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Clustering in ML/Data Analysis

• Goal:

➢ Analyze data sets to summarize their characteristics

➢ Objects in the same group are similar
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Clustering in Economics/OR

• Goal:

➢ Allocate a set of facilities that serve a set of agents (e.g. hospitals)
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Center-Based Clustering
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• Input:

➢Set 𝑁 of 𝑛 data points

➢Set 𝑀 of 𝑚 feasible cluster centers

➢∀𝑖, 𝑗 ∈ 𝑁 ∪ 𝑀 : we have 𝑑 𝑖, 𝑗  (which forms a Metric Space)

• 𝒅(𝒊, 𝒊) = 𝟎, ∀ 𝑖 ∈ 𝑁 ∪ 𝑀 

• 𝒅 𝒊, 𝒋 = 𝒅(𝒋, 𝒊), ∀ 𝑖, 𝑗 ∈ 𝑁 ∪ 𝑀

• 𝒅 𝒊, 𝒋 ≤ 𝒅 𝒊, ℓ + 𝒅 ℓ, 𝒋 , ∀ 𝑖, 𝑗, ℓ ∈ 𝑁 ∪ 𝑀, (Triangle Inequality)

• Output:

➢A set 𝐶 ⊆M of 𝑘 centers, i.e. 𝐶 = {𝑐1, … , 𝑐𝑘} 

➢Each data point is assigned to its closest cluster center

• 𝐶(𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐∈𝐶  𝑑(𝑖, 𝑐)



Famous Objective Functions
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• 𝑘-median: Minimizes the sum of the distances 
• min 

𝐶⊆𝑀:
𝐶 ≤𝑘 

σ𝑖∈𝑁 𝑑(𝑖, 𝐶(𝑖)) 

• 𝑘-means: Minimizes the sum of the square of the distances
• min 

𝐶⊆𝑀:
𝐶 ≤𝑘 

σ𝑖∈𝑁 𝑑2(𝑖, 𝐶(𝑖)) 

 

• 𝑘-center: Minimizes the maximum distance 
• min 

𝐶⊆𝑀:
𝐶 ≤𝑘 

max
𝑖∈𝑁

 𝑑(𝑖, 𝐶(𝑖))



Fairness in Clustering 
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❑Why do we need fairness:

• Many decisions are made at least (partly) using algorithms

➢Each point wishes to be as close as possible to some center

• ML applications: Closer to center ⇒ better represented by the center

•  FL  applications: Closer to the center ⇒ less travel distance to the facility
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Fairness Through Proportionality
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• Proportionally Fair Clustering:
• Every x% of the data points can select x% of the cluster centers
• Every group of n/k agents “deserves” its own cluster center



Core

CSC2421 - Evi Micha

• Definition in Committee Selection: 𝑊 is in the core if 
➢ For all 𝑆 ⊆  𝑁 and 𝑇 ⊆ 𝑀 
➢ If 𝑆 ≥ 𝑇 ⋅  𝑛/𝑘 (large) 
➢ Then, |𝐴𝑖 ∩ 𝑊| ≥ |𝐴𝑖 ∩ 𝑇| for some 𝑖 ∈ 𝑆 
➢ “If a group can afford 𝑇, then 𝑇 should not be a (strict) Pareto 

improvement for the group” 

❑ Let 𝐵 𝑥, 𝑦  denotes the ball centered in 𝑥 and has radius 𝑦
❑ Given clustering solution 𝐶, 𝐶(𝑖) denotes the closest center to 𝑖 ∈  𝑁

• Definition in Clustering: 𝐶 is in the core if 
➢ For all 𝑆 ⊆  𝑁 and 𝑦 ⊆ 𝑀 
➢ If 𝑆 ≥  𝑛/𝑘 (large) 
➢ Then,  𝑑 𝑖, 𝐶(𝑖) ≤ 𝑑 𝑖, 𝑦  for some 𝑖 ∈ 𝑆
➢ “If a group can afford a center y, then 𝑦 should not be a (strict) Pareto 

improvement for the group” 
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• Theorem: A clustering solution in the core does not always exist
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Core
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𝜶-Core: 

A solution C is in the 𝛼-core, with 𝛼 ≥ 1 if there is no group of 

points S ⊆N with |S|≥ 𝑛/𝑘 and 𝑦 ∈ 𝑀 such that:

∀𝑖 ∈ 𝑆, 𝛼 ⋅ 𝑑 𝑖, 𝑦 < 𝑑(𝑖, 𝐶(𝑖)) 

