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Participatory budgeting enables the allocation of public funds by collecting and aggregating individual prefer-

ences; it has already had a sizable real-world impact. But making the most of this new paradigm requires a

rethinking of some of the basics of computational social choice, including the very way in which individuals

express their preferences. We analytically compare four preference elicitation methods — knapsack votes,

rankings by value or value for money, and threshold approval votes — through the lens of implicit utilitarian
voting, and �nd that threshold approval votes are qualitatively superior. This conclusion is supported by

experiments using data from real participatory budgeting elections.
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1 INTRODUCTION
One of the most well-studied problems in computational social choice [6] deals with aggregating

individual preferences over alternatives — expressed as rankings — into a collective choice of a

subset of alternatives [8, 20, 22]. Nascent social choice applications, though, have given rise to the

harder, richer problem of budgeted social choice [18], where alternatives have associated costs, and

the selected subset is subject to a budget constraint.

Our interest in budgeted social choice stems from the striking real-world impact of the participa-
tory budgeting paradigm [7], which allows local governments to allocate public funds by eliciting

and aggregating the preferences of residents over potential projects. Indeed, in just a few years,

the Participatory Budgeting Project1
has helped allocate more than $170 million dollars of public

money for more than 500 local projects, primarily in the US and Canada (including New York City,

Chicago, Boston, and San Francisco).

In pioneering work, Goel et al. [15] — who have facilitated a number of participatory budgeting

elections as part of the Stanford Crowdsourced Democracy Team
2

— propose and evaluate two

participatory budgeting approaches. In the �rst approach, the input format — the way in which

each voter’s preferences are elicited — is knapsack votes: Each voter reports his individual solution

to the knapsack problem, that is, the set of projects that maximizes his overall value (assuming

an additive valuation function), subject to the budget constraint. The second component of the

1http://www.participatorybudgeting.org
2http://voxpopuli.stanford.edu
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approach is the aggregation rule; in this case, each voter is seen as approving all the projects in his

knapsack, and then projects are ordered by the number of approval votes and greedily selected for

execution, until the budget runs out. The second approach uses value-for-money comparisons as

the input format — it asks voters to compare pairs of projects by the ratio between value and cost.

These comparisons are aggregated using variants of classic voting rules, including the Borda count

rule and the Kemeny rule.

In a sense, Goel et al. [15] take a bottom-up approach: They de�ne novel, intuitive input formats

that encourage voters to take cost — not just value — into account, and justify them after the fact.

By contrast, we wish to take a top-down approach, by specifying an overarching optimization goal,

and using it to compare di�erent methods for participatory budgeting.

1.1 Our Approach and Results
Let us de�ne the participatory budgeting problem a bit more formally, following Goel et al. [15].

A set N of n voters are voting over a set A of m alternatives (projects), where each alternative a
has cost ca . The utility voter i has for alternative a is denoted vi (a). Moreover, utility functions are

additive, that is, the utility of a voter for a set of alternatives A′ ⊆ A is

∑
a∈A′ vi (a). Our goal is to

choose a setW ⊆ A of winning alternatives that maximizes the (utilitarian) social welfare, subject

to the total cost not exceeding the budget B:

argmax

W ⊆A :

∑
a∈W ca6B

∑
i ∈N

∑
a∈W

vi (a). (1)

We make essentially
3

no assumptions about the utility functions. Nevertheless, solving (1) would

be easy if we had access to the utility functions; the problem is challenging precisely because we

do not. Rather, we have access to votes, in a certain input format, that are consistent with the utility

functions. This goal — maximizing social welfare based on votes that serve as proxies for latent

utility functions — has been studied for more than a decade [1–4, 9, 21]; it has recently been termed

implicit utilitarian voting [8].

Absent complete information about the utility functions, clearly social welfare cannot be perfectly

maximized. Procaccia and Rosenschein [21] introduced the notion of distortion to quantify how far

a given aggregation rule is from achieving this goal. Roughly speaking, given a vote pro�le (a set

of n votes) and an outcome, the distortion is the worst-case ratio between the social welfare of the

optimal outcome, and the social welfare of the given outcome, where the worst case is taken with

respect to all utility pro�les that are consistent with the given votes.

Previous work on implicit utilitarian voting assumes that each voter expresses his preferences

by ranking the alternatives in order of decreasing utility. By contrast, the main insight underlying

our work is that

... the implicit utilitarian voting framework allows us to decouple the input format
and aggregation rule, thereby enabling an analytical comparison of di�erent input
formats in terms of their potential for providing good solutions to the participatory
budgeting problem.

This decoupling is achieved by associating each input format with the distortion of the optimal
(randomized) aggregation rule, that is, the rule that minimizes distortion on every vote pro�le.

Intuitively, the distortion thus associated with an input format measures how useful the information

contained in the votes is for achieving social welfare maximization.

3
Other than a standard normalization assumption that we discuss later.
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In §3, we apply this approach to compare four input formats. The �rst is knapsack votes, which

(disappointingly) is associated with trivial distortion of Θ(m).4 Next, we analyze two closely related

input formats: rankings by value, and rankings by value for money, which ask voters to rank the

alternatives by their value and by the ratio of their value and cost, respectively. We �nd that both

admit an upper bound of O(
√
m · logm) on distortion, which almost matches a lower bound of

Ω(
√
m). Finally, we examine a novel input format, which we call threshold approval votes: each voter

is asked to approve each alternative whose value for him is above a threshold that we choose. We

�nd that its associated distortion is O(log2m), and establish a lower bound of Ω (logm/log logm).
To summarize, our theoretical results show striking separations between di�erent input formats,

with threshold approval votes coming out well on top.

While our theoretical results in §3 bound the distortion, i.e., the worst-case ratio of the optimal

social welfare to the social welfare achieved, in §4 we compare di�erent approaches to participa-

tory budgeting using the average-case ratio of the two. Speci�cally, we experimentally evaluate

approaches that use the input formats we study in conjunction with their respective optimal aggre-

gation rules, which minimize the distortion on each pro�le,
5

and compare them to two approaches

currently employed in practice. We use data from two real-world participatory budgeting elections

held in Boston in 2015 and 2016. The experiments indicate that the use of aggregation rules that

minimize distortion on every input pro�le signi�cantly outperforms the currently deployed ap-

proaches, and among the input formats we study, threshold approval votes remain superior, even in

practice. We also observe that the running times of the distortion minimizing rules scale gracefully

for most practical scenarios.

1.2 Related Work
Let us �rst describe the theoretical results of Goel et al. [15] in slightly greater detail. Most relevant

to our work is a theorem that asserts that knapsack voting (i.e., knapsack votes as the input format,

coupled with greedy approval-based aggregation) actually maximizes social welfare. However,

the result strongly relies on their overlap utility model, where the utility of a voter for a subset

of alternatives is (roughly speaking) the size of the intersection between this subset and his own

knapsack vote. In a sense, the viewpoint underlying this model is the opposite of ours, as a voter’s

utility is derived from his vote, instead of the other way around. One criticism of this model is that

even if certain alternatives do not �t into a voter’s individual knapsack solution due to the budget

constraint, the voter could (and usually will) have some utility for them. Goel et al. [15] also provide

strategyproofness results for knapsack voting, which similarly rely on the overlap utility model.

Finally, they interpret their methods as maximum likelihood estimators [12, 23] under certain noise

models.

As our work applies the implicit utilitarian voting approach [4, 8] to a problem in the budgeted

social choice framework [18], it is naturally related to both lines of work. Lu and Boutilier [18]

introduce the budgeted social choice framework, in which the goal is to collectively select a set of

alternatives subject to a budget constraint. Their framework generalizes the participatory budgeting

problem studied herein as it allows the cost of an alternative to also depend on the number of

voters who derive utility from the alternative. However, their results are incomparable to ours

because they assume that every voter’s utility for an alternative is determined solely by the rank of

4
As we later show, an upper bound of O(m) can be achieved trivially irrespective of the input format, by selecting a single

alternative uniformly at random. Knapsack votes, unfortunately, do not help improve it.

5
Note that such rules are not guaranteed to achieve the optimal performance in our experiments as we measure performance

using the average-case ratio of the optimal to the achieved social welfare rather than the (worst-case) distortion. Nonetheless,

such rules perform extremely well.
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the alternative in the voter’s preference order, i.e., that the utilities of all voters follow a common

underlying positional scoring rule. This makes the elicitation problem trivial because eliciting ordinal

preferences (i.e., rankings by value) is assumed to accurately reveal the underlying cardinal utilities.

By contrast, we do not impose such a restriction on the utilities, and compare the rankings-by-value

input format with three other input formats.

