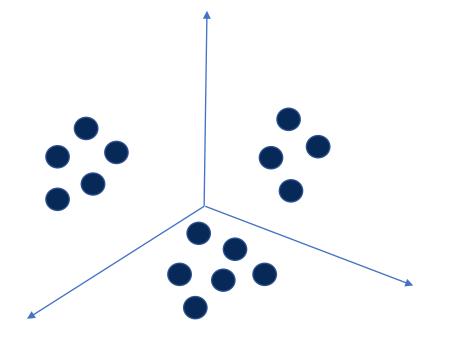
CSC2421 Fairness in Clustering

Evi Micha

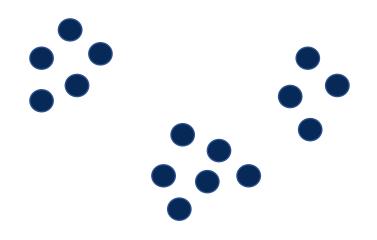
Clustering



Clustering in ML/Data Analysis

• Goal:

- > Analyze data sets to summarize their characteristics
- > Objects in the same group are similar

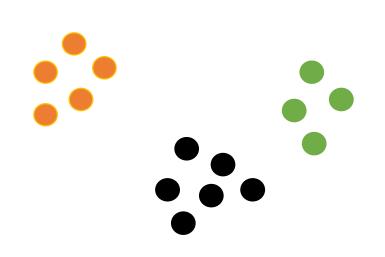


Clustering in ML/Data Analysis

• Goal:

- > Analyze data sets to summarize their characteristics
- > Objects in the same group are similar

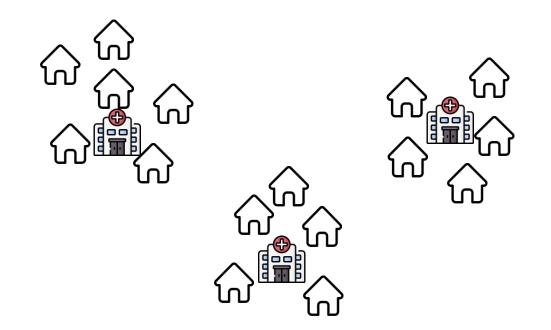
k=3



Clustering in Economics/OR

• Goal:

> Allocate a set of facilities that serve a set of agents (e.g. hospitals)



Center-Based Clustering

• Input:

 \succ Set N of n data points

 \succ Set *M* of *m* feasible cluster centers

 $\succ \forall i, j \in N \cup M$: we have d(i, j) (which forms a *Metric Space*)

- $d(i, i) = 0, \forall i \in N \cup M$
- $d(i,j) = d(j,i), \forall i,j \in N \cup M$
- $d(i, j) \le d(i, \ell) + d(\ell, j), \forall i, j, \ell \in N \cup M$, (Triangle Inequality)

• Output:

≻ A set $C \subseteq M$ of k centers, i.e. $C = \{c_1, ..., c_k\}$

> Each data point is assigned to its closest cluster center

•
$$C(i) = argmin_{c \in C} d(i, c)$$

Famous Objective Functions

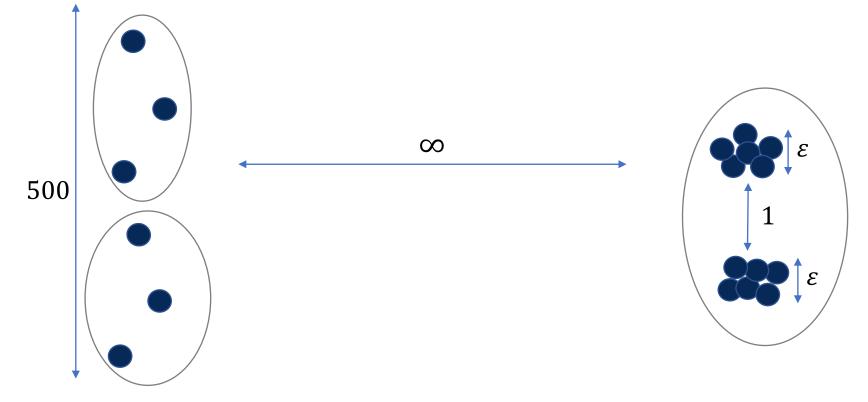
- *k*-median: Minimizes the sum of the distances
 - $\min_{\substack{C \subseteq M:\\ |C| \le k}} \sum_{i \in N} d(i, C(i))$
- *k*-means: Minimizes the sum of the square of the distances
 - $\min_{\substack{C \subseteq M:\\|C| \le k}} \sum_{i \in N} d^2(i, C(i))$
- *k*-center: Minimizes the maximum distance
 - $\min_{\substack{C \subseteq M: \ i \in N \\ |C| \le k}} \max d(i, C(i))$

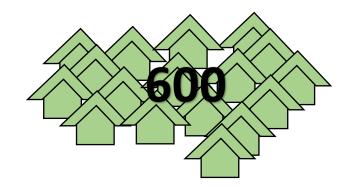
U Why do we need fairness:

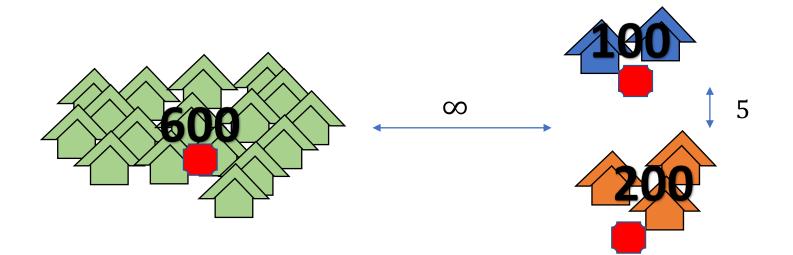
• Many decisions are made at least (partly) using algorithms

