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Announcement
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• No class next week (1/30)

• Please use this time to work on the homework.
➢ I’ll post the full homework 1 by this weekend.

• You can also start thinking about the project idea!



Approaches to Voting
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• What does an approach give us?
➢ A way to compare voting rules

➢ Hopefully a “uniquely optimal voting rule”

• Axiomatic Approach

• Distance Rationalizability

• Statistical Approach

• Utilitarian Approach

• …



Axiomatic Approach
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• Axiom: requirement that the voting rule should 
behave in a certain way 

• Goal: define a set of reasonable axioms, and search 
for voting rules that satisfy them together
➢ Ultimate hope: a unique voting rule satisfies the set of 

axioms simultaneously!

➢ What often happens: no voting rule satisfies the axioms 
together 



Axiomatic Approach
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• Weak axioms, satisfied by all popular voting rules

• Unanimity: If all voters have the same top choice, 
that alternative is the winner. 

𝑡𝑜𝑝 ≻𝑖 = 𝑎 ∀𝑖 ∈ 𝑁 ⇒ 𝑓 ≻ = 𝑎

➢ An even weaker version requires all rankings to be identical

• Pareto optimality: If all voters prefer 𝑎 to 𝑏, then 𝑏 is 
not the winner.

𝑎 ≻𝑖 𝑏 ∀𝑖 ∈ 𝑁 ⇒ 𝑓 ≻ ≠ 𝑏

• Q: What is the relation between these axioms?

➢ Pareto optimality ⇒ Unanimity
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• Anonymity: Permuting votes does not change the 
winner (i.e., voter identities don’t matter).
➢ E.g., these two profiles must have the same winner:

{voter 1: 𝑎 ≻ 𝑏 ≻ 𝑐, voter 2: 𝑏 ≻ 𝑐 ≻ 𝑎}
{voter 1: 𝑏 ≻ 𝑐 ≻ 𝑎, voter 2: 𝑎 ≻ 𝑏 ≻ 𝑐}

• Neutrality: Permuting alternative names just 
permutes the winner.
➢ E.g., say 𝑎 wins on {voter 1: 𝑎 ≻ 𝑏 ≻ 𝑐, voter 2: 𝑏 ≻ 𝑐 ≻ 𝑎}

➢ We permute all names: 𝑎 → 𝑏, 𝑏 → 𝑐, and 𝑐 → 𝑎

➢ New profile: {voter 1: 𝑏 ≻ 𝑐 ≻ 𝑎, voter 2: 𝑐 ≻ 𝑎 ≻ 𝑏}

➢ Then, the new winner must be 𝑏.



Axiomatic Approach

CSC2556 - Nisarg Shah 7

• Neutrality is tricky

➢ For deterministic rules, it is inconsistent with anonymity!
o Imagine {voter 1: 𝑎 ≻ 𝑏, voter 2: 𝑏 ≻ 𝑎}

o Without loss of generality, say 𝑎 wins

o Imagine a different profile: {voter 1: 𝑏 ≻ 𝑎, voter 2: 𝑎 ≻ 𝑏}

• Neutrality: We just exchanged 𝑎 ↔ 𝑏, so winner is 𝑏.

• Anonymity: We just exchanged the votes, so winner stays 𝑎.

➢ Typically, we only require neutrality for…
o Randomized rules: E.g., a rule could satisfy both by choosing 𝑎 and 
𝑏 as the winner with probability ½ each, on both profiles

o Deterministic rules that return a set of tied winners: E.g., a rule 
could return {𝑎, 𝑏} as tied winners on both profiles.
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• Stronger but more subjective axioms

• Majority consistency: If a majority of voters have 
the same top choice, that alternative wins.

𝑖: 𝑡𝑜𝑝 ≻𝑖 = 𝑎 >
𝑛

2
⇒ 𝑓 ≻ = 𝑎

• Condorcet consistency: If 𝑎 defeats every other 
alternative in a pairwise election, 𝑎 wins.

𝑖: 𝑎 ≻𝑖 𝑏 >
𝑛

2
, ∀𝑏 ≠ 𝑎 ⇒ 𝑓 ≻ = 𝑎
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• Recall: Condorcet consistency ⇒ Majority 
consistency

• All positional scoring rules violate Condorcet 
consistency.

• Most positional scoring rules also violate majority 
consistency.
➢ Plurality satisfies majority consistency.



Axiomatic Approach
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• Consistency: If 𝑎 is the winner on two profiles, it 
must be the winner on their union.