Previous work on implicit utilitarian voting focuses exclusively on the rankings-by-value input

format. Boutilier et al. [4] study the problem of selecting a single winning alternative, and provide

an upper bound of O(
√
m log

∗m) and a lower bound of Ω(
√
m) on the distortion achieved by the

optimal aggregation rule. Their setting is a special case of the participatory budgeting problem

where the cost of each alternative equals the entire budget. Consequently, their lower bound

applies to our more general setting, and our upper bound for the rankings-by-value input format

generalizes theirs (up to a logarithmic factor). Caragiannis et al. [8] extend the results of Boutilier

et al. [4] to the case where a subset of alternatives of a given size k is to be selected (only for the

rankings-by-value input format); this is again a special case of the participatory budgeting problem

where the cost of each alternative is B/k . However, our results are incomparable to theirs because

we assume additive utility functions — following previous work on participatory budgeting [15] —

whereas Caragiannis et al. assume that a voter’s utility for a subset of alternatives is his maximum
utility for any alternative in the subset.

The core idea behind implicit utilitarian voting — approximating utilitarian social welfare given

ordinal information — has also been studied in mechanism design. Filos-Ratsikas et al. [14] present

algorithms for �nding matchings in weighted graphs given ordinal comparisons among the edges by

their weight; Krysta et al. [17] apply this notion to the house allocation problem; and, Chakrabarty

and Swamy [10] study this notion in a general mechanism design setting, but with the restriction

borrowed from Lu and Boutilier [18] that the utilities of all agents are determined by a common

positional scoring rule.

2 THE MODEL
Let [k] , {1, . . . ,k}. Let N = [n] be the set of voters, and A be the set of m alternatives. The cost
of alternative a is denoted ca , and the budget B is normalized to 1. For S ⊆ A, let c(S) = ∑

a∈S ca .

De�ne Fc = {S ⊆ A : c(S) 6 1 ∧ c(T ) > 1, ∀S ( T ⊆ A} as the inclusion-maximal budget-feasible

subsets of A.

We assume that each voter has a utility function vi : A→ R+ ∪ {0}, where vi (a) is the utility

that voter i has for alternative a, and that these utilities are additive, i.e., the utility of voter i for a

set S ⊆ A is de�ned as vi (S) =
∑

a∈S vi (a). Finally, to ensure fairness among voters, we make the

standard assumption [4, 9] thatvi (A) = 1 for all voters i ∈ N . We call the vector ®v = {v1, . . . ,vn} of

voter utility functions the utility pro�le. Given the utility pro�le, the (utilitarian) social welfare of an

alternative a ∈ A is de�ned as sw(a, ®v) = ∑
i ∈N vi (a); for a set S ⊆ A, let sw(S, ®v) = ∑

a∈S sw(a, ®v).
The utility function of a voter i is only accessible through his vote ρi , which is induced by vi .

The vector ®ρ = {ρ1, . . . , ρn} is called the input pro�le. Let ®v B ®ρ denote that utility pro�le ®v is

consistent with input pro�le ®ρ. We study four speci�c formats for input votes:

• The knapsack vote κi ⊆ A of voter i ∈ N represents a feasible subset of alternatives with

the highest value for the voter. We have vi B κi if and only if c(κi ) 6 1 and vi (κi ) > vi (S)
for all S ∈ Fc .

• The rankings-by-value and the rankings-by-value-for-money input formats ask voter i ∈ N
to rank the alternatives by decreasing value for him, and by decreasing ratio of value for

him to cost, respectively.
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Formally, let L = L(A) denote the set of rankings over the alternatives. For a ranking

σ ∈ L, let σ (a) denote the position of alternative a in σ , and a �σ b denote σ (a) < σ (b),
i.e., that a is preferred to b under σ .

Then, we say that utility function vi is consistent with the ranking by value (resp. value

for money) of voter i ∈ N , denoted σi , if and only ifvi (a) > vi (b) (resp.vi (a)/ca > vi (b)/cb )

for all a �σi b.

• For a threshold t , the threshold approval vote τi of voter i ∈ N consists of the set of

alternatives whose value for him is at least t , i.e.,viBτi if and only if τi = {a ∈ A : vi (a) > t}.
In our setting, a (randomized) aggregation rule f for an input format maps each input pro�le ®ρ

in that format to a distribution over Fc . The rule is deterministic if it returns a particular set in Fc
with probability 1.

In the implicit utilitarianism framework, the ultimate goal is to maximize the (utilitarian) so-

cial welfare. Procaccia and Rosenschein [21] use the notion of distortion to quantify how far an

aggregation rule f is from achieving this goal. The distortion of f on a vote pro�le ®ρ is given by

dist(f , ®ρ) = sup

®v : ®vB ®ρ

maxT ∈Fc sw(T , ®v)
ES∼f ( ®ρ)[sw(S, ®v)] .

The (overall) distortion of a rule f is given by dist(f ) = max ®ρ dist(f , ®ρ). The optimal (random-

ized) aggregation rule f ∗, which we term the distortion-minimizing aggregation rule, selects the

distribution minimizing distortion on each input pro�le individually, that is,

f ∗( ®ρ) = argmin

µ ∈∆(Fc )
sup

®v : ®vB ®ρ

maxT ∈Fc sw(T , ®v)
ES∼µ [sw(S, ®v)] ,

where ∆(Fc ) is the set of distributions over Fc . Needless to say, f ∗ achieves the best possible overall

distortion. Similarly, the deterministic distortion-minimizing aggregation rule f ∗det is given by

f ∗det( ®ρ) = argmin

S ∈Fc
sup

®v : ®vB ®ρ

maxT ∈Fc sw(T , ®v)
sw(S, ®v) .

Finally, we say that the distortion associated with an input format (i.e., elicitation method) is the

overall distortion of the (randomized) distortion-minimizing aggregation rule for that format; this,

in a sense, quanti�es the e�ectiveness of the input format in achieving social welfare maximization.

In a setting where deterministic rules must be used, we say that the distortion associated with

deterministic aggregation of votes in an input format is the overall distortion of the deterministic

distortion-minimizing aggregation rule for that format. Observe that we always mention determin-

istic aggregation explicitly, and the “distortion associated with an input format” allows randomized

aggregation by default.

3 THEORETICAL RESULTS
In §3.1, we present theoretical results for the distortion associated with di�erent input formats when

no constraints are imposed on the aggregation rule, i.e., when randomized aggregation rules are

allowed. Subsequently, in §3.2, we study the distortion associated with deterministic aggregation

under these input formats.

3.1 Randomized Aggregation Rules
We begin by making a simple observation that holds for (randomized) aggregation of votes in any

input format.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Observation 3.1. The distortion associated with any input format is at mostm.

Proof. Consider the rule that selects a single alternative uniformly at random; this is clearly

budget-feasible. Due to the normalization of utility functions, the expected welfare achieved by this

rule is (1/m) ·∑i ∈N
∑

a∈Avi (a) = n/m. On the other hand, the maximum welfare that any subset

of alternatives can achieve is at most n. Hence, the distortion of this rule, which does not require

any input, is at mostm. �

3.1.1 Knapsack Votes. We now present our analysis for knapsack votes — an input format

advocated by Goel et al. [15].

Theorem 3.2. The distortion associated with knapsack votes is Ω(m).
Proof. Consider the case where every alternative has cost 1 (i.e., equal to the budget). For ease

of exposition, assume thatm divides n. Consider the input pro�le ®κ, in which voters are partitioned

intom subsets {Na}a∈A of equal size, and for every a ∈ A and i ∈ Na , we have κi = {a}.
Consider a randomized aggregation rule f . There must exist an alternative a∗ ∈ A such that

Pr[f (®κ) = {a∗}] 6 1/m. Now, construct a utility pro�le ®v such that i) for all i ∈ Na∗ , we have

vi (a∗) = 1, and vi (a) = 0 for a ∈ A \ {a∗}; and ii) for all a ∈ A \ {a∗} and i ∈ Na , we have

vi (a) = vi (a∗) = 1/2, and vi (b) = 0 for b ∈ A \ {a,a∗}.
Note that ®v is consistent with the input pro�le ®κ, i.e., ®vB®κ. Moreover, it holds that sw(a∗, ®v) > n/2,

whereas sw(a, ®v) 6 n/m for a ∈ A \ {a∗}. It follows that

dist(f ) > dist(f , ®κ) > n/2
1

m · n +
m−1
m · nm

>
m

4

,

as desired. �

In light of Observation 3.1, this result indicates that the distortion associated with knapsack

votes is asymptotically indistinguishable from the distortion one can achieve with absolutely no

information about voter preferences, suggesting that knapsack votes may not be an appropriate

input format if the goal is to maximize social welfare. Our aim now is to �nd input formats that

achieve better results when viewed through the implicit utilitarianism lens.

3.1.2 Rankings by Value and by Value for Money. Goel et al. [15] also advocate the use of

comparisons between alternatives based on value for money, which, like knapsack votes, encourage

voters to consider the trade-o� between value and cost. We study rankings by value for money

as an input format; observe that such rankings convey more information than speci�c pairwise

comparisons.

In addition, we also study rankings by value, which are prevalent in the existing literature on

implicit utilitarian voting [1–4, 9, 21]. Rankings by value convey more information than k-approval

votes, in which each voter submits the set of top k alternatives by their value — this is the input

format of choice for most real-world participatory budgeting elections [15].

As noted in §1.2, Boutilier et al. [4] prove a lower bound of Ω(
√
m) on distortion in the special

case of our setting where all alternatives have cost 1, and the input format is rankings by value.