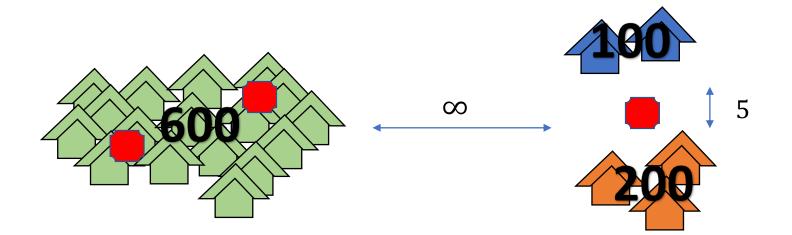
> Each point wishes to be as close as possible to some center

- **ML applications:** Closer to center \Rightarrow better represented by the center
- **FL** applications: Closer to the center \Rightarrow less travel distance to the facility









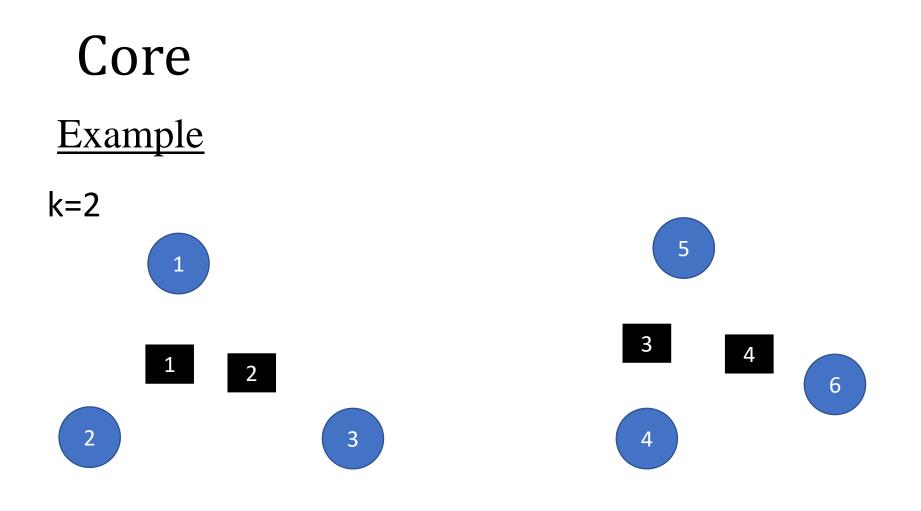
Fairness Through Proportionality

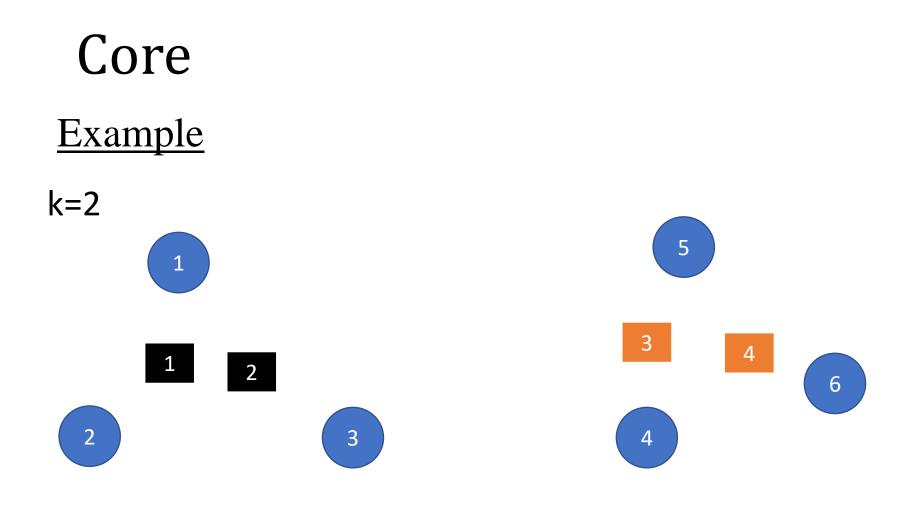
- *Proportionally Fair Clustering:*
 - Every x% of the data points can select x% of the cluster centers
 - Every group of n/k agents "deserves" its own cluster center

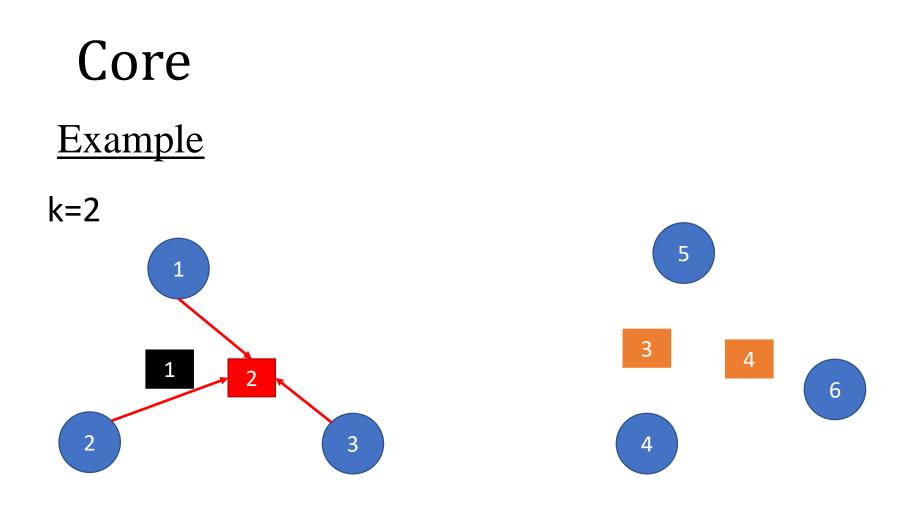
- Definition in Committee Selection: W is in the core if
 - For all $S \subseteq N$ and $T \subseteq M$
 - ▶ If $|S| \ge |T| \cdot n/k$ (large)
 - ➤ Then, $|A_i \cap W| \ge |A_i \cap T|$ for some $i \in S$
 - "If a group can afford T, then T should not be a (strict) Pareto improvement for the group"

