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Abstract

A fundamental task in multi-agent systems is to match n agents to n alternatives (e.g., resources or
tasks). Often, this is accomplished by eliciting agents’ ordinal rankings over the alternatives instead of
their exact numerical utilities. While this simplifies elicitation, the incomplete information leads to ineffi-
ciency, captured by a worst-case measure called distortion. A recent line of work shows that making just a
few queries to each agent regarding their cardinal utility for an alternative can significantly improve the
distortion, with Amanatidis et al. [1] achieving O(

√
n) distortion with two queries per agent. We gener-

alize their result by achieving O(n1/λ) distortion with λ queries per agent, for any constant λ, which is
optimal given a previous lower bound by Amanatidis et al. [2].

We also extend our finding to the general social choice problem, where one of m alternatives must be
chosen based on the preferences of n agents, and show that O((min{n, m})1/λ) distortion can be achieved
with λ queries per agent, for any constant λ, which is also optimal given prior results. Thus, for both prob-
lems, our work settles open questions regarding the optimal distortion achievable using a fixed number of
cardinal value queries.

1 Introduction

Imagine you are tasked with allocating office spaces in a medical building to a group of doctors. Each
doctor provides a ranked list of their preferred offices, and your goal as the manager is to find a matching
that maximizes the overall satisfaction, or social welfare, of all doctors. While rankings give you a general
sense of their preferences, they lack information about intensity of preferences, indicating precisely how
much a doctor may value one office over another. If you could ask a few targeted questions to obtain their
exact numerical utilities, known as cardinal queries, you may be able to improve the allocation significantly.
However, these queries are cognitively burdensome for the doctors to answer, so they must be designed
carefully in order to maximize their benefit while minimizing burden on the doctors.

This work addresses the challenge of maximizing social welfare in such settings by leveraging a com-
bination of ordinal rankings and a limited number of cardinal queries. Specifically, we develop algorithms
that select a small number of queries to achieve an asymptotically optimal worst-case approximation of the
maximum social welfare, a concept known as distortion in social choice theory.

The concept of distortion, introduced by Procaccia and Rosenschein [3], quantifies the loss in social
welfare (or other cardinal objectives) due to the lack of exact numerical preferences. Traditionally, distortion
has been studied in settings where only ordinal information is available, and the challenge is to approximate
the maximum social welfare as closely as possible (see the survey by Anshelevich et al. [4]). For instance,
in one-sided matching problems [5], where n agents are matched to n items based on their preferences,
the best achievable distortion is known to be Θ(

√
n), though this requires randomization and normalized

values [6].
Recent work has expanded this framework by considering the trade-offs between the amount of car-

dinal information gathered and the efficiency of the resulting allocation. Amanatidis et al. [2, 7] demon-
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strated that by allowing mechanisms to ask λ · log n cardinal queries per agent, O(n1/(λ+1)) distortion can
be achieved, even without relying on randomization or normalization. Building on this, Amanatidis et al.
[1] showed that a distortion of Θ(

√
n) can be achieved by asking only two queries per agent (instead of

log n), matching the performance of the best (abovementioned) randomized mechanism that assumes nor-
malized values.

Despite these advancements, our understanding of the trade-offs between using two cardinal queries
per agent and a logarithmic number of queries remains limited. This raises an important question:

As we go from just two to three or more (but a constant number of) queries per agent, how well can we
approximate the optimal social welfare of any one-sided matching?

Shifting from matching to voting, consider another important decision in the medical building: selecting
the location for a new specialized clinic. The doctors must vote on several potential locations, each offering
distinct advantages, such as proximity to the emergency room, patient accessibility, or the available space.
Each doctor has their own underlying utilities for these locations, influenced by their specialty and the
needs of their patients. While rankings provide a general understanding of their preferences, they once
again fail to capture preference intensities. By eliciting a few cardinal queries, the decision-maker could
potentially improve the selection process, aiming to maximize the collective satisfaction of the group, just
as before. However, this voting problem is even less understood than the matching problem. When only
two queries per agent are allowed, despite the attempt of Amanatidis et al. [1], the problem of optimal
achievable distortion remains unresolved. This again raises the same question posed earlier, but now for
the setting more precisely called single-winner elections.

1.1 Our Contributions

We present a novel ordinal algorithm for both one-sided matching and single-winner elections that by
leveraging a limited number of λ cardinal queries per agent, achieves asymptotically optimal distortion
bounds, where λ is a constant. Tables 1 and 2 provide a summary of our results alongside relevant prior
work in one-sided matching and voting, respectively. We impose no restrictions on the utilities, and all our
algorithms are deterministic and run in poly-time.

Our work builds on the ideas of Amanatidis et al. [1] and introduces novel applications of the notion of
stable committees in multi-winner elections, which is explored by a series of recent works [8, 9, 10].

One-sided matching. For the one-sided matching problem, we establish that the optimal distortion with a
constant number λ of queries (per agent) is O(n1/λ). This significantly generalizes the result of Amanatidis
et al. [1], who focused on two-query algorithms. Specifically, we demonstrate that with three queries, our
algorithm achieves a distortion of O(n1/3); the best previously-known result required O(log n) queries
to achieve the same distortion [7]. Moreover, our approach achieves O(log n) distortion using O(log n)

queries, which previously required O(
log2 n

log log n ) queries [7]. The optimality of our results for λ = O(1) is

supported by the lower bound of Ω(n1/λ) established by Amanatidis et al. [7].
Alongside, we establish the existence of an exactly stable committee of matchings by modifying the

serial dictatorship algorithm. This result may be of independent interest, as only approximately stable
committees are known to exist in committee selection with ranked preferences [10]. Notably, Amanatidis
et al. [1] employ a similar method to satisfy a closely related notion that they introduce.