This result carries over to our more general setting, not only with rankings by value, but also with

rankings by value for money, as both input formats coincide in case of equal costs. Our goal is to

establish an almost matching upper bound.

We start from a mechanism of Boutilier et al. [4] that has distortion O(
√
m logm) in their setting.

It carefully balances between high-value and low-value alternatives (where value is approximately

inferred from the positions of the alternatives in the input rankings). In our more general partic-

ipatory budgeting problem, it is crucial to also take into account the costs, and �nd the perfect
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balance between selecting many low-cost alternatives and fewer high-cost ones. We modify the

mechanism of Boutilier et al. precisely to achieve this goal. Speci�cally, we partition the alternatives

into O(logm) buckets based on their costs, and di�erentiate between alternatives within a bucket

based on their (inferred) value. Our mechanism for rankings by value for money requires more

careful treatment as (ironically) values are obfuscated in value-for-money comparisons.

At �rst glance our setting seems much more di�cult, distortion-wise, than the simple setting of

Boutilier et al. [4]. But ultimately we obtain only a slightly weaker upper bound on the distortion

associated with both rankings by value and by value for money. In other words, to our surprise,

incorporating costs and a budget constraint comes at almost no cost (no pun intended) to social

welfare maximization.

Theorem 3.3. The distortion associated with rankings by value and rankings by value for money is
O(
√
m logm).

Proof. We �rst present the proof for rankings by value for money as it is trickier, and later

describe how an almost identical proof works for rankings by value.

Let us begin by introducing additional notation. For a ranking σ and an alternative a ∈ A, let

σ (a) denote the position of a in σ . For a preference pro�le ®σ with n votes, let the harmonic score
of a in ®σ be de�ned as sc(a, ®σ ) = ∑n

j=1 1/σj (a). Finally, given a set of alternatives S ⊆ A, let σ |S
(resp. ®σ |S ) denote the ranking (resp. preference pro�le) obtained by restricting σ (resp. ®σ ) to the

alternatives in S .

For ease of exposition assume m is a power of 2. Let ®σ denote the input pro�le consisting of

voter preferences in the form of rankings by value for money. Let ®v denote the underlying utility

pro�le consistent with ®σ . Let S∗ = argmaxS ∈Fc sw(S, ®v) be the budget-feasible set of alternatives

maximizing the social welfare.

De�ne `0 = 0 and u0 = 1/m. For i ∈ [logm], de�ne `i = 2
i−1/m and ui = 2

i/m. Let us

partition the alternatives into k + 1 buckets based on their costs: S0 = {a ∈ A : ca 6 u0} and

Si = {a ∈ A : `i < ca 6 ui } for i ∈ [logm]. Note that for i ∈ {0} ∪ [logm], selecting at most 1/ui
alternatives from Si is guaranteed to be budget-feasible.

Next, let us further partition the buckets into two parts: for i ∈ {0} ∪ [logm], let S+i consist of the√
m · (1/ui ) alternatives from Si with the largest harmonic scores in the reduced pro�le ®σ |Si , and

S−i = Si \ S+i . If |Si | 6
√
m · (1/ui ), we let S+i = Si and S−i = ∅. Note that S+

0
= S0. Let S+ = ∪logmi=0 S+i

and S− = A \ S+.

We are now ready to de�ne our randomized aggregation rule, which randomizes over two

separate mechanisms.

• Mechanism A: Select a bucket Si uniformly at random, and select a (1/ui )-size subset of S+i
uniformly at random.

• Mechanism B: Select a single alternative uniformly at random.

Our aggregation rule executes each mechanism with an equal probability 1/2. We now show

that this rule achieves distortion that is O(
√
m logm).

First, note that mechanism A selects each bucket Si with probability 1/(logm + 1), and when Si
is selected, it selects each alternative in S+i with probability at least 1/

√
m.

6
Hence, the mechanism

selects each alternative in S+ (and therefore, each alternative in S∗ ∩ S+) with probability at least

1/(
√
m(logm + 1)). In other words, the expected social welfare achieved under mechanism A is

O(
√
m logm) approximation of sw(S∗ ∩ S+, ®v).

6
This is because the mechanism selects 1/ui alternatives at random from S+i , which has at most

√
m · (1/ui ) alternatives.
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Finally, to complete the proof, we show that the expected welfare achieved under mechanism B
is an O(

√
m logm) approximation of sw(S∗ ∩ S−, ®v). Let us �rst bound sw(S∗ ∩ S−, ®v). Recall that

S−
0
= ∅. Hence,

sw(S∗ ∩ S−, ®v) =
logm∑
i=1

sw(S∗ ∩ S−i , ®v).

Fix i ∈ [logm] and a ∈ S−i . One can easily check that∑
b ∈Si

sc(b, ®σ |Si ) = n · H |Si | 6 n · Hm ,

where Hk is the k th
harmonic number. Because S+i consists the of

√
m/ui alternatives in Si with the

largest harmonic scores, we have

sc(a, ®σ |Si ) 6
n · Hm√
m · (1/ui )

=
n · (1 + logm)
√
m ·m/2i

. (2)

Next, we connect this bound on the harmonic score of a to a bound on its social welfare. For

simplicity, let us denote ®γ , ®σ |Si . Due to our de�nition of the partitions, we have

ca 6 2 · cb ,∀b ∈ Si . (3)

Further, �x a voter j ∈ [n]. For each alternative b such that b �γj a, we also have vj (b)/cb >
vj (a)/ca . Substituting Equation (3), we get

vj (a) 6 2vj (b),∀j ∈ [n],b ∈ Si s.t. b �γj a. (4)

Taking a sum over all b ∈ Si with b �γj a, and using the fact that the values of each voter j sum to

1, we get vj (a) 6 2/γj (a) for j ∈ [n], and taking a further sum over j ∈ [n], we get

sw(a, ®v) 6 2 · sc(a, ®σ |Si ). (5)

Combining this with Equation (2), we get

sw(a, ®v) 6 2 · n · (1 + logm)
√
m ·m/2i

,∀a ∈ S−i .

Note that S∗ can select at most 2/ui =m/2i−1 alternatives from Si while respecting the budget

constraint. Hence,

sw(S∗ ∩ S−, ®v) =
logm∑
i=1

sw(S∗ ∩ S−i ,vv) 6
(m/2i−1) · 2 · n · (1 + logm)

√
m ·m/2i

= 4 · n · (1 + logm)/
√
m.

(6)

Because the utilities sum to 1 for each voter, the expected social welfare achieved under mecha-

nism B is (1/m) ·∑i ∈N
∑

a∈Avi (a) = n/m, which is an O(
√
m logm) approximation of sw(S∗∩S−, ®v)

due to Equation (6).

This completes the proof of O(
√
m logm) distortion associated with rankings by value for money.

The proof for rankings by value is almost identical. In fact, one can make two simpli�cations.

First, the factor of 2 from Equation (4), and therefore from Equation (5) disappears because the

rankings already dictate comparison by value. This leads to an improvement in Equation (6) by a

factor of 2.

Second, Equation (4) not only holds for b ∈ Si such that b �γj a, but holds more generally for

b ∈ A such that b �σj a. Hence, there is no longer a need to compute the harmonic scores on the

restricted pro�le ®σ |Si ; one can simply work with the original input pro�le ®σ . �
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3.1.3 Threshold Approval Votes. Approval voting — where voters can choose to approve any

subset of alternatives, and the most widely approved alternative wins — is well studied in social

choice theory [5]. In our utilitarian setting we reinterpret this input format as threshold approval
votes, where the principal sets a threshold t , and each voter i ∈ N approves every alternative a for

which vi (a) > t .
We �rst investigate deterministic threshold approval votes, in which the threshold selected de-

terministically, but �nd that it does not help us (signi�cantly) improve over the distortion we can

already obtain using rankings by value or by value for money. Speci�cally, for a �xed threshold, we

are always able to construct cases in which alternatives have signi�cantly di�erent welfares, but

either no alternative is approved or an extremely large set of alternatives are approved, providing

the rule little information to distinguish between the alternatives, and yielding high distortion.

Theorem 3.4. The distortion associated with deterministic threshold approval votes is Ω(
√
m).

Proof. Imagine the case where ca = 1 for alternatives a ∈ A. Recall that the budget is 1. Let

f denote a randomized aggregation rule. It must return a single alternative, possibly chosen in a

randomized fashion. We construct our adversarial input pro�le based on whether t 6 1/
√
m. For

ease of exposition, assume n is divisible by

√
m. Let A = {a1, . . . ,am}.

Suppose t 6 1/
√
m. Fix a set of alternatives S ⊆ A such that |S | =

√
m/2 + 1. Construct the

input pro�le ®τ such that τi = S for all i ∈ N . Now, there must exist a∗ ∈ S such that Pr[f (®τ ) =
{a∗}] 6 1/(

√
m/2 + 1). Construct the underlying utility pro�le ®v such that for each voter i ∈ N ,

vi (a∗) = 1/2, vi (a) = 1/
√
m for a ∈ S \ {a∗}, and vi (a) = 0 for a ∈ A \ S . Note that this is consistent

with the input pro�le given that t 6 1/
√
m. Further, sw(a∗, ®v) = n/2 whereas sw(a, ®v) 6 n/

√
m for

all a ∈ A \ {a∗}. Hence,

E[sw(f (®τ ), ®v)] 6 1

√
m/2 + 1

· n
2

+

√
m/2

√
m/2 + 1

· n
√
m
= O

(
n
√
m

)
.

