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6 Chapter 1. Elementary Concepts and Results

some initial insight into its algebraic structure. Simple variants of stable
marriage are considered in Section 1.4, and in Section 1.5, lower bounds
are established for a number of algorithmic problems associated with stable
marriage, showing in particular that the Gale-Shapley algorithm is asymp-
totically optimal. Section 1.6 covers in some detail the college admissions
or hospitals/residents problem (which we shall refer to henceforth, for con-
sistency, as the hospitals/residents problem). Finally, Section 1.7 considers
briefly some of the issues involved if one or more of the participants at-
tempts to influence the outcome of the Gale-Shapley algorithm, or one of
its variants, by falsifying preferences — issues of deceit, strategy, and coali-
tion that have received a good deal of attention in the literature in recent
years and that are of some practical importance in the context of the NRMP
algorithm.

1.1.2 Stable Marriage: Basic Terminology and Notation

An instance of size n of the stable marriage problem involves two disjoint
sets of size n, the men and the women. Associated with each person is a
strictly ordered preference list containing all the members of the opposite
sex. Person p prefers g to r, where ¢ and r are of the opposite sex to p, if
and only if ¢ precedes r on p’s preference list.

For such an instance, a matching M is a one-one correspondence between
the men and the women. If man m and woman w are matched in M, then
m and w are called partners in M, and we write m = pys(w), w = pyr(m);
pa(m) is the M-partner of m, and pys(w) the M-partner of w.

A man m and a woman w are said to block a matching M, or to be a
blocking pair for M, if m and w are not partners in M, but m prefers w to
pyu(m) and w prefers m to py(w). A matching for which there is at least
one blocking pair is called unstable, and is otherwise stable.

The basic stable marriage problem involves the determination, for a given
instance, of a stable matching (which, as already mentioned in Section 1.1.1,
always exists). Of course, over and above this basic question, there are many
other interesting questions that can be asked about stable matchings.

Example Consider the stable marriage instance of size 4 specified by the preference
lists in Figure 1.1. Here, as throughout, it is assumed that the men and women are
separately and arbitrarily labeled 1,...,n, and the men’s and women’s preference
lists are arranged horizontally in two separate arrays.

The matching {(1,4),(2,3),(3,2),(4,1)} is stable. Here, and elsewhere in the
text, a matching is specified as a set of ordered man-woman pairs. Stability may be
verified by considering each man in turn as a potential member of a blocking pair.
Man 1 could form a blocking pair only with woman 2, but she prefers her partner,
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1 2 4 1 3 1 2 1 4 3
2 3 L A 2 2 4 3 1 2
3 2 3 1 4 3 1 4 3 2
1 4 1 3 2 4 2 1 4 3
Men's Preferences Women's Preferences

Figure 1.1: A first stable marriage instance of size 4

man 3, to man 1. Each of men 2 and 3 is matched with his favorite woman, so
neither can be in a blocking pair. Finally, man 4 could form a blocking pair only
with woman 4, but she would rather stick with her partner, man 1.

A second example of a stable matching, indeed the only other stable match-
ing in this case, is {(1,4),(2,1),(3,2),(4,3)}, as may be verified in a similar way.
On the other hand, the matching {(1,1),(2,3), (3.2),(4,4)}, for example, is un-
stable because of the blocking pair (1,4); man 1 prefers woman 4 to his partner,
woman 1, and woman 4 prefers man 1 to her partner, man 4. Some other un-
stable matchings may have many more blocking pairs: for example, the matching
{(1,1),(2,2),(3,4),(4,3)} has six, which the reader may care to find.

Stability Checking

It may not be immediately obvious from the problem statement that a stable
matching always exists, or how stable matchings may be found, but it should
be obvious, as illustrated in the example, how a given matching may be
checked for stability. It suffices to consider each member of one sex, say
the men, as a potential member of a blocking pair. For each man, only
the women that he prefers to his partner need be checked. More precisely,
Figure 1.2 contains a stability checking,algorithm, and since there are n men
in an instance of size n, and for each, at most n—1 women need be examined,
it should be clear that with appropriate data structures, the algorithm has
O(n?) worst-case complexity.

Note that here, as elsewhere in the book, algorithms are expressed in an
informal Pascal-like language that should be self-explanatory.

Finally, we introduce some additional, fairly obvious, terminology. A man
m and a woman w constitute a stable pairif and only if m and w are partners
in some stable matching; in these circumstances, m is a stable partner of w,
and vice versa. If some man m and woman w are partners in all stable
matchings, then (m,w) is called a fized pair.

For stylistic reasons, we use a number of phrases as synonyms for “m
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for m :=1tondo
for each w such that m prefers w to pas(m) do
if w prefers m to pps(w) then
begin
report matching unstable ;
halt
end ;
report matching stable

Figure 1.2: Simple stability-checking algorithm

prefers v to w”; these include “v is a better and w a poorer or worse partner
for m” and “v is more favored and w less favored by m”.