Single-winner elections. Applying similar techniques as in the one-sided matching setting, we achieve
comparable results for single-winner elections. We establish a distortion bound of O(min{n, m}1/λ) for
constant λ. For two queries, Amanatidis et al. [7] showed a distortion guarantee of m/2, while Amanatidis
et al. [1] demonstrated a bound of O(

√
m) when m = Ω(n). However, the case where m = o(n), with

the number of agents far exceeding the number of candidates, remained open. Recently, Caragiannis and
Fehrs [11] proposed a randomized rule that achieves a distortion of O(log m) using O(log m) queries. Our
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# Queries Upper Bounds Lower Bounds

0 (Ordinal) - Unbounded †

1 O(n) † Ω(n) †

2 O(
√

n) § Ω(
√

n) †

λ = O(1) O(n1/λ) Ω(n1/λ) †

λ ∈ [log n] λ · n1/λ Ω(n1/λ/λ) †

log n O(log n)

Ω(1) †z · log n, z ⩾ 1 O(n1/(z+1)) †

O(log2 n) O(1) †

Table 1: Summary of our results and prior distortion bounds for one-sided matching with n agents and n
alternatives. Gray cells highlight results from Theorem 5. †[7], §[1].

# Queries Upper Bounds Lower Bounds

0 (Ordinal) - Unbounded ‡

1 O(αn,m), O(m) ‡ Ω(m) ‡

2 O(
√

αn,m) Ω(
√

m) §

λ = O(1) O(αn,m
1/λ) Ω(m1/λ) §

λ ∈ [log(αn,m)] λ · αn,m
1/λ Ω(m1/(3λ)) ⋆

log(αn,m) O(log(αn,m))

Ω(1)z · log m, z ⩾ 1 O(m1/(z+1)) ‡

O(log2 m) O(1) ‡

Table 2: Summary of our results and prior distortion bounds for single-winner elections with n agents and
m candidates. Gray cells (i.e., bounds with αn,m) indicate results from Theorem 6, where αn,m = min{n, m}.
All lower bounds assume n ⩾ Ω(m). ‡[2], §[1], ⋆[11].

deterministic algorithm achieves a comparable distortion of O(log(min{n, m})) with O(log(min{n, m}))
queries.

Notably, our bounds are a function of min{n, m}, unlike most distortion results in voting, which are
typically functions of the number of candidates m. In Section 4, we discuss the significance of this. For
example, it allows modeling the one-sided matching problem as a single-winner election with each of n!
possible matchings as a separate alternative (i.e., an exponential number of alternatives m = n!), and yet
derive an appealing bound of O(n1/λ). More generally, we introduce a meaningful black-box reduction,
showing how our results for voting can be used to rederive the results for the one-sided matching with only
a constant factor increase in the distortion bound.

1.2 Related Work

The study of querying beyond ordinal preferences builds on earlier work on distortion using only ordinal
information, initiated by Procaccia and Rosenschein [3] in the context of single-winner elections. Cara-
giannis and Procaccia [12], Caragiannis et al. [13] demonstrate that the optimal distortion achievable by
deterministic voting rules under normalized valuations is Θ(m2). For randomized voting rules, Boutilier et al.

3



[14], Ebadian et al. [15] identify the best achievable distortion as Θ(
√

m). Additionally, Caragiannis et al.
[13] explore distortion in multi-winner elections. Borodin et al. [16] consider scenarios where even less in-
formation than ranked votes is used. Distortion is also examined in the metric voting framework [17, 18],
with a comprehensive overview provided by Anshelevich et al. [4].

At the more extreme end of the spectrum, some studies relax restrictions on query types, allowing any
queries that elicit a fixed number of bits from voters, including those obtained through ordinal elicitation,
and focus on optimizing the query format itself [19, 20] (and Kempe [21] in metric voting). For single-
winner elections with deterministic elicitation, the number of bits required is Θ̃(m/d), while for random-
ized elicitation, it is Θ̃(m/d3). When selecting a committee of k candidates, the bounds for deterministic
and randomized elicitation are Θ̃(m/(kd)) and Θ̃(m/(kd3)).

Related to this work, Latifian and Voudouris [22], Ma et al. [23] investigate threshold approval queries
for one-sided matching, while Ebadian et al. [24] examines the same elicitation for voting. In the metric
voting framework, Ebadian et al. [25] explore an alternative elicitation method involving a limited number
of pairwise comparisons per each agent. They propose nearly-optimal mechanisms tailored to varying
levels of query adaptivity (e.g., whether subsequent queries depend on prior answers). Anagnostides et al.
[26] examine a similar problem, differing in that they ask the same set of queries to all agents in an adaptive
manner.

2 Model

Let [t] := {1, . . . , t} for t ∈N.

One-sided matching. In one-sided matching, there is a set N of n agents and a set A of n alternatives. A
matching is a one-to-one mapping from N to A, pairing each agent with a unique alternative. Each agent
i ∈ N has a valuation function over the alternatives ui : A → R⩾0, where ui(a) denotes the utility agent
i receives when matched to alternative a. The utilitarian social welfare of a matching M is denoted by
sw(M) = ∑i∈N ui(M(i)). Similarly, for a subset of agents N′ ⊆ N, the social welfare of a matching M is
sw(M | N′) = ∑i∈N′ ui(M(i)).