• Definition in Clustering: 𝐶 is in the core if 
➢ For all 𝑆 ⊆  𝑁 and 𝑦 ⊆ 𝑀 
➢ If 𝑆 ≥  𝑛/𝑘 (large) 
➢ Then,  𝑑 𝑖, 𝐶(𝑖) ≤ 𝛼 ⋅ 𝑑 𝑖, 𝑦  for some 𝑖 ∈ 𝑆
➢ “If a group can afford a center y, then 𝑦 should not be a (strict) Pareto 

improvement for the group” 
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Greedy Capture
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Greedy Capture
1. 𝛿 ←0; 𝐶 ←0
2. While  𝑁 ≠ 0 do
3.        Smoothly increase 𝛿 
4.        While ∃ 𝑐 ∈ 𝐶 such that 𝐵 𝑐, 𝛿 ∩ 𝑁 ≥ 1 do
5.                𝐶: 𝑁 ← 𝑁 ∖ (𝐵 𝑐, 𝛿 ∩ 𝑁)
6.         While ∃ 𝑐 ∈ 𝑀 ∖ 𝐶 such that 𝐵 𝑐, 𝛿 ∩ 𝑁 ≥ 𝑛/𝑘 do
7.               𝐶 ← 𝐶 ∪ 𝑐
8.               𝑁 ← 𝑁 ∖ (𝐵 𝑐, 𝛿 ∩ 𝑁)
9. Return 𝐶



Greedy Capture
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• Theorem [Chen et al. ‘19]: Greedy Capture returns a clustering solution in the 

1 + 2 -core.

• Proof: 
• Let 𝐶 be the solution that Greedy Capture returns

• Suppose for contradiction that there exists 𝑆 ⊆ 𝑁, with 𝑆 ≥
𝑛

𝑘
 and 𝑐 ∈ 𝑀 ∖ 𝐶, 

such that ∀𝑖 ∈ 𝑆, 1 + 2 ⋅ 𝑑 𝑖, 𝑐 < 𝑑(𝑖, 𝐶(𝑖))

min
𝑑 𝑖, 𝑐′

𝑑 𝑖, 𝑐
,
𝑑 𝑖∗, 𝑐′

𝑑 𝑖∗, 𝑐

≤ min
𝑑 𝑖,𝑐′

𝑑 𝑖,𝑐
,

𝑑 𝑖∗,𝑐 +𝑑(𝑐,𝑐′)

𝑑 𝑖∗,𝑐
 (triangle inequality)

≤ min
𝑑 𝑖,𝑐′

𝑑 𝑖,𝑐
,

𝑑 𝑖∗,𝑐 +𝑑 𝑐,𝑖 +𝑑(𝑖,𝑐′)

𝑑 𝑖∗,𝑐
 (triangle inequality)

≤ min
𝑑 𝑖∗,𝑐 

𝑑 𝑖,𝑐
, 2 +

𝑑(𝑖,𝑐)

𝑑 𝑖∗,𝑐
 (𝑑 𝑖, 𝑐′ ≤ 𝑑(𝑖∗, 𝑐))

≤ max
𝑧≥0

(min(𝑧, 2 + 1/𝑧)) ≤ 1 + 2

.𝑐

𝑖∗

𝑆
.

𝑟

.𝑖. 𝑐′
𝛿 =

.
.

.
..



Justified Representation
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• Definition in Committee Selection: 𝑊 satisfies JR if 
➢ For all 𝑆 ⊆  𝑁
➢ If |𝑆|  ≥  𝑛/𝑘 (large) and ∩𝑖∈𝑆 𝐴𝑖 ≥ 1 (cohesive)
➢ Then, |𝐴𝑖 ∩ 𝑊| ≥ 1 for some 𝑖 ∈ 𝑆
➢ “If a group deserves one candidate and has a commonly approved 

candidate, then not every member should get 0 utility” 

• Definition in Clustering: 𝐶 satisfies JR if 
➢ For all 𝑆 ⊆  𝑁
➢ If |𝑆|  ≥  𝑛/𝑘 (large) and | ∩𝑖∈𝑆𝐵 𝑖, 𝑟 ∩ 𝑀| ≥ 1 (cohesive)

o i.e. ∀𝑖 ∈ 𝑆, 𝑑 𝑖, 𝑐 ≤ 𝑟 for some 𝑐 ∈ 𝑀
➢ Then, |𝐵 𝑖, 𝑟 ∩ 𝐶| ≥ 1 for some 𝑖 ∈ 𝑆 

o i.e. 𝑑 𝑖, 𝐶(𝑖) ≤ 𝑟 for some 𝑖 ∈ 𝑆
➢ “If a group deserves one cluster center and has a center that has distance 

at most 𝑟 from each of them, then not every member should have  
distance larger than 𝑟 from all the centers in the clustering ” 



Justified Representation
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• Question: What is the relationship between JR and core in 
clustering?

1. core ⇒ JR

2. JR ⇒ core

3. JR=core

4. JR ≠ core



Justified Representation
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• Theorem [Kellerhals and Peters ‘24]: Greedy Capture returns a clustering solution 
that is JR

• Proof: 
• Let 𝐶 be the solution that Greedy Capture returns

• Suppose for contradiction that there exists 𝑆 ⊆ 𝑁, with 𝑆 ≥
𝑛

𝑘
 and 𝑐 ∈ 𝑀 ∖ 𝐶, 

such that ∀𝑖 ∈ 𝑆, 𝑑 𝑖, 𝑐 ≤ 𝑟 and 𝑑 𝑖, 𝐶 𝑖 > 𝑟

• If none of 𝑖 ∈ 𝑆 has been disregarded,  then 𝐵 𝑐, 𝛿 ≥ 𝑛/𝑘 and then 𝑐 is 
included  in the committee

• Otherwise, some of 𝑖 ∈ 𝑆 has been disregarder when it captured from a ball 
centered at 𝑐 with radius at most 𝑟

.𝑐

𝑖∗

𝑆
.

