assign each node to V_1 or V_2 i.i.d. with probability $\frac{1}{2}$
- \triangleright Choose $V_i \in \{V_1, V_2\}$ at random
- \succ Choose k nodes from V_i that have most incoming edges from nodes in V_{3-i}

Random Partition

Analysis:

- \triangleright Goal: approximate I = # edges incoming to OPT.
 - O I_1 = # edges $V_2 \rightarrow OPT \cap V_1$, I_2 = # edges $V_1 \rightarrow OPT \cap V_2$
- > Note: $E[I_1 + I_2] = I/2$. (WHY?)
- > W.p. $\frac{1}{2}$, we pick k nodes in V_1 with the most incoming edges from $V_2 \Rightarrow \#$ incoming edges $\geq I_1$ (WHY?)
 - $0 |OPT \cap V_1| \le k$; $OPT \cap V_1$ has I_1 incoming edges from V_2
- > W.p. $\frac{1}{2}$, we pick k nodes in V_2 with the most incoming edges from $V_1 \Rightarrow \#$ incoming edges $\geq I_2$
- \gt E[#incoming edges] $\ge E\left[\left(\frac{1}{2}\right) \cdot I_1 + \left(\frac{1}{2}\right) \cdot I_2\right] = \frac{I}{4}$

Random Partition

Generalization

 \triangleright Divide into ℓ parts, and pick k/ℓ nodes from each part based on incoming edges from all other parts.

Theorem [Alon et al. 2011]:

> $\ell = 2$ gives a 4-approximation.

> For
$$k \ge 2$$
, $\ell \sim k^{1/3}$ gives $1 + O\left(\frac{1}{k^{1/3}}\right)$ approximation.

Better Approximations

- Alon et al. [2011] conjectured that for randomized impartial 1-selection...
 - > (For which their mechanism is a 4-approximation)
 - > It should be possible to achieve a 2-approximation.
 - Recently proved by Fischer & Klimm [2014]
 - > Permutation mechanism:
 - \circ Select a random permutation $(\pi_1, \pi_2, ..., \pi_n)$ of the vertices.
 - \circ Start by selecting $y=\pi_1$ as the "current answer".
 - \circ At any iteration t, let $y \in \{\pi_1, ..., \pi_t\}$ be the current answer.
 - From $\{\pi_1, ..., \pi_t\} \setminus \{y\}$, if there are more edges to π_{t+1} than to y, change the current answer to $y = \pi_{t+1}$.

Better Approximations

- 2-approximation is tight.
 - > In an n-node graph, fix u and v, and suppose no other nodes have any incoming/outgoing edges.
 - > Three cases: only $u \to v$ edge, only $v \to u$, or both.
 - \circ The best impartial mechanism selects u and v with probability $\frac{1}{2}$ in every case, and achieves 2-approximation.
- But this is because n-2 nodes are not voting!
 - > What if every node must have an outgoing edge?
 - Fischer & Klimm [2014]:
 - \circ Permutation mechanism gives between $^{12}/_{7}$ and $^{3}/_{2}$ approximation.
 - No mechanism gives better than 4/3 approximation.

PageRank Axiomatization

- An extension of the impartial selection problem
 - \triangleright Instead of selecting k nodes, we want to rank all nodes
- The PageRank Problem: Given a directed graph, rank all nodes by their "importance".
 - > Think of the web graph, where nodes are webpages, and a directed (u, v) edge means u has a link to v.
- Questions:
 - > What properties do we want from such a rule?
 - > What rule satisfies these properties?

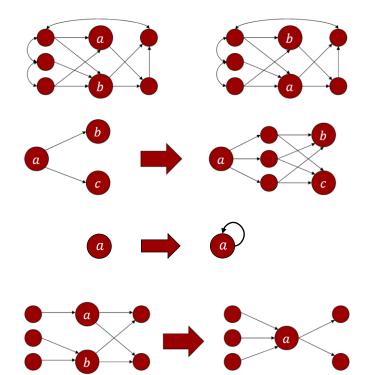
- Here is the PageRank Algorithm:
 - \triangleright Start from any node i in the graph.
 - > At each iteration, choose an outgoing edge $i \rightarrow j$, uniformly at random among all outgoing edges of i.
 - > Move to the neighbor node *j*.
 - > In the long run, measure the fraction of time the random walk visits each node.
 - > Rank the nodes by these "stationary probabilities".