Because the optimal social welfare is Θ(n), we have that dist(f ) = Ω(
√
m), as required.

Now suppose that t > 1/
√
m. Construct an input pro�le ®τ in which τi = ∅ for every voter

i ∈ N . In this case, there exists an alternative a∗ ∈ A such that Pr[f (®τ ) = a∗] 6 1/m. Let us

construct the underlying utility pro�le ®v as follows. For every voter i ∈ N , let vi (a∗) = 1/
√
m, and

vi (a) = (1 − 1/
√
m)/m for all a ∈ A \ {a∗}. Note that this is consistent with the input pro�le given

that t > 1/
√
m. Clearly, the optimal social welfare is achieved by sw(a∗, ®v) = n/

√
m. In contrast, we

have

E[sw(f (®τ ), ®v)] 6 1

m
· n
√
m
+

(
1 − 1

√
m

)
· 1 − 1/

√
m

m
= O

( n
m

)
.

Hence, we again have dist(f ) = Ω(
√
m), as desired. �

For speci�c ranges of the threshold, it is possible to derive stronger lower bounds. However, the

Ω(
√
m) lower bound of Theorem 3.4 is su�cient to establish a clear asymptotic separation between

the power of deterministic and randomized threshold approval votes.

Under randomized threshold approval votes, we can select the threshold in a randomized fashion.

Technically, this is a distribution over input formats, one for each value of the threshold.
7

Before

we de�ne the (overall) distortion of a rule that randomizes over input formats, let us recall the

7
While we study deterministic and randomized threshold selection, we still allow randomized aggregation rules. Section 3.2

studies the case where the aggregation rule has to be deterministic.
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de�nition of the overall distortion of a rule for a �xed input format.

dist(f ) = max

®ρ
sup

®v : ®vB ®ρ

maxT ∈Fc sw(T , ®v)
ES∼f ( ®ρ)[sw(S, ®v)] = sup

®v

maxT ∈Fc sw(T , ®v)
ES∼f ( ®ρ( ®v))[sw(S, ®v)] .

Here, ®ρ(®v) denotes the input pro�le induced by utility pro�le ®v . Now, in the case of randomized

threshold approval votes, rule f speci�es a distribution D over the threshold t , as well as the

aggregation of input pro�le ®ρ(®v, t) induced by utility pro�le ®v and a given choice of threshold t .
We de�ne the the (overall) distortion of rule f as

dist(f ) = sup ®v Et∼D
maxT ∈Fc sw(T , ®v)
ES∼f ( ®ρ( ®v,t ))[sw(S, ®v)] .

Interestingly, observe that due to the expectation over threshold t , which a�ects the induced input

pro�le ®ρ(®v, t), we can no longer decompose the maximum over ®v into a maximum over ®ρ followed

by a maximum over ®v such that ®v B ®ρ, in contrast to the case of a �xed input format.

We now show that this �exibility of randomizing the threshold value allows us to dramatically

reduce the distortion.

Theorem 3.5. The distortion associated with randomized threshold approval votes is O(log2m).

Proof. For ease of exposition, assumem is a power of 2. Let I0 = [0, 1/m2], and Ij = (2j−1/m2, 2j/m2],
`j = 2

j−1/m2
, and uj = 2

j/m2
for j = 1, . . . , 2 logm.

Let ®v denote a utility pro�le that is consistent with the input pro�le. For a ∈ A and j ∈
{0, . . . , 2 logm}, de�ne naj = |{i ∈ N : vi (a) ∈ Ij }| to be the number of voters whose utility

for a falls in the interval Ij . We now bound the social welfare of a in terms of the numbers naj .

Speci�cally,

sw(a, ®v) =
∑
i ∈N

vi (a) 6
2 logm∑
j=0

∑
i ∈N
I{vi (a) ∈ Ij } · uj =

2 logm∑
j=0

naj · uj ,

A similar argument also yields a lower bound, and after substituting `0 = 0, u0 = 1/m2
, and na

0
6 n,

we get

2 logm∑
j=1

naj · `j 6 sw(a, ®v) 6 n

m2
+

2 logm∑
j=1

naj · uj . (7)

Next, divide the alternatives into 1 + 2 logm buckets based on their costs, with bucket S j = {a ∈
A : ca ∈ Ij }. Note that selecting at most 1/uj alternatives from S j is guaranteed to satisfy the budget

constraint.

Let S∗ = argmaxS ∈Fc sw(S, ®v) be the feasible set of alternatives maximizing the social welfare.

For j,k ∈ {0, . . . , 2 logm}, let n∗j,k =
∑

a∈S∗∩Sk n
a
j . Using Equation (7), we have

2 logm∑
j=1

n∗j,k · `j 6 sw(S∗ ∩ Sk , ®v) 6 |S∗ ∩ Sk | ·
n

m2
+

2 logm∑
j=1

n∗j,k · uj . (8)

We now construct three di�erent mechanisms; our �nal mechanism will randomize between

them.

MechanismA: Pick a pair (j,k) uniformly at random from the setT = {(j,k) : j,k ∈ [2 logm]}. Then,

set the threshold to `j , and using the resulting input pro�le, greedily select the 1/uk alternatives
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from Sk with the largest number of approval votes (or select Sk if |Sk | 6 1/uk ). Let Bj,k denote the

set of selected alternatives for the pair (j,k). Because we have j > 0 and k > 0,

sw(Bj,k , ®v) >
∑

a∈Bj,k

(
2 logm∑
p=j

nap

)
· `j >

1

4

·
(
2 logm∑
p=j

n∗p,k

)
· uj >

1

4

· n∗j,k · uj , (9)

where, in the �rst transition, we bound the welfare from below by only considering utilities that are

at least `j , and the second transition holds because uj = 2`j , |S∗ ∩ Sk | 6 2|Bj,k |, and Bj,k consists

of greedily-selected alternatives with the highest number of approval votes. Thus, the expected

social welfare achieved by mechanism A is

1

(2 logm)2
2 logm∑
j=1

2 logm∑
k=1

sw(Bj,k , ®v) >
1

4 · (2 logm)2
2 logm∑
j=1

2 logm∑
k=1

n∗j,k · uj

>
1

16 log
2m

(
sw(S∗ \ S0, ®v) − |S∗ \ S0 | ·

n

m2

)
>

1

16 log
2m

(
sw(S∗ \ S0, ®v) −

n

m

)
,

where the �rst transition follows from Equation (9), and the second transition follows from Equa-

tion (8).

Mechanism B: Select all the alternatives in S0. Because each alternative in S0 has cost at most

1/m2
, this is clearly budget-feasible. Further, the social welfare achieved by this mechanism is

sw(S0, ®v) > sw(S∗ ∩ S0, ®v).
Mechanism C : Select a single alternative uniformly at random from A. This is also budget-feasible,

and due to normalization of values, its expected social welfare is n/m.

Our �nal mechanism executes mechanism A with probability 16 log
2m/(2 + 16 log

2m), and

mechanisms B andC with probability 1/(2+ 16 log2m) each. It is easy to see that its expected social

welfare is at least sw(S∗, ®v)/(2 + 16 log2m). Hence, its distortion is O(log2m). �

We also show that at least logarithmic distortion is inevitable even when using randomized

threshold approval votes.

Theorem 3.6. The distortion associated with randomized threshold approval votes isΩ(logm/log logm).

Proof. Imagine the case where ca = 1 for all a ∈ A. Recall that the budget is 1. Let f denote a

rule that elicits randomized threshold approval votes and aggregates them to return a distribution

over A (as only a single project can be executed at a time). Note that f is not simply the aggregation

rule, but the elicitation method and the aggregation rule combined.

For ease of exposition, assume thatm is a power of 2 logm. Let us now divide the interval (1/m, 1]
into logm/log (2 logm) sub-intervals: For j ∈ [logm/log(2 logm)], let

Ij =

(
(2 logm)j−1

m
,
(2 logm)j

m

]
.

Let uj and `j denote the upper and lower end points of Ij .
Let t denote the threshold picked by f (in a randomized fashion). Then, there must exist k ∈
[logm/log(2 logm)] such that Pr[t ∈ Ik ] 6 log (2 logm)/logm. Fix a subset S ⊆ A of size logm,

and let V = uk/2 + (logm − 1) · `k . Construct a (partial) utility pro�le ®v such that for each voter

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:12 Gerdus Benade, Swaprava Nath, Ariel D. Procaccia, and Nisarg Shah

i ∈ N , vi (a) ∈ Ik for a ∈ S ,

∑
a∈S vi (a) = V , and vi (a) = (1−V )/(m − logm) for a ∈ A \ S . First, this

is feasible because

V =
uk
2

+ (logm − 1) · `k 6
1

2

+
logm − 1
2 logm

6 1.