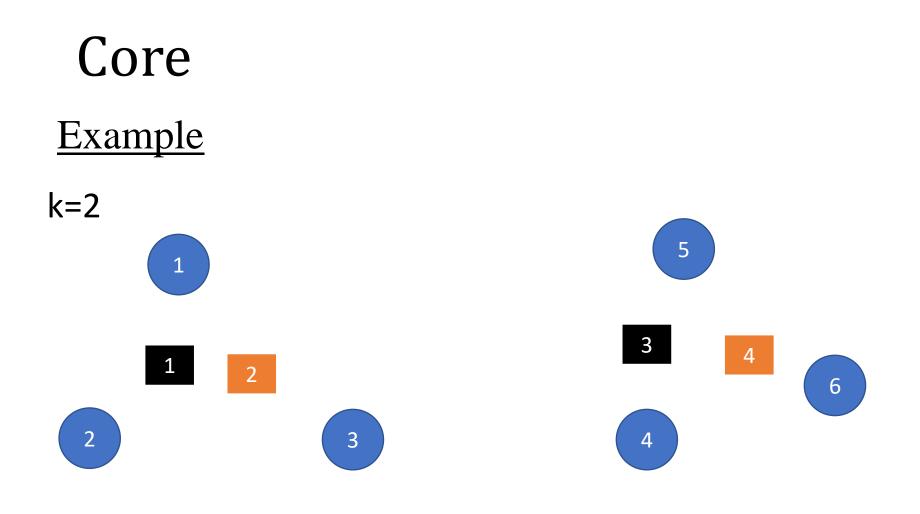
 \Box Let B(x, y) denotes the ball centered in x and has radius y

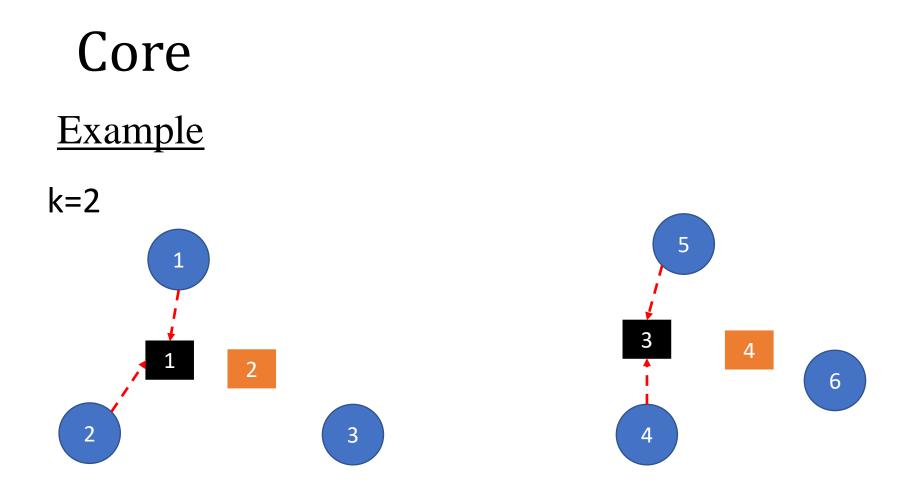
- □ Given clustering solution *C*, C(i) denotes the closest center to $i \in N$
- **Definition in Clustering**: *C* is in the core if
 - For all $S \subseteq N$ and $y \subseteq M$
 - $\succ \text{ If } |S| \geq n/k \text{ (large)}$
 - ➤ Then, $d(i, C(i)) \le d(i, y)$ for some $i \in S$
 - "If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"