Implicitly utilitarian ordinal matching. For each agent i ∈ N, let σi : [n] → A be the preference ranking
of agent i induced by the valuation function ui (ties broken arbitrarily); that is, ui(σi(1)) ⩾ ui(σi(2)) ⩾ . . . ⩾
ui(σi(n)). The preference profile σ⃗ = {σi}i∈N is the collection of all agents’ preferences. By a ≻i a′ we mean
that a appears above a′ in i’s preference ranking (i.e., i strictly prefers a to a′). We also use a ≽i a′ to state
either a = a′ or a ≻i a′. An ordinal matching mechanism returns a matching based only on the preference
profile σ⃗.

Value queries. A λ-query ordinal matching mechanism, in addition to the preference profile σ⃗, is allowed
to ask up to λ value queries per agent. Through a value query Q(i, a), the algorithm learns the utility agent i
receives from alternative a, i.e., ui(a).

Distortion. For a utility profile v⃗, the approximation ratio of a matching M is defined as the ratio of its
social welfare to that of the optimal welfare-maximizing matching OPT(⃗v), i.e., sw(M)/sw(OPT(⃗v)). The
distortion of a λ-query mechanismMwith respect to a preference profile σ⃗ is its worst-case approximation
ratio to the optimal matching over all inputs. That is, for a λ-query matching mechanismM,

dist(M) = max
v⃗▷⃗σ

sw
(
M(⃗σ, {Q(i, ai,j)}i∈N,j∈[λ])

)
sw(OPT(⃗v))

,

where Q(i, ai,j) is the jth query to i on alternative ai,j ∈ A.
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Single-winner voting. In single-winner voting, we have a set N of n agents and a set C of m candidates.
We design mechanisms to select one candidate c ∈ C as the election winner. Similar to above, each agent i
has a valuation function ui : C → R⩾0, and ui induces a preference ranking σi : [m]→ C. An ordinal voting
ruleM receives the preference profile σ⃗ and selects one candidateM(⃗σ) ∈ C. We can similarly define a
λ-query ordinal voting rule that queries agents about their values for specific candidates and define the
distortion of mechanisms.

Local stability in committee selection. In committee selection with ranked preferences, instead of select-
ing a single candidate, the goal is to select a committee of k candidates in a way that is representative of
all agents’ preferences. Cheng et al. [9], Jiang et al. [10], Aziz et al. [8] study a notion of representation in
committee selection called (local) stability. For a stable committee of k candidates, a group of n/k agents,
who jointly have the power to select one out of k seats, should not be able to propose one candidate c that
they unanimously prefer to every candidate in the chosen committee. Since exactly stable committees may
not exist, we use an approximation due to Cheng et al. [9]. We present the more general definition where
agents are associated with weights. We consider additive weight functions w : 2N → R⩾0, i.e., w(∅) = 0
and w(N′) = ∑i∈N′ w({i}) for all N′ ⊆ N. With a slight abuse of notation, we use w(i) = w({i}).

Definition 1 (Approximately Stable Committee). For a committee X ⊂ C of size k and a candidate c′ ∈ C \ X,
define V(c′, X) = {i ∈ N | c′ ≻i c, ∀c ∈ X} to be the set of agents who prefer c′ to all in X. Then, X is α-stable if
w(V(c′, X)) < α · w(N)/k for all c′ ∈ C \ X.

For identical weights, the final condition in the definition simplifies to |V(c′, X)| < n/k as discussed
earlier. Jiang et al. [10] establish the following existential result for approximately stable committees.

Theorem 2 (Jiang et al. [10]). For a ranked preference profile σ⃗, there always exists a (32 + ϵ)-stable committee of
size k ∈ [m], which can be computed in time poly(n, m, 1/ϵ) for a constant ϵ ∈ (0, 1). Furthermore, a (2− ϵ)-stable
committee may not exist for any ϵ > 0.

For identical weights, Jiang et al. [10] show an improved approximation factor of 16 instead of 32.

3 Ordinal Matching with Value Queries

In this section, we present a k-query mechanism with λ · n1/λ distortion. We first describe a simple algo-
rithm to find a stable “committee” of k matchings in Section 3.1, which is a key subprocedure of the final
matching algorithm described in Section 3.2.

3.1 Stable Matching Sets

Amanatidis et al. [1] define a particular type of assignment called a “sufficiently representative set” that is
specific to their two-query mechanism. The crux of this notion and its role in the algorithm, we believe,
is closely related to finding a stable committee of

√
n matchings. We extend their algorithm for finding a

sufficiently representative set and show a weighted form of k-stable committee of matchings exists and can
be computed by a simple algorithm for all k ∈ [n].

Definition 3 (Stable Set of Matchings). For an ordinal matching instance with agent weights w, a set of k match-
ings X = {M1, . . . , Mk} is stable if there does not exist another matching M′ and agents N′ ⊆ N such that
w(N′) ⩾ w(N)/k and M′(i) ≻i Mℓ(i) for all i ∈ N′ and Mℓ ∈ X.

In contrast to Theorem 2, where 2-stable committees may fail to exist, we show a stable set of matchings
always exist.

Theorem 4. For an ordinal matching instance and agents weights w, there always exists a set of k matchings that is
stable and can be computed in poly(n) time.
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Algorithm 1 k-Capacity Serial Dictatorship
Input: Preference profile σ⃗, weights {w(i)}i∈N and k
Output: A k-Stable Matching Set

1: B← a multiset of k copies of each alternative a ∈ A
2: for i ∈ N in decreasing order of weights wi do
3: Match i to their most preferred alternative ai ∈ B
4: Remove one copy of ai from B
5: end for
6: return g = {i→ ai}i∈N

We achieve Theorem 4 via Algorithm 1 that closely follows the
√

n-Serial Dictatorship algorithm of
Amanatidis et al. [1]. The main difference is that we go over the agents in the order of the weights, which
enables proving Theorem 4 for arbitrary agent weights and any k ∈ [n].

k-Capacity serial dictatorship. Algorithm 1 is a serial dictatorship process that starts with a multiset
containing k copies of each alternative. Agents then pick their favourite alternative among the remaining
ones in an order determined by the non-increasing weights. Agents then make their selections, by picking
their favourite among the remaining alternatives, in an order determined by weights in non-increasing
order. Since the algorithm begins with k copies, each alternative is mapped to at most k agents. We can
decompose such a mapping g into a a set of k matchings where each agent i is mapped to g(i) in at least
one of the k matchings.