Google uses (a version of) this algorithm

- In a formal sense...
 - \triangleright Let p_i = stationary probability of visiting i.
 - \triangleright Let N(i) = set of nodes to which i has an edge
 - > Then, $p_i = \sum_{j:i \in N(j)} \frac{p_j}{|N(j)|}$
 - $\circ n$ equations, n variables
- Another way to do this:
 - \rightarrow Matrix $A: A_{i,i} = 1/|N(i)|$ if $(i,j) \in E$ and 0 otherwise
 - \triangleright We are searching for a solution v such that Av = v.
 - > Start from any v_0 , and compute $\lim_{k \to \infty} A^k v_0$

Axioms

- Axiom 1 (Isomorphism)
 - Permuting node names permutes the final ranking.
- Axiom 2 (Vote by Committee)
 - Voting through intermediate fake nodes cannot change the ranking.
- Axiom 3 (Self Edge)
 - > v adding a self edge cannot change the ordering of the *other* nodes.
- Axiom 4 (Collapsing)
 - > Merging identically voting nodes cannot change the ordering of the *other* nodes.
- Axiom 5 (Proxy)
 - If k nodes with equal score vote for k other nodes through a proxy, it should be no different than a direct 1-1 voting.



Theorem [Altman and Tennenholtz, 2005]:
 An algorithm satisfies these five axioms if and only if it is PageRank.

Facility Location

Apprx Mechanism Design

- 1. Define the problem: agents, outcomes, values
- 2. Fix an objective function (e.g., maximizing sum of values)
- 3. Check if the objective function is maximized through a strategyproof mechanism
- 4. If not, find the strategyproof mechanism that provides the best worst-case approximation ratio of the objective function

CSC304 - Nisarg Shah

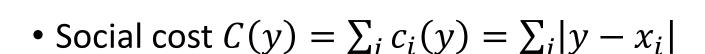
Facility Location

- Set of agents N
- Each agent i has a true location $x_i \in \mathbb{R}$
- Mechanism f
 - > Takes as input reports $\tilde{x} = (\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n)$
 - \triangleright Returns a location $y \in \mathbb{R}$ for the new facility
- Cost to agent $i : c_i(y) = |y x_i|$
- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$

Facility Location

- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$
- Q: Ignoring incentives, what choice of y would minimize the social cost?
- A: The median location $med(x_1, ..., x_n)$
 - > n is odd \rightarrow the unique "(n+1)/2"th smallest value
 - > n is even \rightarrow "n/2"th or "(n/2)+1"st smallest value
 - > Why?

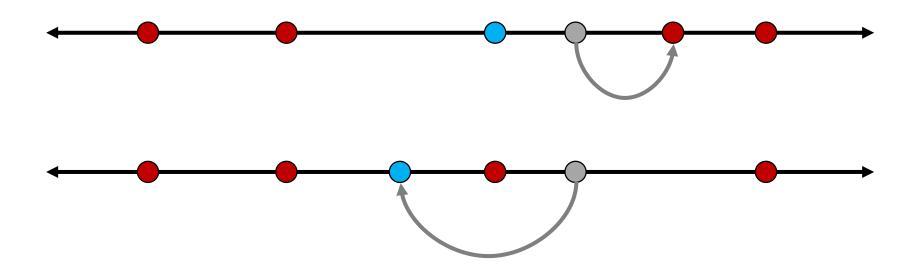
Facility Location



- Median is optimal (i.e., 1-approximation)
- What about incentives?
 - Median is also strategyproof (SP)!
 - > Irrespective of the reports of other agents, agent i is best off reporting x_i

Median is SP

No manipulation can help



- A different objective function $C(y) = \max_{i} |y x_i|$
- Q: Again ignoring incentives, what value of y minimizes the maximum cost?
- A: The midpoint of the leftmost $(\min_{i} x_i)$ and the rightmost $(\max_{i} x_i)$ locations
- Q: Is this optimal rule strategyproof?
- A: No!