Second, this partial description completely dictates the induced input pro�le when t < Ik . Now,

because f can only distinguish between alternatives in S when t ∈ Ik , there must exist a∗ ∈ S such

that Pr[f returns a∗ |t < Ik ] 6 1/logm. Now, suppose the underlying utility pro�le ®v satis�es, for

each voter i ∈ N , vi (a∗) = uk/2 and vi (a) = `k for a ∈ S \ {a∗}. Observe that this is consistent with

the partial description provided before.

In this case, the optimal social welfare is given by sw(a∗, ®v) = n ·uk/2, whereas sw(a, ®v) 6 n · `k
for all a ∈ A \ {a∗}. The latter holds because `k > (1 −V )/(m − logm). The expected social welfare

achieved by f under ®v is at most

Pr[t ∈ Ik ] ·
n · uk
2

+ Pr[t < Ik ]
(

1

logm
· n · uk

2

+
logm − 1
logm

· n · `k
)
6

log (2 logm) + 2
logm

· n · uk
2

,

where the �nal transition holds because uk = 2 logm · `k . Thus, the distortion achieved by f is

Ω(logm/log logm), as desired. �

Our proof of Theorem 3.6 establishes a lower bound of Ω(logm/log logm) on the distortion

associated with randomized threshold approval votes by only using the special case of the partici-

patory budgeting problem in which ca = 1 for each a ∈ A, i.e., exactly one alternative needs to be

selected. This is exactly the setting studied by Boutilier et al. [4]. On the other hand, Theorem 3.5

establishes a slightly weaker upper bound of O(log2m) for the general participatory budgeting

problem. We conclude this section by showing that for the restricted setting of Boutlier et al. [4],

one can improve the general O(log2m) upper bound to O(logm), thus leaving a very narrow gap

from the Ω(logm/log logm) lower bound.

Theorem 3.7. If ca = 1 for all a ∈ A, the distortion associated with randomized threshold approval
votes is O(logm).

Proof. This proof is along the lines of the more general proof of Theorem 3.5, whose O(log2m)
bound is the result of a randomization over O(logm) partitions of the alternatives based on their

cost and O(logm) possible values of the threshold. In our special case, with the alternatives having

an equal cost, there is no longer a need to partition them based on their cost, which leads to an

improvement in the bound by a factor of logm.

Formally, for j ∈ [logm], let `j = 2
j−1/m and uj = 2 · `j . Consider the rule which chooses

j ∈ [logm] uniformly at random, elicits approval votes with threshold t = `j , and returns an

alternative with the greatest number of approval votes. We show that the distortion of this rule is

O(logm).
Let ®v denote the underlying utility pro�le, anda∗ = argmaxa∈A sw(a, ®v) be the welfare-maximizing

alternative. If there exists j ∈ [logm] such that our rule returns a∗ when it sets the threshold t = `j
(which happens with probability 1/logm), we immediately obtain O(logm) distortion. Let us as-

sume that our rule never returns a∗. For a ∈ A and j ∈ [logm], let naj denote the number of approval

votes a receives when the threshold t = `j , and let aj ∈ A be the alternative returned by our rule

when t = `j . Because our rule returns an alternative with the greatest number of approval votes,

we have

∀j ∈ [logm],
logm∑
k=j

n
aj
k >

logm∑
k=j

na
∗

k > na
∗

j . (10)
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Now, the expected social welfare achieved by our rule is at least

logm∑
j=1

Pr[t = `j ] · sw(aj , ®v) >
1

logm

logm∑
j=1

`j
©­«
logm∑
k=j

n
aj
k

ª®¬ >
1

2 logm

logm∑
j=1

uj · na
∗

j >
1

2 logm
· sw(a∗, ®v),

where the �rst transition follows from Equation (10), and the second transition holds because

`j = uj/2. Hence, the distortion of our rule is O(logm), as desired. �

3.2 Deterministic Aggregation Rules
We next study the distortion that can be achieved under di�erent input formats if we are forced

to use a deterministic aggregation rule. Recall that the distortion associated with deterministic
aggregation of votes under an input format is the least distortion a deterministic aggregation rule

for that format can achieve. Speci�cally, we study the distortion associated with deterministic

aggregation of knapsack votes, rankings by value and value for money, and deterministic threshold

approval votes. We omit randomized threshold approval votes as the inherent randomization

involved in elicitation makes the use of deterministic aggregation rules hard to justify.

We �nd that rankings by value achieve Θ(m2) distortion, which is signi�cantly better than

the distortion of knapsack votes (exponential in m) and that of rankings by value for money

(unbounded). This separation between rankings by value and value for money in this setting stands

in stark contrast to the setting with randomized aggregation rules, where both input formats admit

similar distortion. One important fact, however, does not change with the use of deterministic

aggregation rules: threshold approval votes still performs at least as well as all other input formats.

Speci�cally, we show that setting the threshold to be t = 1/m results in O(m2) distortion. The

choice of the threshold is crucial as, for example, setting a slightly higher threshold t > 1/(m − 1)
results in unbounded distortion.

3.2.1 Knapsack Votes. Our �rst result is an exponential lower bound on the distortion associated

with knapsack votes when the aggregation rule is deterministic. While our construction requires

the number of voters to be extremely large compared to the number of alternatives, we remark

that this is precisely the case in real participatory budgeting elections, in which a large number of

citizens vote over much fewer projects.

Theorem 3.8. The distortion associated with deterministic aggregation of knapsack votes isΩ(2m/
√
m).

Proof. Imagine a case where every alternative has cost 2/m (recall that the budget is 1). Thus,

one can execute at mostm/2 alternatives while respecting the budget constraints. Let S1, . . . , S( mm/2)
denote the

( m
m/2

)
subsets of A of sizem/2.

For ease of exposition, assume that

( m
m/2

)
dividesn. Partition the voters into

( m
m/2

)
setsN1, . . . ,N( mm/2),

each consisting of n/
( m
m/2

)
voters. Construct an input pro�le of knapsack votes ®κ, where κi = Sk

for all k ∈ [
( m
m/2

)
] and i ∈ Nk .

Let f denote a deterministic aggregation rule. We can safely assume that | f (®κ)| = m/2 as

otherwise we can add alternatives to f (®κ), which can only improve the distortion. Let f (®κ) = Sk∗ .
Construct a utility pro�le ®v consistent with the input pro�le ®κ as follows. Fix b ∈ Sk∗ , and for all

i ∈ Nk∗ , let vi (b) = 1 and vi (a) = 0 for all a ∈ A \ {b}. Note that these valuations are consistent

with the votes of voters in Nk∗ .

Next, �x a∗ ∈ A \ Sk∗ . Our goal is to make a∗ an attractive alternative that f (®κ) missed. Note that

a∗ appears in half of them/2-sized subsets of A. For all k ∈ [
( m
m/2

)
] such that a∗ ∈ Sk , and all voters

i ∈ Nk , let vi (a∗) = 1 and vi (a) = 0 for all a ∈ A \ {a∗}. This ensures sw(a∗, ®v) > n/2.

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:14 Gerdus Benade, Swaprava Nath, Ariel D. Procaccia, and Nisarg Shah

For k ∈ [
( m
m/2

)
] \ {k∗} such that a∗ < Sk , and all voters i ∈ Nk , letvi (a′) = 1 for some a′ ∈ Sk \Sk∗ ,

and vi (a) = 0 for all a ∈ A \ {a′}.
Observe that all voters who do not belong to Nk∗ assign zero utility to all the alternatives in Sk∗ ,

yielding sw(f (®κ), ®v) 6 n/
( m
m/2

)
. Hence, we have

dist(f , ®v) > n/2
n/

( m
m/2

) = 1

2

·
(
m

m/2

)
= Ω

(
2
m

√
m

)
,

as required. �

We next show that an almost matching upper bound can be achieved by the natural “plurality

knapsack” rule that selects the subset of alternatives submitted by the largest number of voters.

Theorem 3.9. The distortion associated with deterministic aggregation of knapsack votes is O(m ·
2
m).

Proof. Let ®v denote the underlying utility pro�le, and let S∗ ⊆ A be the set of alternatives

reported by the largest number of voters. Due to the pigeonhole principle, it must be reported by at

least n/2m voters. Further, each voter i who reports S∗ must have vi (S∗) > 1/m because there must

exist a ∈ A such that vi (a) > 1/m, and vi (S∗) > vi (a).
Hence, we have sw(S∗, ®v) > (n/2m) · 1/m, whereas the maximum welfare any set of alternatives

can achieve is at most n. Hence, the distortion of the proposed rule is at mostm · 2m . �

3.2.2 Rankings by Value and by Value for Money. While rankings by value and by value for

money have similar distortion in case of randomized aggregation rules, deterministic aggregation

rules lead to a clear separation between the distortion of the two input formats.

We �rst show that deterministic aggregation of rankings by value for money cannot o�er bounded

distortion. Our counter example exploits the uncertainty in values induced when alternatives have

vastly di�erent costs.

Theorem 3.10. The distortion associated with deterministic aggregation of rankings by value for
money is unbounded.