Lemma 1. Let g : N → A be a (k-capacity) mapping where at most k agents are mapped to a single alternative.
There exists a set of k matchings M1, . . . , Mk such that for all i ∈ N, g(i) = Mℓ(i) for some ℓ ∈ [k] and it can be
computed in poly(n) time.

Proof. Let da = {i | g(i) = a} be the number of agents mapped to a. For each alternative a, add the first
agent mapped to a (if one exists) to set N1. Similarly, add the second agent mapped to a (if one existing)
to set N2, and so on for N3 to Nk. Since the agents in N1 are all mapped to different alternatives, we can
create a matching M1 = {i → g(i)}i∈N1 and extend it to a complete matching by arbitrarily matching the
remaining agents and alternatives. Do the same for N2 to Nk. This way, we get a set of k matchings where
i→ g(i) appears in at least one such matching.

We are ready to prove Theorem 4.

Proof of Theorem 4. Let σ⃗ be the preference profile of the ordinal matching instance. Take the set of k match-
ing X of Lemma 1 for the output g of Algorithm 1. Suppose by contradiction that X is not stable, and there
exists a matching M′ and a group of agents N′ ⊂ N with

w(N′) ⩾ w(N)/k, (1)

such that M′(i) ≻i M(i) for all M ∈ X. Take an agent i ∈ N′. Since i is not matched to M′(i) or alternatives
i prefers to M′(i) by Algorithm 1, it must hold that k different agents Ni have appeared before i and were
matched to M′(i). Therefore, for all i′ ∈ Ni, w(i′) ⩾ w(i). This implies

w(Ni) ⩾ k · w(i). (2)

Since M′ is a matching, M′(i1) ̸= M′(i2) for all i1, i2 ∈ N′, and sets {Ni}i∈N′ are disjoint. Additionally,
agent imin ∈ arg mini∈N′{w(i)} that picks last among N′, cannot be among any of the Ni’s. As otherwise, it
implies imin has appeared before some other agent in N′. Hence,

w(N) ⩾ w(imin) + ∑i∈N′ w(Ni) > ∑i∈N′ w(Ni) ⩾ ∑i∈N′ k · w(i) = k · w(N′),
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Algorithm 2 λ-Query Matching Algorithm
Input: Preference profile σ⃗ and k
Output: Matching M

1: Let w1(i) = 1 for all i ∈ N
2: for ℓ ∈ {1, . . . , λ} do
3: gℓ ← Algorithm 1(⃗σ, {wℓ(i)}i∈N , k← n1−(ℓ−1)/λ)
4: Query each agent i ∈ N of gℓ(i)
5: wℓ+1(i)← ui(gℓ(i)), for all i ∈ N
6: end for
7: Let ũi(a) ← max{ui(gℓ(i)) | a ≽i gℓ(i), ℓ ∈ [λ]} or 0 if no such queries exists, which is the highest

guaranteed utility of i for a learnt from the queries of either a or candidates ranked below a
8: return social welfare maximizing matching M̃ based on {ũi}i∈N .

where the second inequality follows from w(imin) > 0 and the third from Equation (2). However, this
contradicts Equation (1). Hence, X is a stable set of k matchings. Furthermore, the algorithm can be imple-
mented in O(n2) time.

3.2 The λ-Query Algorithm

Next, we present our k-query mechanism that achieves a distortion of λ · n1/λ, which uses Algorithm 1 and
its guarantee (Theorem 4) to inform the queries.

The first round of queries. In the first round, since λ = 1, the algorithm runs a n-capacity serial dictator-
ship . Since the capacity of n is always unexhausted, the returned map satisfies g1(i) = σi(1) and the first
query to each agent is about their favourite alternative. We include the formal statement.

Lemma 2. For each i ∈ N, the first query Algorithm 2 makes to agent i is about their favourite alternative σi(1), i.e.,
g1(i) = σ1(i).

Algorithm 1 then uses the learnt utilities to decide on the second set of queries.

Subsequent rounds. For the second query, the algorithm uses the weights w2(i) = ui(g1(i)) = ui(σi(1))
and computes g2 returned by a (n1−1/λ)-capacity serial dictatorship with weight vector w2 and the same
preference profile σ⃗. By Lemma 1, we can build a stable set of n1−1/λ matchings w.r.t. weights w2 using g2.
The algorithm makes the second set of queries based on g2 by asking agent i of their utility for g2(i).

Similarly, for the third round, the algorithm uses the answers to the second set of queries as the weights
for the third round, i.e., w3(i) = ui(g2(i)). Finds g3 by running a (n1−2/λ)-capacity serial dictatorship.
Makes the third set of queries based on g3, uses the utilities as weights for the next round w4(i) = ui(g3(i)),
computes g4 by a (n1−3/λ)-capacity serial dictatorship with w4, and so on.

The final matching. Finally, after making all the λ queries, the algorithm creates a proxy utility profile ũ
based on the queried utilities. The algorithm sets ũi(a) to the maximum guaranteed utility learnt by either
directly asking ui(a) or an alternative a ≻i a′ ranked below a. If no information is available, ũi(a) is set to
zero. The algorithm returns a matching with maximum social welfare w.r.t. the utility profile ũ.