𝑓 ≻1 = 𝑎 ∧ 𝑓 ≻2 = 𝑎 ⇒ 𝑓 ≻1+≻2 = 𝑎

➢ Example: ≻1= 𝑎 ≻ 𝑏 ≻ 𝑐 , ≻2= 𝑎 ≻ 𝑐 ≻ 𝑏, 𝑏 ≻ 𝑐 ≻ 𝑎

➢ Then, ≻1+≻2= 𝑎 ≻ 𝑏 ≻ 𝑐, 𝑎 ≻ 𝑐 ≻ 𝑏, 𝑏 ≻ 𝑐 ≻ 𝑎

• Theorem [Young ’75]:
➢ Subject to mild requirements, a voting rule is consistent if and only if it 

is a positional scoring rule!
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• Weak monotonicity: If 𝑎 is the winner, and 𝑎 is 
“pushed up” in some votes, 𝑎 remains the winner.
➢ 𝑓 ≻ = 𝑎 ⇒ 𝑓 ≻′ = 𝑎, where 
o 𝑏 ≻𝑖 𝑐 ⇔ 𝑏 ≻𝑖

′ 𝑐, ∀𝑖 ∈ 𝑁, 𝑏, 𝑐 ∈ 𝐴\{𝑎} (Order of others preserved)

o 𝑎 ≻𝑖 𝑏 ⇒ 𝑎 ≻𝑖
′ 𝑏, ∀𝑖 ∈ 𝑁, 𝑏 ∈ 𝐴\{𝑎} (𝑎 only improves)

• In contrast, strong monotonicity requires 𝑓 ≻′ = 𝑎
even if ≻′ only satisfies the 2nd condition
➢ Too strong; only satisfied by dictatorial or non-onto rules 

[GS Theorem]



Axiomatic Approach

CSC2556 - Nisarg Shah 12

• Weak monotonicity: If 𝑎 is the winner, and 𝑎 is 
“pushed up” in some votes, 𝑎 remains the winner.
➢ 𝑓 ≻ = 𝑎 ⇒ 𝑓 ≻′ = 𝑎, where 
o 𝑏 ≻𝑖 𝑐 ⇔ 𝑏 ≻𝑖

′ 𝑐, ∀𝑖 ∈ 𝑁, 𝑏, 𝑐 ∈ 𝐴\{𝑎} (Order of others preserved)

o 𝑎 ≻𝑖 𝑏 ⇒ 𝑎 ≻𝑖
′ 𝑏, ∀𝑖 ∈ 𝑁, 𝑏 ∈ 𝐴\{𝑎} (𝑎 only improves)

• Weak monotonicity is satisfied by most voting rules
➢ Popular exceptions: STV, plurality with runoff

➢ But this helps STV be hard to manipulate
o Theorem [Conitzer-Sandholm ‘06]: “Every weakly monotonic voting 

rule is easy to manipulate on average.”
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• STV violates weak monotonicity

7 voters 5 voters 2 voters 6 voters

a b b c

b c c a

c a a b

• First 𝑐, then 𝑏 eliminated

• Winner: 𝑎

7 voters 5 voters 2 voters 6 voters

a b a c

b c b a

c a c b

• First 𝑏, then 𝑎 eliminated

• Winner: 𝑐
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• Pareto optimality: If 𝑎 ≻𝑖 𝑏 for all voters 𝑖, then 
𝑓 ≻ ≠ 𝑏.

• Relatively weak requirement
➢ Some rules that throw out alternatives early may violate 

this. 

➢ Example: voting trees
o Alternatives move up by defeating opponent 

in pairwise election

o 𝑑 may win even if all voters prefer 𝑏 to 𝑑 if
𝑏 loses to 𝑒 early, and 𝑒 loses to 𝑐

𝑎 𝑐

𝑑

𝑒𝑏
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• Arrow’s Impossibility Theorem
➢ Applies to social welfare functions (profile → ranking) 

➢ Independence of Irrelevant Alternatives (IIA): If the 
preferences of all voters between 𝑎 and 𝑏 are unchanged, 
the social preference between 𝑎 and 𝑏 should not change

➢ Pareto optimality: If all prefer 𝑎 to 𝑏, then the social 
preference should be 𝑎 ≻ 𝑏

➢ Theorem: IIA + Pareto optimality ⇒ dictatorship.

• Interestingly, automated theorem provers can also 
prove Arrow’s and GS impossibilities!



Axiomatic Approach
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• One can think of polynomial time computability as 
an axiom

➢ Two rules that attempt to make the pairwise comparison 
graph acyclic are NP-hard to compute: 
o Kemeny’s rule: invert edges with minimum total weight

o Slater’s rule: invert minimum number of edges

➢ Both rules can be implemented by straightforward 
integer linear programs
o For small instances (say, up to 20 alternatives), NP-hardness isn’t a 

practical concern.



Statistical Approach
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• According to Condorcet [1785]:
➢ The purpose of voting is not merely to balance subjective 

opinions; it is a collective quest for the truth.

➢ Enlightened voters try to judge which alternative best 
serves society.