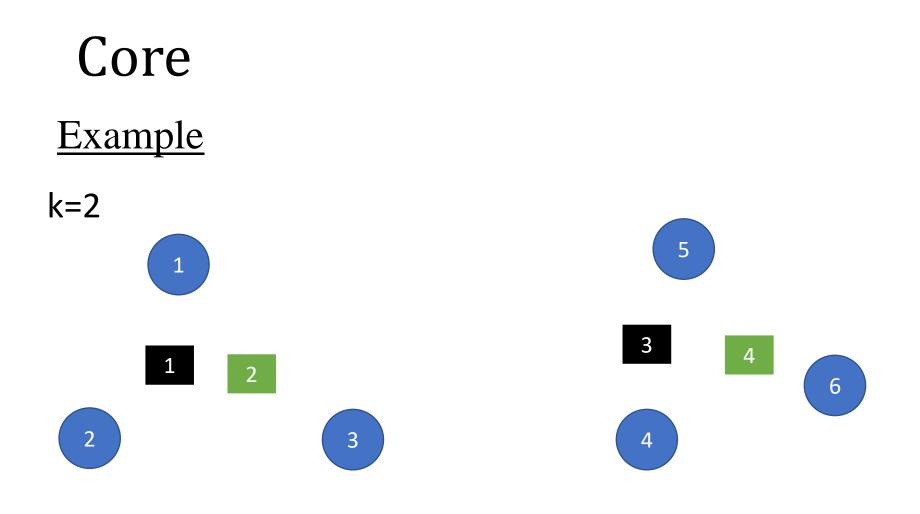




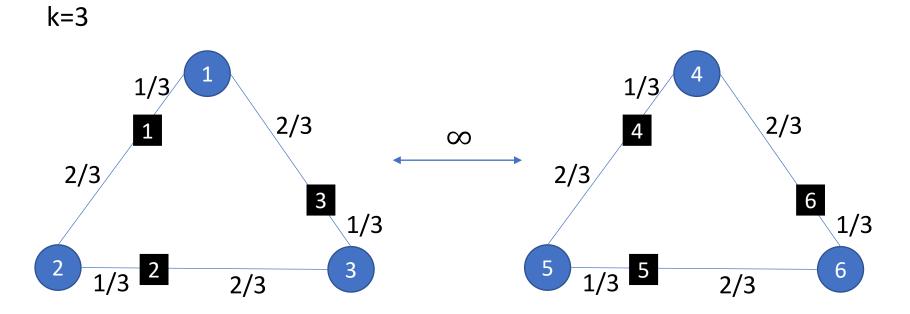




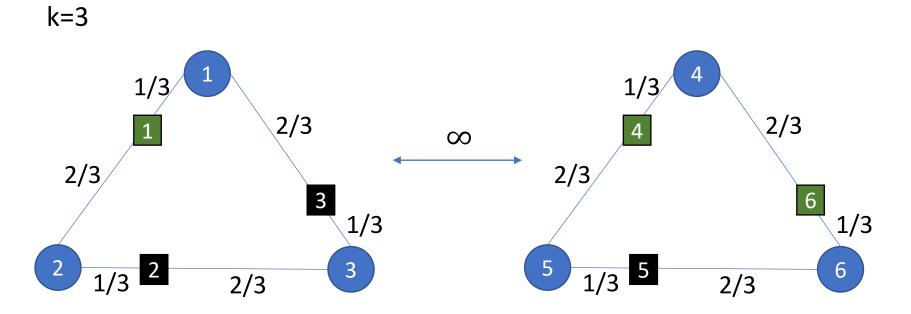




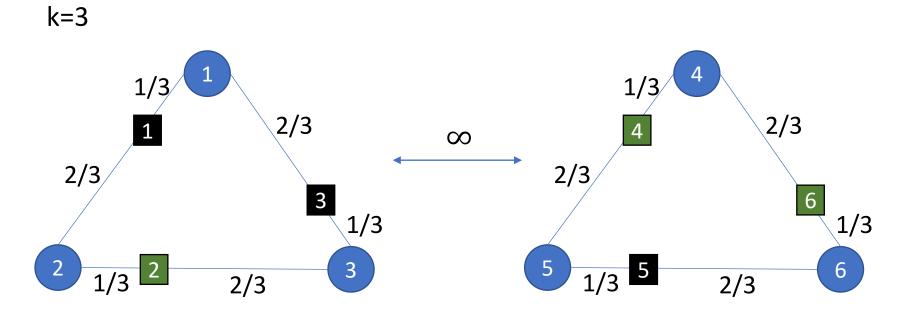
- Theorem: A clustering solution in the core does not always exist
- Proof:



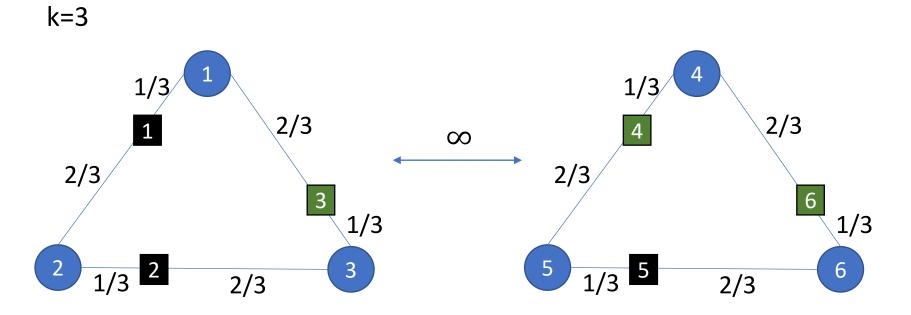
- Theorem: A clustering solution in the core does not always exist
- Proof:



- Theorem: A clustering solution in the core does not always exist
- Proof:



- Theorem: A clustering solution in the core does not always exist
- Proof:



• **Definition in Clustering:** *C* is in the core if

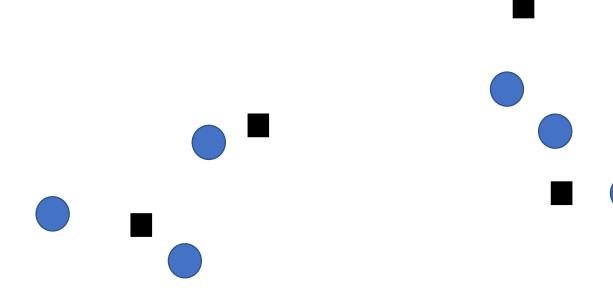
- For all $S \subseteq N$ and $y \subseteq M$
- $\succ \text{ If } |S| \geq n/k \text{ (large)}$
- \succ Then, d(i, C(i)) ≤ α · d(i, y) for some *i* ∈ *S*
- "If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"

α-Core:

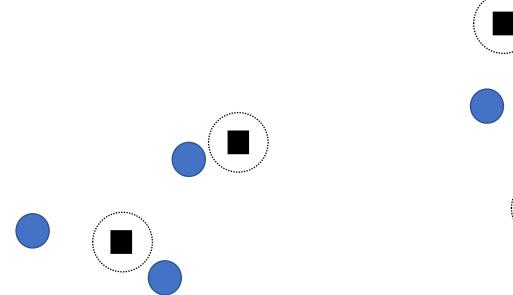
A solution C is in the α -core, with $\alpha \ge 1$ if there is **no** group of points $S \subseteq N$ with $|S| \ge n/k$ and $y \in M$ such that:

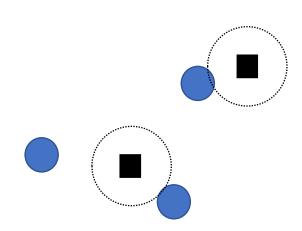
 $\forall i \in S, \alpha \cdot d(i, y) < d(i, C(i))$