The Analysis. Define s̃w(M | N′) = ∑i∈N′ ũi(M(i)) for all N′ ⊆ N, to be the social welfare function w.r.t.
ũ. By the way of construction, ũ is an underestimation of u, which implies the following lemma.

Lemma 3. For every matching M, sw(M | N′) ⩾ s̃w(M | N′) for all N′ ⊆ N.

7



Next, we prove a helpful lemma that gives an instance dependent lower bound on the social welfare
achieved by the returned matching M̃.

Lemma 4 (Minimum Welfare Guarantee). For an ordinal matching instance, the matching M̃ returned by the
λ-query mechanism in Algorithm 2 achieves

s̃w(M̃) ⩾
1

n1−(ℓ−1)/λ
·∑i∈N ui(gℓ(i)), ∀ℓ ∈ [λ].

Proof. Fix an ℓ ∈ [λ]. Let αℓ = n1−(ℓ−1)/λ. The mapping gℓ is the output of a αℓ-capacity serial dictatorship
with weights wℓ. By Lemma 1, there are αℓ matchings M1, . . . , Mαℓ such that for all agents i, gℓ(i) = Mz(i)
for some z ∈ [αℓ]. Therefore, we have

∑z∈[αℓ ]
s̃w(Mz) ⩾ ∑i∈N ui(gℓ(i)).

By an averaging argument, we have

maxz∈[αℓ ] s̃w(Mz) ⩾
1
αℓ

∑i∈N ui(gℓ(i)).

Since, M̃ is optimal w.r.t. ũ, we have

s̃w(M̃) ⩾ maxz∈[αℓ ] s̃w(Mz).

From the two inequalities above and by substituting αℓ back, we get the sought result.

We now prove the distortion guarantee of Algorithm 2.

Theorem 5. There is a λ-query ordinal matching mechanism that achieves a distortion of λ · n1/λ and runs in
poly(n) time.

Proof. Let OPT = arg max{sw(M) | all matchings M} be the optimal welfare maximizing matching.
At a high-level, we partition the agents into λ groups N1, . . . , Nλ in a particular way and show that

sw(OPT | Nj) ⩽ n1/λ · sw(M̃) for all j ∈ [λ]. Since sw(OPT) = ∑j∈[λ] sw(OPT | Nj), we have sw(OPT)/sw(M̃) ⩽

λ · n1/λ on any instance, which proves the sought distortion bound.

Partitioning by deviation. From Lemma 2, recall that g1(i) = σi(1) for all i ∈ N. No agent strictly prefers
OPT to g1. Now, let N1 = {i ∈ N | OPT(i) ≻i g2(i)} be the agents who “deviate” from g2 to OPT, i.e., they
(strictly) prefer OPT to g2 but not to g1. Next, let N2 = {i ∈ N \ N1 | OPT(i) ≻i g3(i)} be the agents who
prefer OPT to g3 but not to g1 and g2. Similarly, define

Nℓ = {i ∈ N \ (N1 ∪ . . . ∪ Nℓ) | OPT(i) ≻i gℓ+1(i)}

for all ℓ ∈ [λ − 1] to be the set of agents who deviate from gℓ+1 but not g1 through gℓ. Finally, let Nλ =
N \ (⋃ℓ∈[λ−1] Nℓ) be the remaining agents.

Bounding the welfare of N1. Agents in N1 prefer OPT to g2. By Theorem 4 any such group, including N1,
has a bounded total weight w.r.t. w2 of

w2(N1) ⩽ w2(N)/n1−1/λ. (3)

Since w2(i) = ui(g1(i)) and g1(i) ≽i OPT(i) for all i ∈ N,

sw(OPT | N1) ⩽ w2(N1) and w2(N) ⩽ ∑i∈N ui(g1(i)).
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Combined with Eq. (3),

sw(OPT | N1) ⩽
1

n1−1/λ ∑i∈N ui(g1(i)).

Furthermore, from Lemmas 3 and 4, we have

sw(M̃) ⩾ s̃w(M̃) ⩾
1
n ∑i∈N ui(g1(i)).

Therefore, sw(OPT | N1) ⩽ n1/λ · sw(M̃).

Bounding the welfare of Nℓ. We apply a similar reasoning to all other groups. Fix an ℓ ∈ [2, λ− 1]. For
each agent i ∈ Nℓ, we have gℓ(i) ≽i OPT(i) ≻i gℓ+1(i). By Theorem 4, Nℓ has a bounded total weight w.r.t.
wℓ+1 of

sw(OPT|Nℓ) ⩽ wℓ+1(Nℓ) ⩽
wℓ+1(N)

n1−ℓ/λ
=

∑i∈N ui(gℓ(i))
n1−ℓ/λ

where we used wℓ+1(i) = ui(gℓ(i)) and gℓ(i) ≽i OPT(i). From Lemmas 3 and 4, we have

sw(M̃) ⩾ s̃w(M̃) ⩾
∑i∈N ui(gℓ(i))

n1−(ℓ−1)/λ
. (4)

Therefore, sw(OPT | Nℓ) ⩽ n1/λ · sw(M̃).
For the last group Nλ, since gλ(i) ≻i OPT(i), instead of arguing with the weights, we directly have

sw(OPT | Nλ) ⩽ ∑i∈N ui(gλ(i)). Together with Eq. (4) for ℓ = λ, we again have sw(OPT | Nλ) ⩽ n1/λ · sw(M̃).

