CSC2556
Lecture 3

Approaches to Voting

Credit for several visuals: Ariel D. Procaccia

CSC2556 - Nisarg Shah



Announcement

* No class next week (1/30)

e Please use this time to work on the homework.
> I'll post the full homework 1 by this weekend.

* You can also start thinking about the project idea!
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Approaches to Voting

* What does an approach give us?
> A way to compare voting rules
> Hopefully a “uniquely optimal voting rule”

* Axiomatic Approach
* Distance Rationalizability
e Statistical Approach
 Utilitarian Approach
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Axiomatic Approach

* Axiom: requirement that the voting rule should
behave in a certain way

* Goal: define a set of reasonable axioms, and search
for voting rules that satisfy them together

> Ultimate hope: a unique voting rule satisfies the set of
axioms simultaneously!

> What often happens: no voting rule satisfies the axioms
together ®
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Axiomatic Approach

* Weak axioms, satisfied by all popular voting rules

* Unanimity: If all voters have the same top choice,
that alternative is the winner.
(top(>;) =aVieEN) > f(;) =a

> An even weaker version requires all rankings to be identical

* Pareto optimality: If all voters prefer a to b, then b is
not the winner.

(@a>;bVieN)=f(5)#b
* Q: What is the relation between these axioms?

» Pareto optimality = Unanimity
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Axiomatic Approach

* Anonymity: Permuting votes does not change the
winner (i.e., voter identities don’t matter).

> E.g., these two profiles must have the same winner:
{voter1:a > b > c,voter 2: b > ¢ > a}
{voter 1: b > ¢ > a, voter 2:a > b > c}

* Neutrality: Permuting alternative names just
permutes the winner.
> E.g., say a winson {voter 1: a > b > c,voter 2: b > ¢ > a}
> We permute all names:a —- b, b — c,and ¢ — a
> New profile: {voter 1: b > ¢ > a, voter 2: ¢ > a > b}
> Then, the new winner must be b.
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Axiomatic Approach

* Neutrality is tricky

> For deterministic rules, it is inconsistent with anonymity!
o Imagine {voter 1: a > b, voter 2: b > a}
o Without loss of generality, say a wins
o Imagine a different profile: {voter 1: b > a, voter 2: a > b}
* Neutrality: We just exchanged a <> b, so winner is b.
* Anonymity: We just exchanged the votes, so winner stays a.

> Typically, we only require neutrality for...

o Randomized rules: E.g., a rule could satisfy both by choosing a and
b as the winner with probability 12 each, on both profiles

o Deterministic rules that return a set of tied winners: E.g., a rule
could return {a, b} as tied winners on both profiles.
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Axiomatic Approach

* Stronger but more subjective axioms

* Majority consistency: If a majority of voters have
the same top choice, that alternative wins.

(1ti:top- = a}l >3) = f(5) =

* Condorcet consistency: If a defeats every other
alternative in a pairwise election, a wins.

(It:a > b} >2,vb#a) = f(5) = a

CSC2556 - Nisarg Shah 8



Axiomatic Approach

* Recall: Condorcet consistency = Majority
consistency

 All positional scoring rules violate Condorcet
consistency.

* Most positional scoring rules also violate majority
consistency.

> Plurality satisfies majority consistency.
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Axiomatic Approach

* Consistency: If a is the winner on two profiles, it
must be the winner on their union.

fF)=anf(Z)=a=f(>1+>;)=a

> Example: >;={a>b >c}, =,={a>c>b,b >c > a}
> Then, =+>,={a>b>c,a>c>b,b >c > a}

 Theorem [Young '75]:

> Subject to mild requirements, a voting rule is consistent if and only if it
is a positional scoring rule!
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Axiomatic Approach

* Weak monotonicity: If a is the winner, and a is
“pushed up” in some votes, a remains the winner.
> (%) =a=f(>') = a, where
ob>ceb>;c,VieN, b,c € A\{a} (Order of others preserved)
oa>;b=>a>;bVieN, b€ A\{a} (aonlyimproves)

* |n contrast, strong monotonicity requires f(g’) =a
even if > only satisfies the 2" condition

> Too strong; only satisfied by dictatorial or non-onto rules
[GS Theorem]
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Axiomatic Approach

* Weak monotonicity: If a is the winner, and a is
“pushed up” in some votes, a remains the winner.
> (%) =a=f(>') = a, where
ob>ceb>;c,VieN, b,c € A\{a} (Order of others preserved)
oa>;b=>a>;bVieN, b€ A\{a} (aonlyimproves)