Proof. Fix a,b ∈ A. Let ca = ϵ > 0, and ct = 1 for all t ∈ A \ {a}. Recall that the budget is 1.

Hence, every deterministic aggregation rule must select a single alternative.

Construct an input pro�le ®σ in which each input ranking has alternatives a and b in positions 1

and 2, respectively. Let f be a deterministic aggregation rule.

If f (®σ ) ∈ A \ {a}, the utility pro�le ®v in which every voter has utility 1 for a, and 0 for every

alternative in A \ {a} ensures dist(f ) > dist(f , ®v) = ∞.

If f (®σ ) = a, the utility pro�le ®v in which every voter has utility ϵ for a, 1 − ϵ for b, and 0 for

every alternative in A \ {a,b} ensures that dist(f ) > dist(f , ®v) = (1 − ϵ)/ϵ .

Hence, in either case, dist(f ) > (1 − ϵ)/ϵ . Because ϵ can be arbitrarily small, the distortion is

unbounded. �

We now turn our attention to rankings by value. Caragiannis et al. [8] study deterministic

aggregation of rankings by value in the special case of our setting where the cost of each alternative

equals the entire budget, and establish a lower bound of Ω(m2) on the distortion, which carries

over to our more general setting.

Theorem 3.11 ([8]). The distortion associated with deterministic aggregation of rankings by value
is Ω(m2).
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Caragiannis et al. [8] also show that selecting the plurality winner — the alternative that is ranked

�rst by the largest number of voters — results in distortion at mostm2
. We show that this holds

true even in our more general setting, giving us an asymptotically tight bound on the distortion.

Theorem 3.12. The distortion associated with deterministic aggregation of rankings by value is
O(m2).

Proof. Due to the pigeonhole principle, the plurality winner, say a ∈ A, must be ranked �rst by

at least n/m voters, each of which must have utility at least 1/m for a. Hence, the social welfare of

a is at least n/m2
, while the maximum social welfare that any set of alternatives can achieve is at

most n, yielding a distortion of at mostm2
. �

3.2.3 Threshold Approval Votes. We now turn our attention to threshold approval votes. As

mentioned earlier, our use of deterministic aggregation rules makes randomized threshold selection

less motivated; we thus focus on deterministic threshold approval votes.

First, we show that for some choices of the threshold, the distortion can be unbounded.

Theorem 3.13. For a �xed threshold t > 1/(m − 1), the distortion associated with deterministic
aggregation of deterministic threshold approval votes is unbounded.

Proof. Imagine the case where ca = 1 for each a ∈ A. Recall that the budget is 1. Let f denote a

deterministic aggregation rule for threshold approval votes. Suppose the rule receives an input

pro�le ®τ in which no voter approves any alternative. Without loss of generality, let f (®τ ) = a∗.
Now, we construct an underlying utility pro�le such that for each voter i ∈ N , vi (a) = 1/(m − 1)

for a ∈ A \ {a∗}, and vi (a∗) = 0. Note that this is consistent with the input pro�le ®τ . Now, the

optimal social welfare is n · 1/(m − 1), whereas the welfare achieved by f is zero, yielding an

unbounded distortion. �

We next show that slightly reducing the threshold to 1/m reduces the distortion to O(m2), which

is at least as good as the distortion associated with any other input format. In fact, this distortion

can be achieved via the simple aggregation rule that greedily selects alternatives with the highest

ratio of the number of approvals to the cost, until the budget is exhausted.

Theorem 3.14. For the �xed threshold t = 1/m, the distortion associated with deterministic
aggregation of deterministic threshold approval votes is O(m2).

Proof. Let ®τ denote an input pro�le, and let ®v denote the underlying utility pro�le. Let S∗ ∈ Fc
denote the feasible set of alternatives with the highest number of total approvals, and let S ∈ Fc
denote the feasible set of alternatives returned by the greedily rule that selects alternatives with

the highest ratio of the number of approvals to the cost, until the budget is exhausted. Let P∗ and P
denote the total number of approvals received by alternatives in S∗ and S , respectively.

Consider a knapsack problem where the value of an alternative is the number of approvals it re-

ceives under ®τ . Then, P∗ is the optimal knapsack solution, whereas P is the solution quality achieved

by the greedy algorithm. Using the fact that the greedy algorithm achieves a 2-approximation of

the (unbounded) knapsack problem [13], we have

P > (1/2) · P∗.

We can now establish an upper bound on the distortion of our rule. Let T be the feasible set of

alternatives maximizing the social welfare. Then, T achieves at most P∗ total approvals under ®τ .

Each voter approving each alternative in T can contribute at most 1 to the welfare of T , and each
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voter not approving each alternative in T can contribute at most 1/m to the welfare of T . Hence,

we have

sw(T , ®v) 6 P∗ · 1 + (n ·m − P∗) · (1/m).
Using a similar line of argument, we also have

sw(S, ®v) > P · (1/m).
Hence, the distortion of f is at most

P∗ + (n ·m − P∗)/m
P/m 6 2 · 1 + (n ·m/P

∗ − 1)/m
1/m = 2 ·

(
m +

n ·m
n/m − 1

)
= O(m2),

where the �rst transition follows from P > P∗/2. For the second transition, note that with the

threshold being 1/m, each voter must approve at least 1 alternative. Hence, there must exist an

alternative with at least n/m approvals, implying that P∗ > n/m. �

4 EMPIRICAL RESULTS
Our theoretical results in §3 characterize how well we can optimize distortion on an observed

input pro�le. Recall that distortion is the worst-case ratio of the optimal social welfare to the social

welfare achieved, where the worst case is taken over all utility pro�les consistent with the observed

input pro�le. In practice we care about this ratio according to the actual underlying utility pro�le.

Thus, a distortion-minimizing aggregation rule is not guaranteed to be optimal in practice. This is

why an empirical study is called for.

In this section, we compare the performance of di�erent approaches to participatory budgeting,

where the performance is measured by the average-case ratio of the optimal and achieved social

welfare, and the average is taken over utility pro�les drawn to be consistent with input pro�les

from two real-world participatory budgeting elections. We present a more detailed analysis of these

experiments in Appendix B.

Datasets: We use data from participatory budgeting elections held in 2015 and 2016 in Boston,

Massachusetts. Both elections o�ered voters 10 alternatives. The 2015 dataset contains 2600 4-

approval votes (voters were asked to approve their 4 most preferred alternatives) and the 2016

dataset contains 4430 knapsack votes.

For each dataset, we conduct 3 independent trials. In each trial, we create r sub-pro�les, each

consisting of n voters drawn at random from the population. For each sub-pro�le, we draw k
random utility pro�les ®v consistent with the sub-pro�le, and use these to analyze the performance

of di�erent approaches. We use the real costs of the projects throughout. The choices of parameters

(r ,n,k) for the three trials are (5, 10, 10), (8, 7, 10), and (10, 5, 10). We choose this experimental

design to yield su�ciently many samples to verify statistical signi�cance of the results while

completing in a reasonable amount of time.

Approaches: We use the utility pro�le ®v drawn to create an input pro�le in four input formats

we study. For each format, we use the deterministic as well as randomized distortion-minimizing

aggregation rule. The non-trivial algorithms we devise for these rules are presented in Appendix A.

These eight approaches are referred to using the type of aggregation rule used (“Det” or “Ran”),

and the type of input format (“Knap”, “Val”, “VFM”, or “Th Ap”).

It is important to note that, unlike the other input formats, threshold approval votes are technically

a family of input formats, one for each value of the threshold. While randomizing over the threshold

is required to minimize the distortion (the worst-case ratio of the optimal and achieved social

welfare), as is our goal in the theoretical results of §3, minimizing the expected ratio of the two

can be achieved by a deterministic threshold. Thus, in our experiments, we learn the optimal
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Fig. 1. Average welfare ratio (lower is be�er) of di�erent approaches to participatory budgeting based on
data from Boston 2015 and 2016 elections.

threshold value based on a holdout set that is not subsequently used. This learning approach is

practical as it only uses observed input votes rather than underlying actual utilities. In other words,

we acknowledge that this choice gives threshold approval votes an edge — but arguably it is an

advantage this input format would also enjoy in practice.

In addition to our eight approaches, we also test two approaches used in real-world elections [15]:

greedy 4-approval (“Gr 4-Ap”), and greedy knapsack (“Gr Knap”). The former elicits 4-approval

votes, and greedily selects the most widely-approved alternatives until the budget is depleted. The

latter is almost identical, except for interpreting a knapsack vote as an approval for each alternative

in the knapsack.

As the performance measure for the ten approaches, we use the average ratio of the optimal and

the achieved social welfare according to the actual utility pro�le used to induce the input pro�les —

termed average welfare ratio — where the average is taken across the entire experiment.

Results: Figure 1 shows the average welfare ratio of the di�erent approaches with 95% con�dence

intervals, sorted from best to worst. The di�erences in performance between all pairs of rules —

except between Det Knap and Ran Val, and between Ran VFM and Gr Knap — are statistically

signi�cant [16] at a 95% con�dence level.