Distortion bound. Finally, from the above we have

sw(OPT) = ∑ℓ∈[λ] sw(OPT | Nℓ)

⩽ ∑ℓ∈[λ] n1/λ · sw(M̃) = λn1/λ · sw(M̃).

Since this holds for any instance, the distortion of the mechanism is at most λn1/λ. The proof stands com-
plete.

Implications. For a constant number of queries, i.e., λ = O(1), given the Ω(n1/λ) lower bound of Ama-
natidis et al. [2], Theorem 5 settles the optimal distortion using λ queries to be Θ(n1/λ). For λ = log n,
since n1/ log n = O(1), the bound above translates to a O(log n) distortion. It is notable that the distortion
bound in Theorem 5 is minimized at O(log n), and it does not achieve a better distortion, i.e., o(log n) using

more queries. Previously, Amanatidis et al. [2] required O(
log2 n

log log n ) many queries to achieve a distortion
of O(log n). To achieve a constant distortion, Caragiannis and Fehrs [11] show that at least Ω(log n) many
queries is necessary, while Amanatidis et al. [2] gives an upper bound showing that O(log2 n) many queries
is enough to achieve O(1) distortion. Settling the gap and finding the optimal number of queries to achieve
a constant distortion is exciting open problem for future work.

4 Single-Winner Elections

In this section, we turn to the general social choice setting where the goal is to select one out of the m
candidates. Existing results for this setting are weaker than their counterparts for one-sided matching. The
optimal distortion bound is open even for two queries. The two-query mechanism of Amanatidis et al. [1]
achieves O(

√
m) distortion when m = Ω(n), however they leave open the setting where m = o(n), i.e.,

when the number of agents is significantly higher than the number of candidates — which is a prevalent
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scenario in social decision making. We settle the question for two queries and for a constant number of
queries. Our result is a counterpart of Theorem 5 with a similar distortion guarantee for the setting of
single-winner elections.

Theorem 6. There is a λ-query single-winner voting rule that achieves a distortion of O(λ · (min{n, m})1/λ) and
runs in poly(n, m) time.

More precisely, if a β-approximately stable committee exists for a given instance, the distortion guarantee is
β · 1/λ · (min{n, m})1/λ.

We provide the proof and the algorithm in Appendix A and discuss the main differences compared to
one-sided matching below. Before discussing the algorithm, we mention the implication of Theorem 6 for
when λ is a constant.

Constant number of queries. When λ is a constant, Amanatidis et al. [1] show a lower bound of O(m1/λ)
on the distortion of any λ-query mechanism. Theorem 6 achieves a distortion of O(m1/λ) and settles the
question of finding the optimal distortion bound in single-winner voting given λ queries (up to constant).

Algorithm differences with the matching setting. The algorithm closely follows Algorithm 2. The main
difference is that, instead of invoking Algorithm 1, the voting rule finds a β-approximately stable committee
Cℓ of size (min{n, m})1−(ℓ−1)/λ in round ℓ. Recall that Theorem 2 due to [10] shows the existence of such
committees for β = 32 + ϵ and the algorithm to achieve thereof running in time poly(n, m, 1/ϵ). The other
slight difference is that, in the ℓth round, agents are asked of their utility for their favourite candidate among
Cℓ. The weights are set similar to Algorithm 2, that is, if agent i is queried of gℓ(i) in round ℓ, the weights
for the next round are set as wℓ+1(i) = ui(gℓ(i)).

Bits of the analysis. Next, we discuss why we are able to prove a bound that is a function of min{n, m}
instead of only the number of candidates m, which is the case for almost all the papers in the distortion
literature for voting. For a start, take the case λ = 1. Suppose we query each agent of their most preferred
candidate and learn ui(σi(1)) as does the algorithm. Based only on the learnt utilities for the top candidates,
let cAlg be the candidate with the highest welfare. By a simple averaging argument,

sw(cAlg) ⩾
1
m ∑i∈N ui(σi(1))

However, if n < m, at most n candidates appear at the top of the ranking. By making the averaging
argument for those candidates, we can guarantee

sw(cAlg) ⩾
1
n ∑i∈N ui(σi(1)).

For the optimal candidate OPT, we have

sw(OPT) ⩽ ∑i∈n ui(σi(1)).

Therefore, with all the inequalities together, cAlg achieves a distortion of at most

sw(OPT)/sw(cAlg) ⩽ min{n, m}.

This simple observation is key to the algorithm for λ > 1 and its analysis, specifically we use this in se-
lecting the sizes of the stable committees computed in the subsequent rounds. Intuitively speaking, for the
first round, a committee of size min{n, m} is enough to capture the top of the preference profile. Following
a geometric progression from min{n, m} to 1, for the subsequent rounds, the sizes of the approximately
stable committees is set to (min{n, m})1−1/λ, . . . , (min{n, m})1/λ.

10



4.1 Implications for Matching and Beyond

We discuss how Theorem 6 can imply Theorem 4 via a black-box reduction, if we forgo having a polytime
algorithm and accept an additional constant factor multiplied to the distortion guarantee.

A combinatorial black-box reduction. Given an ordinal matching instance with σ⃗, create a new prefer-
ence profile of the same set N of n agents but with a candidate set C of all the n! possible matchings. For
each agent i, let σ′i be their respective preference ranking over all the matchings ordered according to the
rank of their match in σi, ties broken arbitrarily. All the queries about the “candidates”, which are en-
tire matchings, can be implemented by asking an agents utility for their match, which is a valid query in
the matching setting. By invoking Theorem 6, since min{n, m} = min{n, n!} = n, we immediately get a
distortion guarantee of O(λ · n1/λ).