* Weak monotonicity is satisfied by most voting rules
> Popular exceptions: STV, plurality with runoff

» But this helps STV be hard to manipulate

o Theorem [Conitzer-Sandholm ‘06]: “Every weakly monotonic voting
rule is easy to manipulate on average.”
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Axiomatic Approach

e STV violates weak monotonicity

7 voters | 5 voters | 2 voters | 6 voters Il 7 voters | 5 voters | 2 voters | 6 voters |
a b b C a b a C

b C C a b C b a

C a a b C a C b
* First ¢, then b eliminated * First b, then a eliminated
e Winner: a e Winner: ¢

CSC2556 - Nisarg Shah




Axiomatic Approach

* Pareto optimality: If a >; b for all voters i, then

f(>) # b.

* Relatively weak requirement

> Some rules that throw out alternatives early may violate
this.

» Example: voting trees

o Alternatives move up by defeating opponent
in pairwise election

o d may win even if all voters prefer b to d if
b loses to e early, and e loses to ¢
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Axiomatic Approach

* Arrow’s Impossibility Theorem
> Applies to social welfare functions (profile = ranking)

> Independence of Irrelevant Alternatives (lIA): If the
preferences of all voters between a and b are unchanged,
the social preference between a and b should not change

> Pareto optimality: If all prefer a to b, then the social
preference should bea > b

> Theorem: IIA + Pareto optimality = dictatorship.

* Interestingly, automated theorem provers can also
prove Arrow’s and GS impossibilities!
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Axiomatic Approach

* One can think of polynomial time computability as
an axiom

> Two rules that attempt to make the pairwise comparison
graph acyclic are NP-hard to compute:
o Kemeny’s rule: invert edges with minimum total weight
o Slater’s rule: invert minimum number of edges

> Both rules can be implemented by straightforward
integer linear programs

o For small instances (say, up to 20 alternatives), NP-hardness isn’t a
practical concern.
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Statistical Approach

* According to Condorcet [1785]:

> The purpose of voting is not merely to balance subjective
opinions; it is a collective quest for the truth.

> Enlightened voters try to judge which alternative best
serves society.

* Modern motivation due to
human computation systems

> EteRNA: Select 8 RNA designs to
synthesize so that the truly most
stable design is likely one of them
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Statistical Approach

* Traditionally well-explored for choosing a ranking

* For m = 2, the majority choice is most likely the
true choice under any reasonable model.

* For m = 3: Condorcet suggested an approach, but
the writing was too ambiguous to derive a well-
defined voting rule.
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Statistical Approach

* Young’s interpretation of Condorcet’s approach:
> Assume there is a ground truth ranking ”
» Each voter i makes a noisy observation g;
> The observations are i.i.d. given the ground truth
o Pr[o|o*] o ¢%@:07)
o d = Kendall-tau distance = #pairwise disagreements
o Interesting tidbit: Normalization constant is independent of *

S, %09 =1.1+¢) .- (I+@+-+¢™1h)

> Which ranking is most likely to be the ground truth
(maximum likelihood estimate — MLE)?

o The ranking that Kemeny’s rule returns!
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Statistical Approach

* The approach yields a uniquely optimal voting rule,
but relies on a very specific distribution
> Other distributions will lead to different MLE rankings.

> Reasonable if sufficient data is available to estimate the
distribution well

> Else, we may want robustness to a wide family of possible
underlying distributions [Caragiannis et al. "13, "14]

e A connection to the axiomatic approach

> A voting rule can be MLE for some distribution only if it
satisfies consistency. (Why?)

o Maximin violates consistency, and therefore can never be MLE!
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Implicit Utilitarian Approach

e Utilities: Voters have underlying numerical utilities

> Utility of voter i for alternative a = u;(a)
o Normalization: )., u;(a) = 1 for all voters i

> Given utility vector u, sw(a, u) = Y; u;(a)
> Goal: choose a* € argmax, sw(a, U)

* Preferences: Voters only report ranked preferences
consistent with their utilities
»uij(a) >u;(b) >a>; b
> Preference profile: >
» Cannot maximize welfare given only partial information
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Implicit Utilitarian Approach

* Modified goal: Achieve the best worst-case
approximation to social welfare

* Distortion of voting rule f
max, sw(a, u)
max

W)

> Here, > are the preferences cast by voters when their
utilities are u

> If f is randomized, we need E[sw(f(>),u)]
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Utilitarian Approach

* Pros:
> Uses minimal subjective assumptions

> Yields a uniquely optimal voting rule

o One can define the distortion of f on a given input > by taking the
worst case over all ¥ which would generate >

o Optimal voting rule minimizes the distortion on every >
individually

e Cons:

> The optimal rule does not have an intuitive formula that
humans can comprehend

> In some scenarios, the optimal rule is difficult to compute
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Choosing One Alternative

* Theorem [Caragiannis et al. ’16]:
Given ranked preferences, the optimal
deterministic voting rule has ®(m?) distortion.