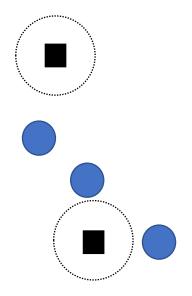
k = 3

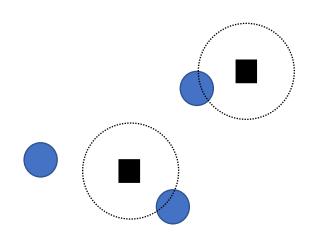


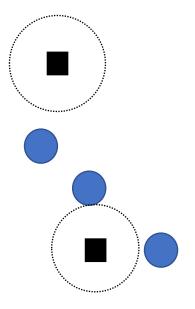
k = 3



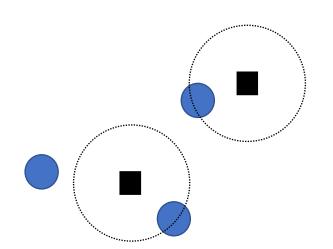


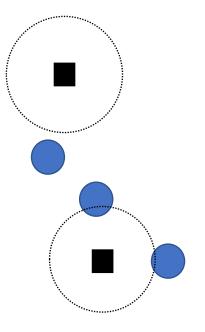


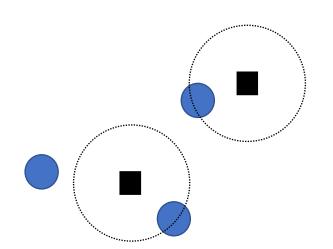


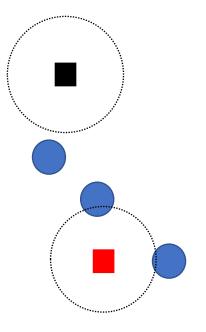


k = 3

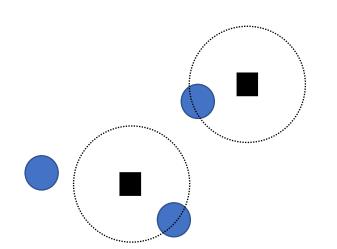


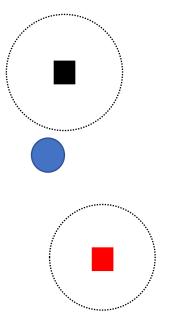


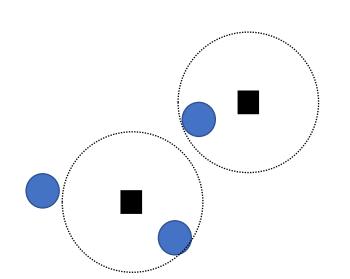


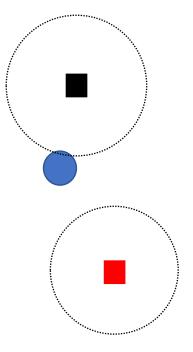


k = 3

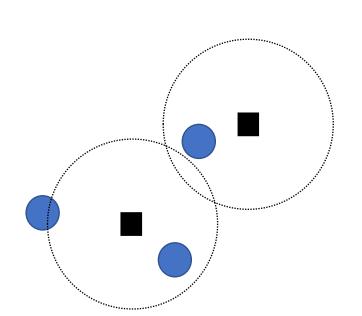


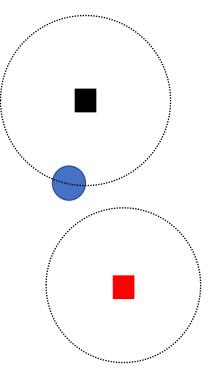


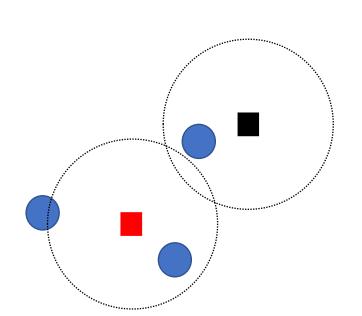


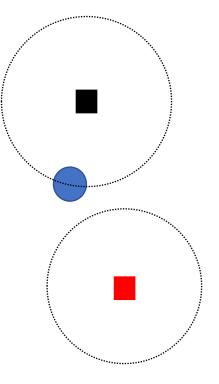


k = 3

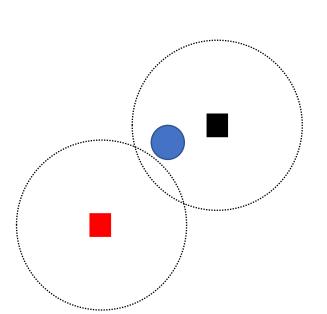


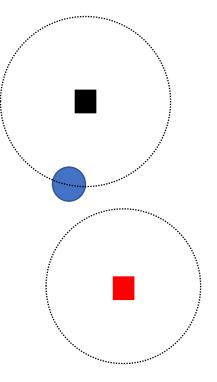