1.2 The Gale-Shapley Algorithm

1.2.1 The Basic Algorithm

We now develop the fundamental theorem, due to Gale and Shapley, that
there always exists at least one stable matching in an instance of the stable
marriage problem. To prove this theorem, we describe a version of the
original Gale-Shapley algorithm. This simple algorithm always finds a stable
matching, which, as mentioned earlier, turns out to be uniquely favorable
to the men or to the women, depending on the respective roles of the two
sexes in the algorithm. In our description of the algorithm, we will adopt
the traditional approach, regarding the men as “suitors” in a “courtship”
process, but analogous results may be obtained by reversing the roles of the
sexes.

Informally, the algorithm may be expressed in terms of a sequence of “pro-
posals” from men to women. At any point during the algorithm’s execution,
each person is either engaged or free; each man may alternate between being
engaged and being free, but once a woman is engaged, she is never again
free, although the identity of her fiancé may change. A man who is engaged
more than once obtains fiancées who are successively less desirable to him,
while each successive engagement brings a woman a more favored partner.

When a free woman receives a proposal, she will immediately accept it,
becoming engaged to the proposer. When an engaged woman receives a
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proposal, she compares the proposer with her current fiancé and rejects the
less favored of the two men; that is, if she prefers her fiancé, she rejects
the new proposal, but if she prefers the proposer, she breaks her current
engagement, setting her ex-fiancé free, and becomes engaged to the current
proposer.

Each man proposes to the women on his preference list, in their order of
appearance, until he becomes engaged. If ever that engagement is broken
(by the woman), then he becomes free again, and he resumes his sequence of
proposals, starting with the next woman on his list. The algorithm termi-
nates when everyone is engaged, and we will see that this will happen before
any man exhausts his preference list. Furthermore, we will show that, on
termination, the engaged couples constitute a stable matching.

The basic Gale-Shapley algorithm in which the men propose — the man-
oriented version — is summarized in Figure 1.3.

assign each person to be free ;
while some man m is free do
begin
w = first woman on m’s list to whom m has not yet proposed ;
if w is free then
assign m and w to be engaged {to each other}
else .
if w prefers m to her fiancé m' then
assign m and w to be engaged and m’ to be free
else
w rejects m {and m remains free}
end ;
output the stable matching consisting of the n engaged pairs

Figure 1.3: Basic Gale-Shapley algorithm

As expressed in Figure 1.3, the Gale-Shapley algorithm involves an ele-
ment of nondeterminism, since the order in which the free men propose is
not specified. However, it turns out, as we will see, that this nondeterminism
is of no consequence: the order in which the free men propose is immaterial
to the outcome.

The fundamental nature of the Gale-Shapley algorithm is summarized in
the following theorem.
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Theorem 1.2.1 For any given instance of the stable marriage problem, the
Gale-Shapley algorithm terminates, and, on termination, the engaged pairs
constitute a stable matching.

Proof First, we show that no man can be rejected by all the women. A
woman can reject only when she is engaged, and once she is engaged she
never again becomes free. So the rejection of a man by the last woman on
his list would imply that all the women were already engaged. But since
there are equal numbers of men and women, and no man has two fiancées,
all the men would also be engaged, which is a contradiction. Also, each
iteration involves one proposal, and no man ever proposes twice to the same
woman, so the total number of iterations cannot exceed n? (for an instance
involving n men and n women). Termination is therefore established.

It is clear that, on termination, the engaged pairs specify a matching,
which we denote by M. If man m prefers woman w to pys(m), then w must
have rejected m at some point during the execution of the algorithm. But
this rejection implies that w was, or became, engaged to a man she prefers to
m, and any subsequent change of her fiancé brings her a still better partner.
So w cannot prefer m to par(w), and therefore (m,w) cannot block M. It
follows that there are no blocking pairs for M, and therefore that M is a
stable matching. O

Example Consider the instance of size 4 defined by the preference lists in Fig-
ure 1.4.

1 4 1 2 3 1 4 1 3 2
2 2 3 1 4 2 1 3 2 4
3 2 4 3 1 3 1 2 3 4
4 3 1 4 2 4 4 1 3 2
Men's Preferences Women's Preferences

Figure 1.4: A stable marriage instance of size 4

One possible execution of the algorithm results in the following sequence of pro-
posals: man 1 to woman 4 (accepted); man 2 to woman 2 (accepted); man 3
to woman 2 (accepted, and woman 2 now rejects man 2); man 2 to woman 3 (ac-
cepted); man 4 to woman 3 (rejected, for woman 3 prefers man 2); man 4 to woman
1 (accepted). Hence the stable matching generated by the man-oriented version of
the algorithm is {(1,4),(2,3),(3.2),(4,1)}.
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1.2.2 Man and Woman Optimal Stable Matchings

As already mentioned, all possible executions of the Gale-Shapley algorithm
(with the men as proposers) lead to the same stable matching. Furthermore,
this stable matching has the remarkable property that every man achieves
in it the best partner that he can possibly have in any stable matching. It is
perhaps surprising that all the men, who are essentially in competition with
each other for the women, can agree on a stable matching that is simulta-
neously optimal for all of them. This result is stated formally in the next
theorem, which also establishes the insignificance of the nondeterminism in
the algorithm.