* Proof:

> Lower bound: Construct a profile on which every
deterministic voting rule has Q(m?) distortion.

> Upper bound: Show some deterministic voting rule that
has O(m?) distortion on every profile.

CSC2556 - Nisarg Shah



Choosing One Alternative

* Proof (lower bound): ™/ m—1) Voters per column
> Consider the profile on the right a, a, N 01
> If the rule chooses a,: A, an Ay,

o Infinite distortion. WHY?
> If the rule chooses a; fori < m:

o Construct a bad utility profile u as follows

* Voters in column i have utility 1/m for every alternative

* All other voters have utility 1/2 for their top two alternatives

n 1 n-n/(m-1
osw(a;, u) = — sw(a,,, u) = ; )

o Distortion = Q(m?)
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Choosing One Alternative

* Proof (upper bound):

> Simply using plurality achieves O (m?) distortion.
o WHY?

> Suppose plurality winner is a.

o At least n/m voters prefer a the most, and thus have utility at
least 1/m for a.

> sw(a, i) = n/m?
> sw(a*,u) < n for every alternative a*

> 0(m?) distortion
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Implicit Utilitarian Voting

* Plurality is as good as any other deterministic
voting rule!

* Alternatively:

> If we must choose an alternative deterministically, ranked
preferences provide no more useful information than
top-place votes do, in the worst case.

* There’s more hope if we're allowed to randomize.
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Choosing One Alternative

 Theorem [Boutilier et al. “12]:
Given ranked preferences, the optimal randomized
voting rule has distortion O(y/m - log* m), Q(v/m).

e Proof:

> Lower bound: Construct a profile on which every
randomized voting rule Q(y/m) distortion.

> Upper bound: Show some randomized voting rule that
has O(y/m - log* m) distortion
o We'll do the much simpler O(y/mlogm) distortion
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Choosing One Alternative

* Proof (lower bound):

> Consider a similar profile:

o ym special alternatives

o Voting rule must choose one of them
(say a*) w.p. at most 1/y/m

n
/\/m voters per column

a4 a, a\/m

> Bad utility profile u:
o All voters ranking a™ first give utility 1 to a*
o All other voters give utility 1/m to each alternative

n — 2N
m_sw(a,u)_\/_

o sw(a,u) < n/m for every other a.
o Distortion lower bound: v/m/3 (proof on the board!)

@)
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Choosing One Alternative

* Proof (upper bound):

> Given profile >, define the harmonic score sc(a, >):
o Each voter gives 1/k points to her k" most preferred alternative
o Take the sum of points across voters
o sw(a, i) < sc(a,>) (WHY?)
oYgsc(a,>)=n-Y" . 1/k=nH,<n-(Inm+1)

» Golden rule:

o W.p. ¥2: Choose every a w.p. proportional to sc(a, ;)
o W.p. ¥%: Choose every a w.p. 1/m (uniformly at random)

> Distortion < 2\/m +(Inm + 1) (proofon the board!)
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Optimal vs Near-Optimal Rules

* The distortion is often bad for large m

> E.g., @(m?) for deterministic rules.

> But one can argue that the optimal alternative which
minimizes distortion represents some meaningful
aggregation of information.

* How difficult is it to find the optimal alternative?

> Polynomial time computable for both deterministic (via a
direct formula) and randomized (via a non-trivial LP)
cases
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Input Format

 What if we ask about underlying numerical utilities
in a format other than ranking?

* Threshold approval votes

> Voting rule selects a threshold 7, asks each voter i, for
each alternative a, whetheru;(a) >t

> 0(logm) distortion!

* Food for thought

> What is the tradeoff between the number of bits of
information elicited and the distortion achieved?

> What is the best input format for a given number of bits?
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Implicit Utilitarian Approach

e Extensions

> Selecting a subset of alternatives or a ranking
o Lack of an obvious objective function

o Has been studied for some natural objective functions
[Caragiannis et al. ’16, ongoing work]

> Participatory budgeting [Benade et al. "17]
> Graph problems

> Project idea: Replace numbers with rankings in any
problem!

* Deployed

ROBOVOTE
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