A few comments are in order. First, deterministic distortion-minimizing aggregation rules gener-

ally outperform their randomized counterparts. This is not entirely unexpected. While randomized

rules do achieve better distortion, there always exists a deterministic rule minimizing the aver-
age welfare ratio objective; although, it is not necessarily the deterministic distortion-minimizing

aggregation rule.

Second, approaches based on deterministic rules are able to limit the loss in social welfare due to

incomplete information about voters’ utility functions to only 2%–3%. Among these approaches,

the one using threshold approval votes incurs the minimum loss.
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Fig. 2. Average running time of the deterministic voting rules on the Boston 2016 dataset.

Third, knapsack votes consistently lead to higher distortion than alternative input formats. This,

together with the poor theoretical guarantees for knapsack votes, suggests that it may not be

worthwhile to ask voters to solve their personal NP-hard knapsack problems in order to cast a

vote.

Figure 2 shows the running times of our deterministic voting rules, averaged over 10 trials, on a

log-log scale. We consider only the deterministic voting rules as they outperform their randomized

counterparts in terms of the average welfare ratio. We observe that the running time scales gracefully

with the number of agents. The experiments used the Boston 2016 dataset with 10 alternatives, and

were run on an 8-core Intel(R) Xeon(R) CPU with 2.27GHz processor speed and 50GB main memory.

Even with 500 voters, rules such as Det Th Ap and Det Val take less than 5 minutes, indicating the

practicability of these methods even for the largest real-world participatory budgeting elections

that we are aware of, which have no more than 5,000 voters.

5 DISCUSSION
Our results indicate that threshold approval votes should receive serious consideration as the

input format of choice for participatory budgeting. But there is one important issue we have not

studied: the cognitive load imposed on voters by di�erent input formats. (If it were not for this

issue, we would just elicit the full utility functions — the whole point is to reduce cognitive load.) A

participatory budgeting system based on threshold approval votes might ask voters to “mark each

project on which you would be happy to see the city spend $10,000”. While this seems reasonable

enough (and probably easier than casting knapsack votes), human subject experiments are needed

to rigorously determine whether threshold approval votes, and other input formats, require an

acceptable cognitive e�ort.

Whatever the best approach to participatory budgeting is, now is the time to identify it, before

various heuristics become hopelessly ingrained. We believe that this is a grand challenge for
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computational social choice, especially at a point in the �eld’s evolution where it is gaining real-

world relevance by helping people make decisions in practice.
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A WORST-CASE OPTIMAL AGGREGATION RULES
Our theoretical results focus on the best worst-case (over all input pro�les) distortion we can

achieve using di�erent input formats. However, speci�c pro�les may admit distortion much better

than this worst case. Thus, in practice we are more interested in the deterministic or randomized

aggregation rule that, on each input pro�le, returns the feasible set of alternatives or a distribution

thereover which minimizes the distortion, thus achieving the optimal distortion on each input

pro�le individually. The optimal deterministic aggregation rule is given by

f ∗( ®ρ) = argmin

S ∈Fc
max

®vB ®ρ

maxT ∈Fc sw(T , ®v)
sw(S, ®v) , ∀ ®ρ,

and the optimal randomized aggregation rule is given by

f ∗( ®ρ) = argmin

p∈∆(Fc )
max

®vB ®ρ

maxT ∈Fc sw(T , ®v)
ES∼psw(S, ®v) , ∀ ®ρ,

where ∆(X ) denotes the set of distributions over the elements of X .

While these pro�le-wise optimal aggregation rules dominate all other aggregation rules, they may

be computationally di�cult to implement, specially given that they optimize a non-linear objective

function (a ratio) over a complicated space. We believe it is unlikely that these rules can be computed

in polynomial time; in this section, we employ several computational tools to devise practical

(although, theoretically exponential-time) implementations of the deterministic and randomized

pro�le-wise optimal aggregation rules for the input formats we study. Interestingly, we discover

generic algorithms for the optimal deterministic (Algorithm 1) and randomized (Algorithm 2) rules,

which work for each of our input formats. These implementations also help us in our experiments

in §4 (and in the additional experiments presented in Appendix B) for measuring the average-case

distortion, i.e., in computing the optimal distortion on a given pro�le and averaging it over pro�les

drawn from real-world data.

Throughout this section, we assume that it is practically feasible to explicitly enumerate the

collection of inclusion-maximal feasible sets of alternatives Fc . This assumption is justi�ed given

that real-world participatory budgeting problems typically involve up to 20 alternatives.

A.1 Deterministic Rules
Let V ( ®ρ) = { ®v : ®v B ®ρ} denote the set of utility pro�les consistent with input pro�le ®ρ. Hence, we

are interested in computing

argmin

S ∈Fc
max

®v ∈V ( ®ρ)

maxT ∈Fc sw(T , ®v)
sw(S, ®v) = argmin

S ∈Fc
max

T ∈Fc
max

®v ∈V ( ®ρ)

sw(T , ®v)
sw(S, ®v) .

A natural algorithm is now self-evident. We compute d(S,T ) = max ®v ∈V ( ®ρ) sw(T , ®v)/sw(S, ®v) for

every pair S,T ∈ Fc , and then return argminS ∈Fc maxT ∈Fc d(S,T ).
Our �rst goal is to come up with a useful characterization of the space of consistent utility

pro�les V ( ®ρ). For the input methods we study in this paper, we can in fact describe V ( ®ρ) using

linear constraints. Observe that V ( ®ρ) = V (ρ1) × · · · ×V (ρn) where V (ρi ) = {v > 0 : v B ρi } is the

set of m-dimensional utility functions consistent with voter i’s input ρi . Hence, we simply need to

describe each V (ρi ) using linear constraints.

For a ranking by value σi , we use:

V (σi ) =
{
vi ∈ Rm+ :

∑
a∈A

vi (a) = 1 ∧
(
vi (σ−1i (k)) > vi (σ−1i (k + 1)), ∀k ∈ [m − 1]

)}
.
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For a ranking by value for money σi , we use:

V (σi ) =
{
vi ∈ Rm+ :

∑
a∈A

vi (a) = 1 ∧
(
vi (σ−1i (k))
cσ −1i (k )

>
vi (σ−1i (k + 1))

cσ −1i (k+1)
,∀k ∈ [m − 1]

)}
.

For a knapsack vote κi , we use:

V (κi ) =
{
vi ∈ Rm+ :

∑
a∈A

vi (a) = 1 ∧
(∑
a∈κi

vi (a) >
∑
a∈S

vi (a), ∀S ∈ Fc
)}
.

For a threshold approval vote τi elicited using threshold t , we use:

V (τi ) =
{
vi ∈ Rm+ :

∑
a∈A

vi (a) = 1 ∧
(
vi (a) > t , ∀a ∈ τi

)
∧

(
vi (a) 6 t , ∀a ∈ A \ τi

)}
.

Note that the polytope for knapsack votes has exponentially many constraints, while the other

polytopes have polynomially many constraints. This polytope is the only part of our generic

algorithm that is dependent on the input format.Generically, let A( ®ρ) ®v 6 b( ®ρ) be the set of linear

constraints describing V ( ®ρ).
Our next goal is to use this characterization of V ( ®ρ) to compute d(S,T ) for speci�c S,T ∈ Fc .

Note that

d(S,T ) =max

sw(T , ®v)
sw(S, ®v)

subject to

A( ®ρ) ®v 6 b( ®ρ).
This is a standard linear-fractional program, which can be converted to a linear program using the

famous Charnes-Cooper transformation [11] as follows.

Let xS ,xT ∈ {0, 1}m denote the characteristic vectors of S and T , respectively. Let xS ,xT ∈
{0, 1}n ·m be vectors consisting of n concatenated copies of xS and xT , respectively. Similarly,

let v ∈ Rn ·m+ denote the concatenation of vectors ®v1 through ®vn . Then, sw(S, ®v) = 〈xS ,v〉 and

sw(T , ®v) = 〈xT ,v〉. Hence,

d(S,T ) =max

〈xT ,v〉
〈xS ,v〉

subject to

A( ®ρ) ®v 6 b( ®ρ)
®v > 0.

Finally, creating two new variables, a vector y = v/〈xS ,v〉 and a scalar z = 1/〈xS ,v〉, yields the

following equivalent linear program.

LP( ®ρ, S,T ) : max 〈xT ,y〉
subject to

A( ®ρ) y 6 b( ®ρ) · t
〈xS ,y〉 = 1

y > 0, t > 0.

The complete algorithm for resolving the deterministic optimal aggregation rule on an input

pro�le ®ρ is given as Algorithm 1.
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ALGORITHM 1: Computing the worst-case optimal deterministic rule

Data: Input pro�le ®ρ
Result: A set S ∈ Fc yielding the least distortion

dist[S] = 0, ∀S ∈ Fc
for S ∈ Fc do

for T ∈ Fc , T , S do
dist[S] = max(dist[S], LP( ®ρ, S,T ))

end
end
return argminS ∈Fc dist[S]

A.2 Randomized Rules
Using a similar line of argument as before, it is easy to see that the optimal randomized aggregation

rule returns the following distribution over feasible sets of alternatives:

argmin

p∈∆(Fc )
max

T ∈Fc
max

®v ∈V ( ®ρ)

sw(T , ®v)∑
S ∈Fc pS · sw(S, ®v) .