• Modern motivation due to 
human computation systems
➢ EteRNA: Select 8 RNA designs to 

synthesize so that the truly most 
stable design is likely one of them



Statistical Approach
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• Traditionally well-explored for choosing a ranking

• For 𝑚 = 2, the majority choice is most likely the 
true choice under any reasonable model.

• For 𝑚 ≥ 3: Condorcet suggested an approach, but 
the writing was too ambiguous to derive a well-
defined voting rule.



Statistical Approach
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• Young’s interpretation of Condorcet’s approach:
➢ Assume there is a ground truth ranking 𝜎∗

➢ Each voter 𝑖 makes a noisy observation 𝜎𝑖
➢ The observations are i.i.d. given the ground truth
o Pr[𝜎|𝜎∗] ∝ 𝜑𝑑 𝜎,𝜎∗

o 𝑑 = Kendall-tau distance = #pairwise disagreements

o Interesting tidbit: Normalization constant is independent of 𝜎∗

Σ𝜎 𝜑
𝑑 𝜎,𝜎∗ = 1 ⋅ 1 + 𝜑 ⋅ … ⋅ 1 + 𝜑 +⋯+ 𝜑𝑚−1

➢ Which ranking is most likely to be the ground truth 
(maximum likelihood estimate – MLE)?
o The ranking that Kemeny’s rule returns!



Statistical Approach
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• The approach yields a uniquely optimal voting rule, 
but relies on a very specific distribution
➢ Other distributions will lead to different MLE rankings.

➢ Reasonable if sufficient data is available to estimate the 
distribution well

➢ Else, we may want robustness to a wide family of possible 
underlying distributions [Caragiannis et al. ’13, ’14]

• A connection to the axiomatic approach
➢ A voting rule can be MLE for some distribution only if it 

satisfies consistency.  (Why?)
o Maximin violates consistency, and therefore can never be MLE!



Implicit Utilitarian Approach
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• Utilities: Voters have underlying numerical utilities
➢ Utility of voter 𝑖 for alternative 𝑎 = 𝑢𝑖(𝑎)
o Normalization: σ𝑎 𝑢𝑖 𝑎 = 1 for all voters 𝑖

➢ Given utility vector 𝑢, 𝑠𝑤 𝑎, 𝑢 = σ𝑖 𝑢𝑖 𝑎

➢ Goal: choose 𝑎∗ ∈ argmax𝑎 𝑠𝑤 𝑎, 𝑢

• Preferences: Voters only report ranked preferences 
consistent with their utilities
➢ 𝑢𝑖 𝑎 > 𝑢𝑖 𝑏 ⇒ 𝑎 ≻𝑖 𝑏

➢ Preference profile: ≻

➢ Cannot maximize welfare given only partial information



Implicit Utilitarian Approach
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• Modified goal: Achieve the best worst-case 
approximation to social welfare

• Distortion of voting rule 𝑓

max
𝑢

max𝑎 sw(𝑎, 𝑢)

sw 𝑓 ≻ , 𝑢
➢ Here, ≻ are the preferences cast by voters when their 

utilities are 𝑢

➢ If 𝑓 is randomized, we need 𝐸 sw 𝑓 ≻ , 𝑢



Utilitarian Approach
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• Pros: 
➢ Uses minimal subjective assumptions 

➢ Yields a uniquely optimal voting rule
o One can define the distortion of 𝑓 on a given input ≻ by taking the 

worst case over all 𝑢 which would generate ≻

o Optimal voting rule minimizes the distortion on every ≻
individually

• Cons: 
➢ The optimal rule does not have an intuitive formula that 

humans can comprehend

➢ In some scenarios, the optimal rule is difficult to compute



Choosing One Alternative
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• Theorem [Caragiannis et al. ’16]:

Given ranked preferences, the optimal 
deterministic voting rule has Θ 𝑚2 distortion.

• Proof:
➢ Lower bound: Construct a profile on which every 

deterministic voting rule has Ω 𝑚2 distortion.

➢ Upper bound: Show some deterministic voting rule that 
has 𝑂 𝑚2 distortion on every profile.
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• Proof (lower bound):
➢ Consider the profile on the right

➢ If the rule chooses 𝑎𝑚:
o Infinite distortion. WHY?

➢ If the rule chooses 𝑎𝑖 for 𝑖 < 𝑚:

oConstruct a bad utility profile 𝑢 as follows
• Voters in column 𝑖 have utility 1/𝑚 for every alternative

• All other voters have utility 1/2 for their top two alternatives

o sw 𝑎𝑖 , 𝑢 =
𝑛

𝑚−1
⋅
1

𝑚
, sw 𝑎𝑚, 𝑢 ≥

𝑛− Τ𝑛 (𝑚−1)

2

oDistortion = Ω 𝑚2

Τ𝑛 (𝑚−1) voters per column

𝑎1 𝑎2 … 𝑎𝑚−1

𝑎𝑚 𝑎𝑚 … 𝑎𝑚

⋮ ⋮ ⋮ ⋮
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• Proof (upper bound):
➢ Simply using plurality achieves 𝑂 𝑚2 distortion.
o WHY?