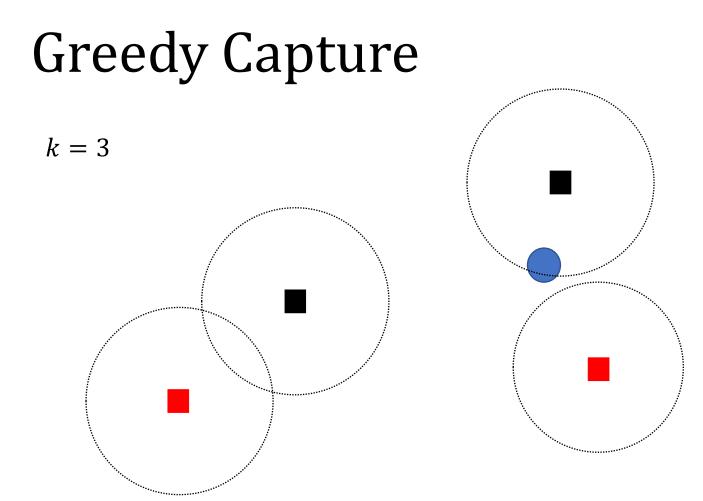


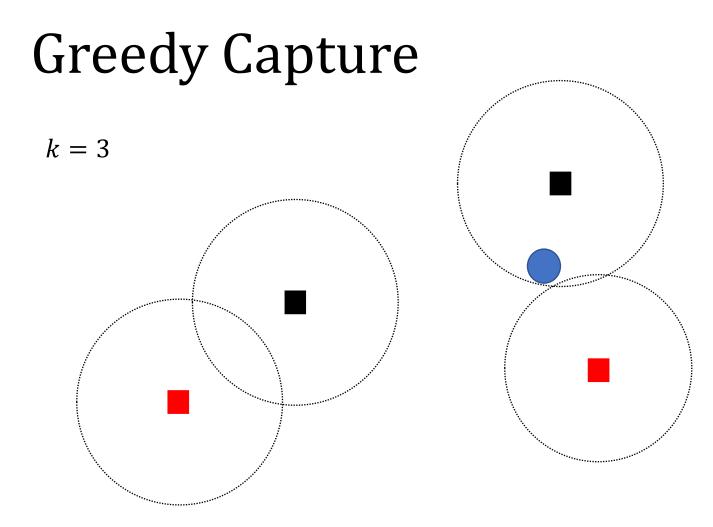
k = 3

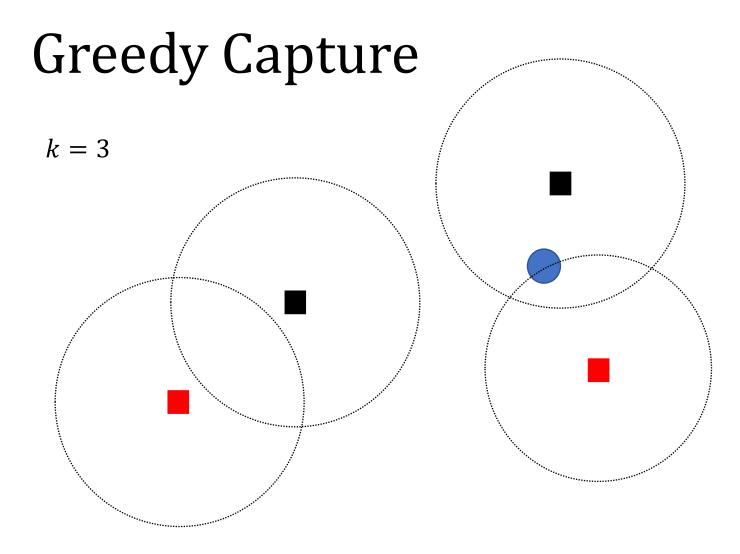


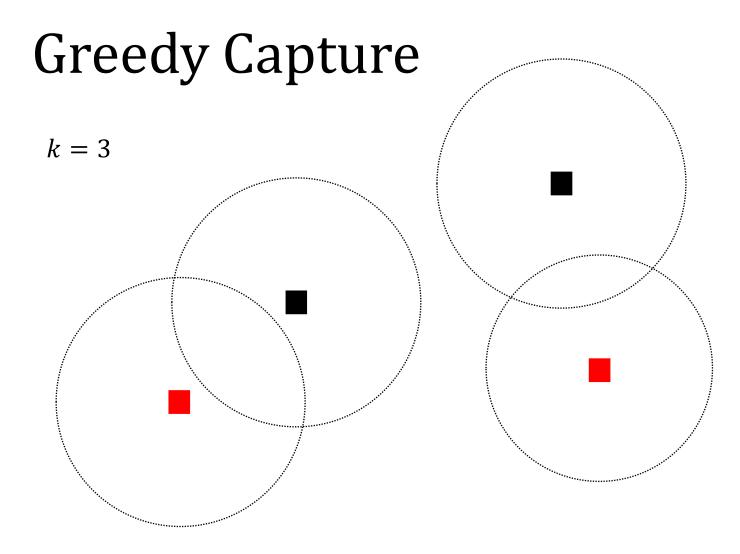


Greedy Capture k = 3





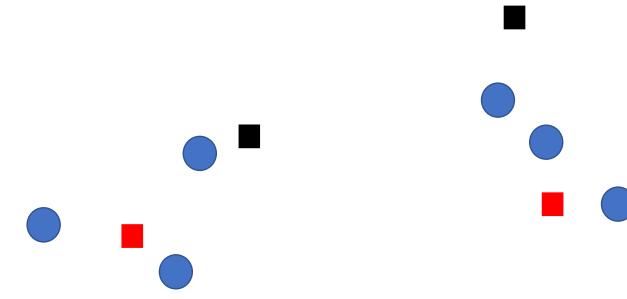




CSC2421 - Evi Micha

Greedy Capture

k = 3



Greedy Capture

Greedy Capture

```
1. \delta \leftarrow 0; C \leftarrow 0
    While N \neq 0 do
2
          Smoothly increase \delta
3.
4.
          While \exists c \in C such that |B(c, \delta) \cap N| \geq 1 do
                 C: N \leftarrow N \setminus (B(c, \delta) \cap N)
5.
            While \exists c \in M \setminus C such that |B(c, \delta) \cap N| \ge n/k do
6.
7.
                C \leftarrow C \cup c
                N \leftarrow N \setminus (B(c, \delta) \cap N)
8.
9.
     Return C
```