𝑟

.𝑖. 𝑐′
𝛿 =

.
.

.
..
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• Definition: 𝐶 satisfies Individual Fairness (IF) if 
➢ 𝑁 = 𝑀
➢ Let 𝑟𝑖 = min

𝑟∈ℝ
{ 𝐵 𝑖, 𝑟 ∩ 𝑁 ≥ 𝑛/𝑘}

➢ For all 𝑖 ∈ 𝑁, 𝐵 𝑖, 𝑟𝑖 ∩ 𝐶 ≥ 1
➢ “Each individual expects a center within their proportional neighborhood” 

• Theorem [Jung et al. ‘19]: An individually fair clustering solution does not always 
exist

• Proof:
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• Theorem [Jung et al. ‘19]: An individually fair clustering solution does not always 
exist

• Proof:
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• Theorem [Jung et al. ‘19]: Greedy Capture returns a clustering solution that is 
2-IF

• Proof: 
• Let 𝐶 be the solution that Greedy Capture returns
• Suppose for contradiction that some 𝑖 ∈ 𝑁, 𝐵 𝑖, 𝑟𝑖 ∩ 𝐶 = 0 
• If 𝐵 𝑖, 𝑟𝑖 ≥ 𝑛/𝑘, then 𝑖 is included  in the solution
• Otherwise, some of 𝑖′ ∈ 𝐵 𝑖, 𝑟𝑖 has been disregarded when it captured from a 

ball centered at 𝑖′′ with radius at most 𝑟𝑖

• From triangle inequality, 𝑑 𝑖, 𝑖′′ ≤ 𝑑 𝑖, 𝑖′ + 𝑑 𝑖′, 𝑖′′ ≤ 2 ⋅ 𝑟𝑖

.𝑖

𝑖∗

≥ 𝑛/𝑘
.

𝑟𝑖

.𝑖′. 𝑖′′
𝛿 =

.
.

.
..



Core, JR and IF
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• Theorem: Greedy Capture returns a clustering solution that is JR, 2-IF and 

in the 1 + 2-core .

• Theorem [Kellerhals and Peters ‘24]: Any clustering solution that satisfies 

JR, it also satisfies 2-IF and is in the 1 + 2-core .

• Theorem [Kellerhals and Peters ‘24]: 
❑ Any clustering solution that satisfies 𝛼-IF, it is also in the 2 ⋅ 𝛼-core
❑ Any clustering solution that is in the 𝛼-core, it also satisfies (1 + 𝛼)-IF 
 



Core, JR and IF vs k-means, k-
median, k-center
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Demographic Fairness
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• Demographic Groups: 
➢ There is predefined set of protected groups (e.g. race or gender)
➢ Each individual/data point belongs to one group
➢ Disparate Impact in ML: The impact of a system across protected 

groups
➢ Disparate Impact in Clustering: The impact on a group is measured 

by how many individuals of that group are in each cluster
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• Let 𝐺1, … , 𝐺𝑡 be the protected groups
• Let 𝐶 = {𝐶1, … , 𝐶𝑘} be a clustering solution
• The balancedness in each cluster 𝐶𝑗 is measured as:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶𝑗)= min
𝑖≠𝑖′∈[𝑡]

𝐺𝑖∩𝐶𝑗

𝐺𝑖′∩𝐶𝑗

• The balancedness of a clustering solution 𝐶 = {𝐶1, … , 𝐶𝑡}  is measured as:

 𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶)=min
𝑗∈[𝑘]

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶𝑗)
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𝑗∈[𝑘]

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶𝑗)



Balancedness
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• Let 𝐺1, … , 𝐺𝑡 be the protected groups
• Let 𝐶 = {𝐶1, … , 𝐶𝑘} be a clustering solution
• The balancedness in each cluster 𝐶𝑗 is measured as:

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶𝑗)= min
𝑖≠𝑖′∈[𝑡]

𝐺𝑖∩𝐶𝑗

𝐺𝑖′∩𝐶𝑗

• The balancedness of a clustering solution 𝐶 = {𝐶1, … , 𝐶𝑡}  is measured as:

 𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶)=min
𝑗∈[𝑘]

𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝐶𝑗)



Bounded Representation
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• Let 𝐺1, … , 𝐺𝑡 be the protected groups
• Let 𝐶 = {𝐶1, … , 𝐶𝑘} be a clustering solution
• For (𝛼, 𝛽)- bounded representation we require that

𝛼 ≤ 𝐺𝑖 ∩ 𝐶𝑗 ≤ 𝛽, ∀𝑖 ∈ [𝑡] and ∀𝑗 ∈ [𝑘] 

• Standard objectives such as k-center, k-median and k-means are maximized 
subject to (𝛼, 𝛽)- bounded representation constraints

• Open Question: Maximize the approximation to the core subject to (𝛼, 𝛽)- 
bounded representation constraints
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