First, we introduce an additional continuous variable z representing the optimal distortion

achieved, and reformulate the problem as follows:

min

p,z
z

subject to

max

®v ∈V ( ®ρ)

sw(T , ®v) − z ·
∑
S ∈Fc

pS · sw(S, ®v)
 6 0,∀T ∈ Fc (11)

p ∈ ∆(Fc ).

At this point, it is possible to handle the constraints in (11) by formulating the problem in terms

of the vertices of the polytope V ( ®ρ). Instead, we turn to a two-stage algorithm in the spirit of the

cutting-set approach of Mutapcic and Boyd [19].

Our algorithm performs a binary search on z, the optimal distortion. For every value of z, an

iterative two-stage procedure determines whether there exists a distribution p whose distortion on

the input pro�le ®ρ is at most z. If such a p exists, then the current value of z serves as an upper

bound on the least possible value of z. Otherwise, it serves as a lower bound on the least possible

value of z.

We now describe the two-stage iterative procedure that tests the existence of a distribution with

distortion at most z. At iteration t of the procedure, the algorithm checks if a feasiblept exists subject

to the simplex constraints describing V ( ®ρ), and a small number of previously violated constraints

that have been added thus far, de�ned by Ct−1. We use C0 = ∅. In other words, the problem at

iteration t , denoted CF(z, Ct−1), is to check the feasibility of the following set of constraints:

sw(T , ®v) − z ·
∑
S ∈Fc

pS · sw(S, ®v) 6 0, ∀(®v,T ) ∈ Ct−1

p ∈ ∆(Fc ).

If no feasible pt exists, the current value of z is the new lower bound, and we proceed to the next

step in our binary search over z. If a feasible pt exists, we check if it violates any constraint from
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(11) by solving the following linear program (which serves as an oracle) for every T ∈ Fc :

max sw(T , ®v) − z ·
∑
S ∈Fc

ptS · sw(S, ®v)

s .t . ®v ∈ V ( ®ρ)

 LP(T , z,pt , ®ρ)

If the objective value exceeds 0, a violated constraint is found and added to Ct−1 to form Ct . If the

objective value is at most 0, the current value of pt is indeed a distribution with distortion at most

the current value of z. We use this value as an upper bound in our binary search, and proceed.

This complete procedure is summarized in Algorithm 2. It is known that each round of binary

search over z, which iteratively uses the oracle to add violated constraints, will terminate, since it

adds at most a constraint for every set T and every vertex of V ( ®ρ).

ALGORITHM 2: Computing the optimal randomized aggregation rule

Data: Input pro�le ®ρ, tolerance TOL
Result: A probability distribution in ∆(Fc )
lo=1, hi=100, z = (hi+lo)/2

while hi − lo > TOL do
C0 = ∅
t = 0

robustFeasibleFlag← false

while robustFeasibleFlag is false do
robustFeasibleFlag← true

t ← t + 1
Ct = Ct−1
if CF(z,Ct−1) is feasible then

pt ← optimal solution of CF(z,Ct−1)

for T ∈ Fc do
if optimum of LP(T , z,pt , ®ρ) exceeds 0 then

ṽ ← optimal solution of LP(T , z,pt , ®ρ)
Ct ← Ct ∪ (ṽ,T )
robustFeasibleFlag← false

else
∗comment∗ Constraint for T is satis�ed

end
end
if robustFeasibleFlag then

hi = z
end

else
lo = z

end
end
z = (hi+lo)/2

end
return pt , hi

B ADDITIONAL EMPIRICAL RESULTS
In this section we provide a more detailed representation of the results summarized in §4, and

investigate the usefulness of learning the optimal threshold from holdout data.
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Fig. 3. Average welfare ratios for the Boston 2015 dataset containing 4-approval votes.

Figure 1 in §4 presented the average welfare ratio of ten di�erent approaches to participatory

budgeting, where the average was taken over 3 independent trials in each of two datasets. First, we

present the results for each dataset separately. The results for the Boston 2015 and 2016 datasets

are presented in Figures 3 and Figure 4, respectively. The former dataset contains 4-approval votes,

whereas the latter dataset contains knapsack votes.

We can see that some of the trends highlighted in §4 are re�ected across both datasets. First,

approaches based on deterministic distortion-minimizing aggregation rules, excluding the one using

knapsack votes, still outperform their randomized counterparts. Further, among these approaches,

the one using threshold approval votes has the most consistent performance, achieving the lowest

average welfare ratio for the Boston 2015 dataset and the second lowest for the Boston 2016 dataset.

Second, the approaches currently used in real-world elections (namely, “Gr Knap” and “Gr 4-Ap”)

perform worse than most other approaches, and have high variance in their performance.

There are a few di�erences between the results on the two datasets. Somewhat surprisingly,

Greedy Knapsack performs signi�cantly better on knapsack votes induced from random utility

pro�les drawn to be consistent with real 4-approval votes, than on real knapsack votes. In fact, all

knapsack-votes-based approaches perform poorly on real knapsack votes. This can be explained

partly by the fact that we measure performance in expectation over utility pro�les drawn to be

consistent with the true votes, and the families of utility pro�les consistent with 4-approval votes

(Boston 2015 dataset) and with knapsack votes (Boston 2016 dataset) are very di�erent.

B.1 Is it useful to learn the threshold?
Recall that in our experiments, when using threshold approval votes, we select the threshold that

achieves the best performance on a holdout/training set, and use it to evaluate performance of

threshold approval votes on the test set. Let us describe our approach in a bit more detail.
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Fig. 4. Average welfare ratios for the Boston 2016 dataset containing knapsack votes.

Our approach for threshold selection: We partition the voters in the Boston 2015 and 2016 datasets into

two equal parts: a training set, and a test set. We then generate training instances from the training

set and test instances from the test set via an identical process: we sample r input pro�les consisting

of n voters drawn at random from the population, draw k random utility pro�les consistent with

each input pro�le, and use these utility pro�les to induce an input pro�le in the desired vote format.

Note that we need to generate arti�cial votes from real votes because real votes are in a format

di�erent than the one desired — in this case, threshold approval votes. This additional step is not

required in practice once su�ciently many real votes are elicited in the desired format for training

purpose.

Next, we take all possible threshold values from 0 to 1 at intervals of 0.05, and compute the

average distortion across all threshold approval vote pro�les generated achieved by each threshold

value. We select the threshold value that achieves the least average distortion. Importantly, note

that we use distortion — which is only a function of the input pro�le — rather than the average

welfare ratio to select the optimal threshold value. Hence, this method is robust, and does not use

any knowledge of the distribution of utility pro�les that we later use in evaluating performance.

Finally, we use this optimal threshold value when evaluating the performance (average welfare

ratio) of threshold approval votes, in conjunction with both the deterministic and the randomized

distortion-minimizing aggregation rules.

While threshold approval votes with deterministic aggregation rule achieves excellent perfor-

mance with this method of threshold selection, it is not immediately clear whether the threshold

selection was useful. Indeed, learning a threshold is only useful if the optimal threshold value

remains reasonably consistent across the instances. We now investigate the usefulness of threshold

selection in multiple ways.

First, Figure 5 shows the average distortion achieved by di�erent values of the threshold on

the training instances, when used in conjunction with the deterministic and the randomized
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Fig. 5. Average distortion achieved by di�erent threshold values in threshold approval votes.

distortion-minimizing aggregation rules. Recall that the �nal threshold value we select is the one

that minimizes this measure. For every threshold value on the x-axis, the error bars indicate the

range that contains the distortion on 95% of the training instances. We do not plot threshold values

above 0.4 as the distortion is non-decreasing beyond this point.

We observe that the thresholds values that lead to the smallest average distortion are exactly

those with the smallest variation across instances. Interestingly, the average distortion of di�erent

values of the threshold is wildly di�erent under the deterministic aggregation rule, but rather

similar under the randomized aggregation rule. This e�ect perhaps manifests itself in the improved

performance of threshold approval votes with deterministic aggregation than with randomized

aggregation in all of our experiments; see Figures 1, 3 and 4.

Next, we measure the usefulness of training the threshold value in a di�erent way. In Figure 6,

we plot the empirical distribution of the optimal threshold value, i.e., for each threshold value, we

plot the percentage of training instances in which that value led to the minimum distortion across

all threshold values. It is clear that for both deterministic and randomized aggregation rules, the

distribution of the optimal threshold value is (quite strongly) centered at 0.1. In fact, the optimal

threshold value was in [0.075, 0.15] in more than 80% of the training instances.

The consistency with which a single threshold value (0.1) remains the optimal value suggests

that learning this value from the holdout set is very likely to be helpful in achieving superior

performance.

Finally, we note that the datasets we used contain votes over 10 alternatives. That is, m = 10.

Interestingly, this makes the empirically optimal threshold value 1/m, which is precisely the

value for which we achieve the best performance in the worst case in our theoretical results (see

Theorem 3.14).
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Fig. 6. Percentage of instances for which di�erent threshold values are optimal.
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