The additional constant factor β (hidden in the O notation) is due to Theorem 2 which states that an
exactly stable committee need not always exist. However, since Theorem 4 proves the existence of an
exactly stable committee for the matching setting, by invoking Algorithm 1 as the subprocedure of the
voting algorithm of Theorem 6, we rederive Theorem 5.

On query efficient resource allocation. In the resource allocation or the fair division setting, the goal is
to divide a set G of goods among a set of n agents in a way that is efficient, i.e., makes good use of the
available resources, and/or fair. Maximizing the social welfare or achieving an approximation thereof is
a wide-studied efficiency objective. In this setting, the set of “candidates” is all the allocations, which is
exponentially large, i.e., |G|n (fix who receives each good).

For a moment, set aside the intractability of considering rankings over the exponentially large set of
allocations. Suppose we can access agents’ preference rankings over all possible allocations. Theorem 6
shows that, if we can access the rankings, a few cardinal queries per agent is enough to achieve nontriv-
ial approximations of the optimal social welfare objective. We consider this an interesting result in two
respects.

First, this intractable allocation by “voting” does not assume any structure over the utilities, which is
the case for the majority of papers in the field, and not even the monotonicity of valuations.1 This flexibility
allows considering externalities where one’s utility is not only a function of their bundle but also depends
on the allocation of others. Notably, most of the literature is focused on settings with no externalities.
Moreover, this method is agnostic to the underlying structure of the task at hand, in contrast to the many
algorithms specifically designed.

Second, we want to emphasize that eliciting cardinal information can be significantly costlier than ordi-
nal information. Ordinal queries are also more robust, e.g., it is easier to compare two outcomes rather than
assigning specific values that may turn out noisy. At one extreme, we have allocation algorithms that can
make any number of cardinal queries to agents — which indeed a polytime algorithm makes polynomi-
ally many queries. At the other extreme, the black-box reduction above, makes exponentially many ordinal
queries but a few (or a constant) number of cardinal queries. We find designing algorithms that make better
tradeoffs between eliciting cardinal and ordinal information an important direction for future work.

4.2 On Randomized Voting with No Queries

Next, inspired by the distortion bound of Theorem 6 that is function of min{n, m} rather than only m,
we investigate the extent to which this applies to the standard ordinal setting with no value queries. As
mentioned before, without any restriction on the utilities, all ordinal voting rules incur an unbounded
distortion. The most commonly studied classes of restricted utilities are that of

• unit-sum, where each agent i ∈ N has a total utility of 1 for all candidates combined, i.e., ∑c∈C ui(c) =
1, and

1A valuation function v is monotone if v(G′′) ⩽ v(G′) for all G′′ ⊆ G′ ⊆ G
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• unit-range, where each agent i ∈ N and candidate c ∈ C, ui(c) ∈ [0, 1] such that ui(σi(1)) = 1 and
ui(σi(m)) = 0.

Ebadian et al. [15] propose the stable lottery rule, demonstrating that it achieves the optimal O(
√

m)
distortion (when n = Ω(m)) for a broader class of valuations encompassing both unit-sum and unit-range
utilities. By examining scenarios where n = o(m), we highlight a contrast between these utility classes,
by proving an upper bound on the distortion for unit-range utilities and a worse lower bound for any
randomized rule under unit-sum utilities. We provide the proof in Appendix B.
Theorem 7. The stable lottery rule of Ebadian et al. [15] achieves a distortion of O(min{

√
n,
√

m}) for unit-range
utilities and O(min{n,

√
m}) for unit-sum utilities.

Theorem 8. Every randomized voting rule incurs a distortion of at least Ω(min{n,
√

m}) under unit-sum utilities.

5 Discussion

The approaches taken by Mandal et al. [19], Mandal et al. [20], and Kempe [21], which do not differenti-
ate between ordinal and cardinal queries, and the research assuming that ordinal elicitation is free while
cardinal elicitation is very costly, represent more extreme viewpoints. A more balanced approach would
involve assigning a cost to ordinal elicitation, with a higher cost for cardinal elicitation, and then optimizing
mechanisms within this framework subject to an elicitation budget.

Another limitation of our algorithm is its strong dependence between rounds. Future research could
investigate the trade-offs associated with non-adaptive mechanisms.
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Appendix

A Distortion with Value Queries for Single-Winner Elections

Algorithm 3 λ-queries Voting Algorithm
Input: Preference profile σ⃗ and k
Output: Candidate c ∈ C

1: Let w1(i) = 1 for all i ∈ N
2: for ℓ ∈ {1, . . . , λ} do
3: Find a β-approximate stable committee Cℓ of size min{n, m}1−(ℓ−1)/k for σ⃗ w.r.t. weights {wℓ(i)}i∈N
4: Let gℓ(i) be the most preferred candidate of i among Cℓ

5: Query each agent i ∈ N of gℓ(i)
6: wℓ+1(i)← ui(gℓ(i)), for all i ∈ N
7: end for
8: Let ũi(c) ← max{ui(gℓ(i)) | c ≽i gℓ(i), ℓ ∈ [λ]} or 0 if no such queries exists, which is the highest

guaranteed utility of i for c learnt from the queries of either c or candidates ranked below c
9: return social welfare maximizing candidate cAlg based on {ũi}i∈N .

The analysis and the algorithm are quite similar to that of Theorem 5, with the main differences dis-
cussed in Section 4. For completeness, we include the lemmas and theorems along with their adapted
proofs.

Lemma 5 (Minimum Welfare Guarantee). For an instance of single-winner voting, the candidate cAlg returned
by the λ-query mechanism in Algorithm 3 achieves

s̃w(cAlg) ⩾
1

(min{n, m})1−(ℓ−1)/λ
· ∑

i∈N
ui(gℓ(i)), ∀ℓ ∈ [λ].