➢ Suppose plurality winner is 𝑎.

o At least 𝑛/𝑚 voters prefer 𝑎 the most, and thus have utility at 
least Τ1 𝑚 for 𝑎.

➢ 𝑠𝑤 𝑎, 𝑢 ≥ Τ𝑛 𝑚2

➢ 𝑠𝑤 𝑎∗, 𝑢 ≤ 𝑛 for every alternative 𝑎∗

➢ 𝑂 𝑚2 distortion



Implicit Utilitarian Voting
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• Plurality is as good as any other deterministic 
voting rule!

• Alternatively:
➢ If we must choose an alternative deterministically, ranked 

preferences provide no more useful information than 
top-place votes do, in the worst case.

• There’s more hope if we’re allowed to randomize.



Choosing One Alternative
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• Theorem [Boutilier et al. ‘12]:

Given ranked preferences, the optimal randomized
voting rule has distortion O 𝑚 ⋅ log∗𝑚 , Ω 𝑚 .

• Proof:
➢ Lower bound: Construct a profile on which every 

randomized voting rule Ω 𝑚 distortion.

➢ Upper bound: Show some randomized voting rule that 
has 𝑂 𝑚 ⋅ log∗𝑚 distortion

o We’ll do the much simpler 𝑂( 𝑚 log𝑚) distortion



Choosing One Alternative
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• Proof (lower bound):
➢ Consider a similar profile:
o 𝑚 special alternatives

o Voting rule must choose one of them 
(say 𝑎∗) w.p. at most Τ1 𝑚

➢ Bad utility profile 𝑢:
o All voters ranking 𝑎∗ first give utility 1 to 𝑎∗

o All other voters give utility 1/𝑚 to each alternative

o
𝑛

𝑚
≤ sw 𝑎∗, 𝑢 ≤

2𝑛

𝑚

o 𝑠𝑤 𝑎, 𝑢 ≤ 𝑛/𝑚 for every other 𝑎.

o Distortion lower bound: 𝑚/3 (proof on the board!)

ൗ
𝑛

𝑚
voters per column

𝑎1 𝑎2 … 𝑎 𝑚

⋮ ⋮ ⋮ ⋮
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• Proof (upper bound):
➢ Given profile ≻, define the harmonic score sc(𝑎, ≻):
o Each voter gives Τ1 𝑘 points to her 𝑘𝑡ℎ most preferred alternative

o Take the sum of points across voters

o sw 𝑎, 𝑢 ≤ sc(𝑎, ≻) (WHY?)

o σ𝑎 𝑠𝑐(𝑎, ≻) = 𝑛 ⋅ σ𝑘=1
𝑚 Τ1 𝑘 = 𝑛 𝐻𝑚 ≤ 𝑛 ⋅ (ln𝑚 + 1)

➢ Golden rule:
o W.p. ½: Choose every 𝑎 w.p. proportional to sc(𝑎, ≻)

o W.p. ½: Choose every 𝑎 w.p. Τ1 𝑚 (uniformly at random)

➢ Distortion ≤ 2 𝑚 ⋅ (ln𝑚 + 1) (proof on the board!)



Optimal vs Near-Optimal Rules
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• The distortion is often bad for large 𝑚
➢ E.g., Θ 𝑚2 for deterministic rules.

➢ But one can argue that the optimal alternative which 
minimizes distortion represents some meaningful 
aggregation of information.

• How difficult is it to find the optimal alternative?
➢ Polynomial time computable for both deterministic (via a 

direct formula) and randomized (via a non-trivial LP) 
cases



Input Format
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• What if we ask about underlying numerical utilities 
in a format other than ranking? 

• Threshold approval votes
➢ Voting rule selects a threshold 𝜏, asks each voter 𝑖, for 

each alternative 𝑎, whether 𝑢𝑖 𝑎 ≥ 𝜏

➢ 𝑂 log𝑚 distortion!

• Food for thought
➢ What is the tradeoff between the number of bits of 

information elicited and the distortion achieved?

➢ What is the best input format for a given number of bits?



Implicit Utilitarian Approach
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• Extensions
➢ Selecting a subset of alternatives or a ranking
o Lack of an obvious objective function

o Has been studied for some natural objective functions 
[Caragiannis et al. ’16, ongoing work]

➢ Participatory budgeting [Benade et al. ’17]

➢ Graph problems

➢ Project idea: Replace numbers with rankings in any 
problem!

• Deployed