Greedy Capture

- Theorem [Chen et al. '19]: Greedy Capture returns a clustering solution in the $(1 + \sqrt{2})$ -core.
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \ge \frac{n}{k}$ and $c \in M \setminus C$, such that $\forall i \in S, (1 + \sqrt{2}) \cdot d(i, c) < d(i, C(i))$

$$\begin{split} \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c')}{d(i^*,c)}\right) \\ &\leq \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,c')}{d(i^*,c)}\right) \text{(triangle inequality)} \\ &\leq \min\left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,i)+d(i,c')}{d(i^*,c)}\right) \text{(triangle inequality)} \\ &\leq \min\left(\frac{d(i^*,c)}{d(i,c)}, 2 + \frac{d(i,c)}{d(i^*,c)}\right) (d(i,c') \leq d(i^*,c)) \\ &\leq \max_{z \geq 0} (\min(z, 2 + 1/z)) \leq 1 + \sqrt{2} \end{split}$$

Justified Representation

- Definition in Committee Selection: W satisfies JR if
 - $\succ \text{ For all } S \subseteq N$
 - ▶ If $|S| \ge n/k$ (large) and $|\bigcap_{i \in S} A_i| \ge 1$ (cohesive)
 - ▶ Then, $|A_i \cap W| \ge 1$ for some $i \in S$
 - "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
- Definition in Clustering: C satisfies JR if
 - For all $S \subseteq N$
 - ▶ If $|S| \ge n/k$ (large) and $|\cap_{i \in S} B(i, r) \cap M| \ge 1$ (cohesive)
 - i.e. $\forall i \in S, d(i, c) \leq r$ for some $c \in M$
 - ➤ Then, $|B(i,r) \cap C| \ge 1$ for some $i \in S$
 - i.e. $d(i, C(i)) \le r$ for some $i \in S$
 - "If a group deserves one cluster center and has a center that has distance at most r from each of them, then not every member should have distance larger than r from all the centers in the clustering"

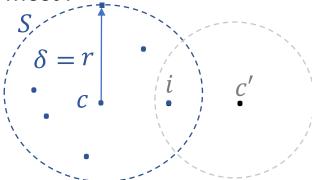
Justified Representation

• Question: What is the relationship between JR and core in clustering?

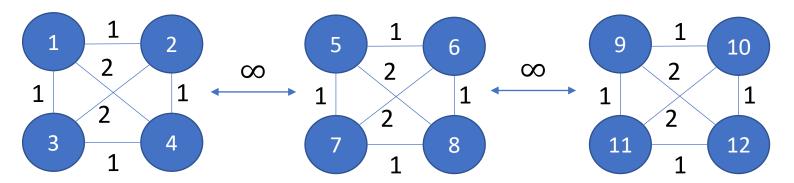
- 2. $JR \Rightarrow core$
- 3. JR=core
- 4. JR \neq core

Justified Representation

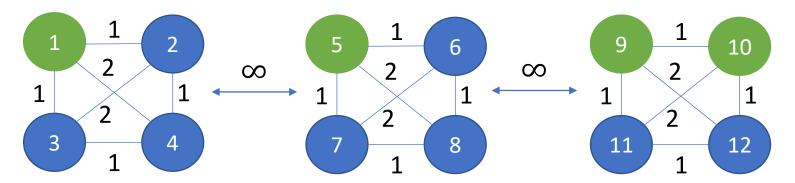
- Theorem [Kellerhals and Peters '24]: Greedy Capture returns a clustering solution that is JR
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \ge \frac{n}{k}$ and $c \in M \setminus C$, such that $\forall i \in S$, $d(i,c) \le r$ and d(i,C(i)) > r
- If none of $i \in S$ has been disregarded, then $|B(c, \delta)| \ge n/k$ and then c is included in the committee
- Otherwise, some of $i \in S$ has been disregarder when it captured from a ball centered at c with radius at most $r \stackrel{i^*}{\underset{}{}}$



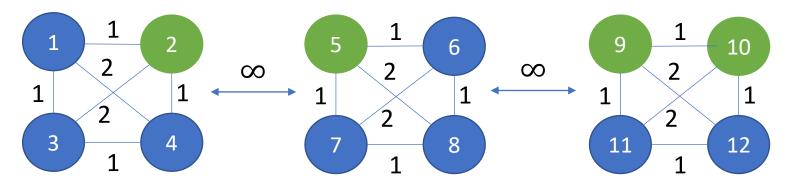
- Definition: C satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - ▶ For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



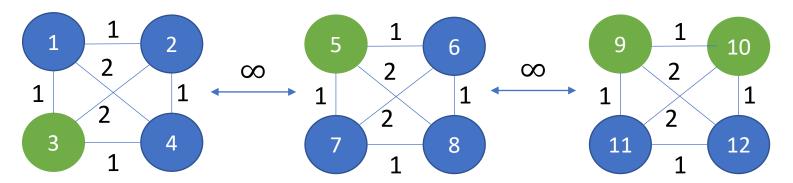
- Definition: C satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - ▶ For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



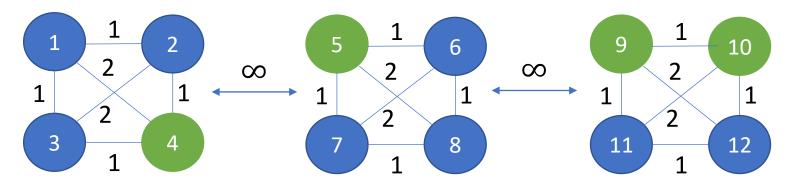
- Definition: C satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - ▶ For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



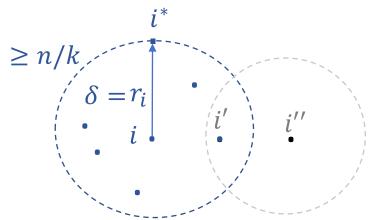
- Definition: C satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - ▶ For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