Theorem 1.2.2 All possible executions of the Gale-Shapley algorithm (with
the men as proposers) yield the same stable matching, and in this stable
matching, each man has the best partner that he can have in any stable
matching.

Proof Suppose that an arbitrary execution E of the algorithm yields
the stable matching M, and that, in contradiction of the theorem, there is
a stable matching M’ and a man m such that m prefers w' = pyp(m) to
w = ppr(m). Then during E, w’ must have rejected m. Suppose, without
loss of generality, that this was the first occasion, during F, that a woman
rejected a stable partner, and suppose that this rejection took place because
of the engagement of w’ to m’ (so that w' prefers m’ to m). Then m’ can
have no stable partner whom he prefers to w’ (for no woman had previously
rejected a stable partner). So m' prefers w’ to his partner in M’, and
the supposed stable matching M’ is blocked by (m/,w’). Each man m is
therefore matched in M with his favorite stable partner w, and since E was
an arbitrary execution of the algorithm, it follows that all possible executions
of the algorithm leads to this same stable matching. O

This is a remarkable result. It implies that if each man is independently
given his best stable partner, then the result is a stable matching. Yet there
seems no a priori reason why this should even be a matching,.

For obvious reasons, the stable matching generated by the man-oriented
version of the Gale-Shapley algorithm is called man-optimal. If the roles
of the sexes in the algorithm are interchanged, then the resulting woman-
optimal stable matching, obtained by the woman-oriented version of the
Gale-Shapley algorithm, is analogously optimal for the women. It may hap-
pen that the man and woman optimal stable matchings are identical, but
this will not, in general, be the case. Throughout the book, we shall denote
the man-optimal stable matching by My and the woman-optimal by M.,.
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It is perhaps not surprising that the optimality property from the point of
view of the members of one sex is gained at the expense of the members of the
other sex. Specifically, in the man-optimal stable matching, each woman has
the worst partner that she can have in any stable matching, so that, to coin
what seems an appropriate term, man-optimal is also woman- “pessimal”;
likewise, woman-optimal is man-pessimal.

Theorem 1.2.3 In the man-optimal stable matching, each woman has the
worst partner that she can have in any stable matching.

Proof Suppose not. Let My be the man-optimal stable matching, and
suppose there is a stable matching M’ and a woman w such that w prefers
m = par,(w) to m' = ppp(w). But then (m, w) blocks M " unless m prefers
pae(m) to w = pag,(m), in contradiction of the fact that m has no stable
partner better than his partner in Mp. O

Example The illustration in Figure 1.4 on page 10 shows that it can happen that
the man-oriented and woman-oriented versions of the algorithm yield the same
stable matching, in which case it is immediate, by combining the optimality and
pessimality properties, that this is the unique stable matching for that instance.

The reader may verify that this is the case by executing the woman-oriented
version of the algorithm.

Example The second illustration, this time of size 8, shows that different stable
matchings can arise from the man-oriented and woman-oriented versions of the
algorithm. The preference lists for this instance appear in Figure 1.5.

1 5 7 1 2 6 8 4 3 1 5 3 7T 6 1 2 8 4
2 2 3 7 5 4 1 8 6 2 8 6 3 5 7 2 1 4
3 8 5 1 4 6 2 3 7 3 1 5 6 2 4 8 7 3
4 3 2 7 4 1 6 8 5 4 8 7 3 2 4 1 5 6
5 7 2 5 1 3 6 8 4 5 6 4 7T 3 8 1 2 5
6 1 6 7 5 8 4 2 3 6 2 8 5 3 4 6 7 1
7 2 5 7T 6 3 4 8 1 ¥ 7 5 2 1 8 6 4 3
8 3 8 4 5 7 2 6 1 8 7 4 1 5 2 3 6 8
Men's Preferences Women's Preferences

Figure 1.5: A stable marriage instance of size 8

The reader may verify, by applying the Gale-Shapley algorithm with men and
then women as proposers, that the man-optimal and woman-optimal stable match-
ings are

ﬂ'fﬂ il {(1! 5)~ (2| 3) (3! 8): {41 6) {5s 7)1 (6 1)! (7 2)3 (8‘ 4]}