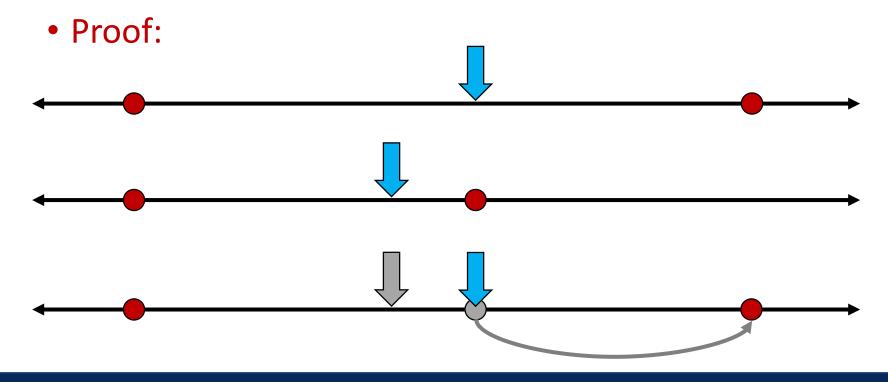
- $C(y) = \max_{i} |y x_i|$
- We want to use a strategyproof mechanism.
- Question: What is the approximation ratio of median for maximum cost?
 - $1. \in [1,2)$
 - $2. \in [2,3)$
 - $3. \in [3,4)$
 - $4. \in [4, \infty)$

Answer: 2-approximation

- Other SP mechanisms that are 2-approximation
 - > Leftmost: Choose the leftmost reported location
 - > Rightmost: Choose the rightmost reported location
 - > Dictatorship: Choose the location reported by agent 1

> ...

Theorem [Procaccia & Tennenholtz, '09]
 No deterministic SP mechanism has approximation ratio < 2 for maximum cost.

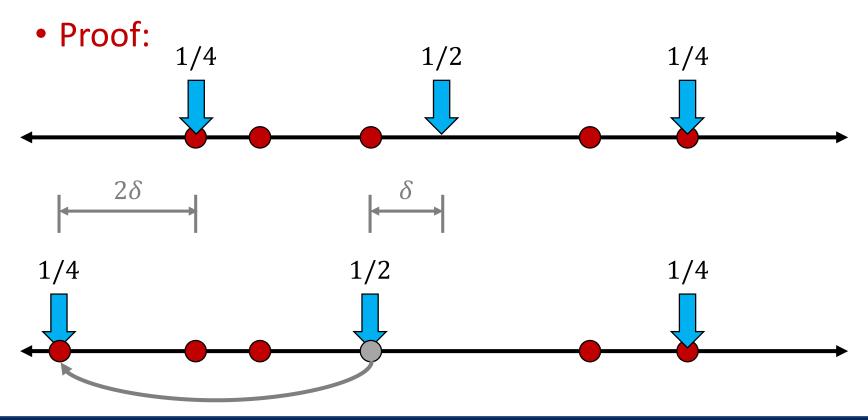


Max Cost + Randomized

- The Left-Right-Middle (LRM) Mechanism
 - > Choose $\min_{i} x_i$ with probability $\frac{1}{4}$
 - > Choose $\max_{i} x_{i}$ with probability $\frac{1}{4}$
 - > Choose $(\min_{i} x_i + \max_{i} x_i)/2$ with probability $\frac{1}{2}$
- Question: What is the approximation ratio of LRM for maximum cost?
- At most $\frac{(1/4)*2C+(1/4)*2C+(1/2)*C}{C} = \frac{3}{2}$

Max Cost + Randomized

• Theorem [Procaccia & Tennenholtz, '09]: The LRM mechanism is strategyproof.



Max Cost + Randomized

• Exercise for you!

Try showing that no randomized SP mechanism can achieve approximation ratio < 3/2.