- Definition: C satisfies Individual Fairness (IF) if
 - \succ N = M
 - $\blacktriangleright \text{ Let } r_i = \min_{r \in \mathbb{R}} \{ |B(i,r) \cap N| \ge n/k \}$
 - ▶ For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k = 4



- Theorem [Jung et al. '19]: Greedy Capture returns a clustering solution that is 2-IF
- Proof:
- Let *C* be the solution that Greedy Capture returns
- Suppose for contradiction that some $i \in N$, $|B(i, r_i) \cap C| = 0$
- If $|B(i, r_i)| \ge n/k$, then *i* is included in the solution
- Otherwise, some of $i' \in B(i, r_i)$ has been disregarded when it captured from a ball centered at i'' with radius at most r_i
- From triangle inequality, $d(i, i'') \le d(i, i') + d(i', i'') \le 2 \cdot r_i$



Core, JR and IF

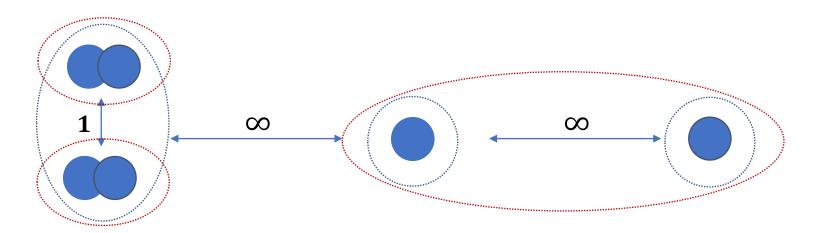
- Theorem: Greedy Capture returns a clustering solution that is JR, 2-IF and in the $1 + \sqrt{2}$ -core .
- Theorem [Kellerhals and Peters '24]: Any clustering solution that satisfies JR, it also satisfies 2-IF and is in the $1 + \sqrt{2}$ -core.
- Theorem [Kellerhals and Peters '24]:

 \Box Any clustering solution that satisfies α -IF, it is also in the 2 $\cdot \alpha$ -core

 \Box Any clustering solution that is in the α -core, it also satisfies $(1 + \alpha)$ -IF

Core, JR and IF vs k-means, kmedian, k-center

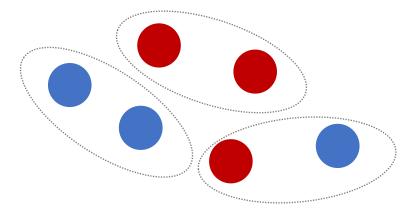
k = 3



Demographic Fairness

• Demographic Groups:

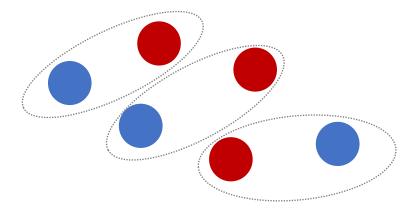
- > There is predefined set of protected groups (e.g. race or gender)
- Each individual/data point belongs to one group
- Disparate Impact in ML: The impact of a system across protected groups
- Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster



Demographic Fairness

• Demographic Groups:

- > There is predefined set of protected groups (e.g. race or gender)
- Each individual/data point belongs to one group
- Disparate Impact in ML: The impact of a system across protected groups
- Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster



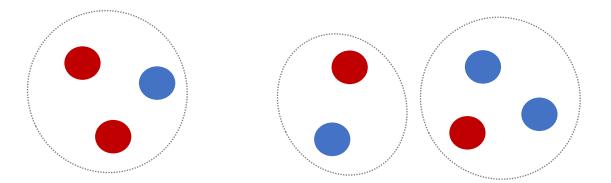
Balancedness

- Let G_1, \ldots, G_t be the protected groups
- Let $C = \{C_1, \dots, C_k\}$ be a clustering solution
- The balancedness in each cluster C_j is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

 $balance(C) = \min_{j \in [k]} balance(C_j)$



CSC2421 - Evi Micha

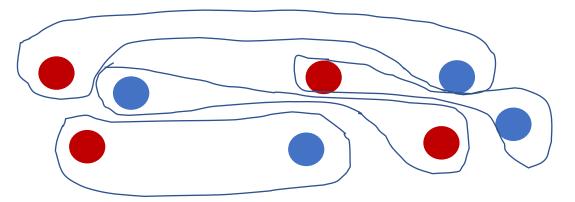
Balancedness

- Let G_1, \ldots, G_t be the protected groups
- Let $C = \{C_1, \dots, C_k\}$ be a clustering solution
- The balancedness in each cluster C_j is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

 $balance(C) = \min_{j \in [k]} balance(C_j)$



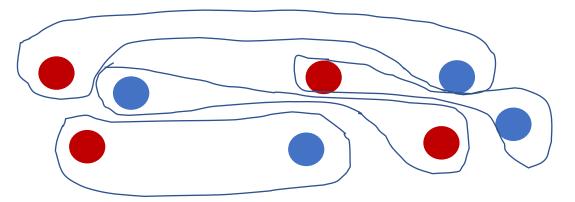
Balancedness

- Let G_1, \ldots, G_t be the protected groups
- Let $C = \{C_1, \dots, C_k\}$ be a clustering solution
- The balancedness in each cluster C_j is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

 $balance(C) = \min_{j \in [k]} balance(C_j)$



Bounded Representation

- Let G_1, \ldots, G_t be the protected groups
- Let $C = \{C_1, \dots, C_k\}$ be a clustering solution
- For (α, β) bounded representation we require that

 $\alpha \leq |G_i \cap C_j| \leq \beta, \quad \forall i \in [t] \text{ and } \forall j \in [k]$

- Standard objectives such as k-center, k-median and k-means are maximized subject to (α, β) bounded representation constraints
- Open Question: Maximize the approximation to the core subject to (α, β) -bounded representation constraints