Proof. Fix an ℓ ∈ [λ]. Let αℓ = (min{n, m})1−(ℓ−1)/λ. Recall that gℓ(i) is the favourite candidate of i among
Cℓ = {cℓ,1, . . . , cℓ,αℓ}. Therefore, gℓ(i) ≻i cℓ,z for all z ∈ [αℓ] and we have

∑
z∈[αℓ ]

s̃w(cℓ,z) ⩾ ∑
i∈N

ui(gℓ(i)).

By an averaging argument, we have

max
z∈[αℓ ]

s̃w(cℓ,z) ⩾
1
αℓ

∑
i∈N

ui(gℓ(i)).

Since, cAlg is optimal w.r.t. ũ, we have

s̃w(cAlg) ⩾ max
z∈[αℓ ]

s̃w(cℓ,z).

From the two inequalities above and by substituting αℓ back, we get the sought result.

Next, we prove Theorem 6.

Proof of Theorem 6. Let OPT = arg max{sw(c) | c ∈ C} be the optimal welfare maximizing candidate.
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Partitioning by deviation. The first round of queries asks each agent of their favourite candidate, i.e.,
g1(i) = σi(1) for all i ∈ N. No agent strictly prefers OPT to g1. Now, let N1 = {i ∈ N | OPT(i) ≻i g2(i)} be
the agents strictly prefer OPT to g2 but not to g1. Next, let N2 = {i ∈ N \ N1 | OPT(i) ≻i g3(i)} be the agents
who prefer OPT to g3 but not to g1 and g2. Similarly, define

Nℓ = {i ∈ N \ (N1 ∪ . . . ∪ Nℓ) | OPT(i) ≻i gℓ+1(i)}

for all ℓ ∈ [λ − 1] to be the set of agents who deviate from gℓ+1 but not g1 through gℓ. Finally, let Nλ =
N \⋃ℓ∈[λ−1] Nℓ be the remaining agents.

Bounding the welfare of Nℓ. Fix an ℓ ∈ [1, λ − 1]. For each agent i ∈ Nℓ, we have gℓ(i) ≽i OPT(i) ≻i
gℓ+1(i). Since Cℓ+1 is a β-approximately stable committee of size (min{n, m})1−ℓ/λ, from Definition 1, the
deviating group of agents Nℓ has a bounded total weight w.r.t. wℓ+1, which is

sw(OPT|Nℓ) ⩽ β · wℓ+1(Nℓ) ⩽ β · wℓ+1(N)

(min{n, m})1−ℓ/λ
= β · ∑i∈N ui(gℓ(i))

(min{n, m})1−ℓ/λ

where we used wℓ+1(i) = ui(gℓ(i)) and gℓ(i) ≽i OPT(i). From Lemma 5, we have

sw(cAlg) ⩾ s̃w(cAlg) ⩾
∑i∈N ui(gℓ(i))

(min{n, m})1−(ℓ−1)/λ
. (5)

Therefore,
sw(OPT | Nℓ) ⩽ β · (min{n, m})1/λ · sw(cAlg).

For the last group Nλ, since gλ(i) ≻i OPT(i), instead of arguing with the weights, we directly have
sw(OPT | Nλ) ⩽ ∑i∈N ui(gλ(i)). Together with Eq. (5) for ℓ = λ, we again have sw(OPT | Nλ) ⩽ (min{n, m})1/λ ·
sw(cAlg).

Distortion bound. Finally, from the above we have

sw(OPT) = ∑
ℓ∈[λ]

sw(OPT | Nℓ)

⩽ ∑
ℓ∈[λ]

β · (min{n, m})1/λ · sw(cAlg) = β · λ · (min{n, m})1/λ · sw(cAlg).

Since this holds for any instance, and that β < 33 is a constant, the distortion of the mechanism is at most
O(λ(min{n, m})1/λ), which completes the proof.

B Omitted Proofs from Section 4

We first present the stable lottery rule of Ebadian et al. [15]. The notion of stable lotteries is a randomized
relaxation of stable committees (Definition 1), and whose existence was established by Cheng et al. [9]. Let
(C

k) denote the set of all possible committees (subsets) of size k of the set of candidates C. Further, for a finite
set B, let ∆(B) denote the set of all distributions over B.

Definition 9 (Stable Lotteries). Given a (ranked) preference profile σ⃗ of a set N of n agents over a set C of m
candidates and an integer k, a distribution X ∈ ∆((C

k)) over committees of size k is stable if for all candidates c ∈ C,

EX∈X [|V(c, X)|] < n/k.

Recall that in the definition above, V(c′, X) = {i ∈ N | c′ ≻i c, ∀c ∈ X} for all c′ ∈ C and X ⊆ C, i.e.,
it denotes the subset of agents who strictly prefer c′ to every candidate in X. Cheng et al. [9] proved the
existence of stable lotteries.
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Theorem 10 (Jiang et al. [10]). For a ranked preference profile σ⃗, there always exists a distribution (a lottery)
X ∈ ∆((C

k)) over committees of size k that is stable.

We are ready to define the stable lottery rule for single-winner elections.

Definition 11 (Stable Lottery Rule). For a ranked preference profile σ⃗, the stable lottery rule ( f slr) returns a
candidate probabilistically as follows. Let X be a stable lottery over committees of size

√
m for σ⃗. Then,

• with probability 1/2, sample a committee X from X, and return a candidate of X uniformly at random,

• and with probability 1/2, select a candidate uniformly at random.

In other words, each candidate c is selected by the rule with the probability of

Pr[c] =
1

2
√

m
PrX∼X [c ∈ X] +

1
2m

.

Ebadian et al. [15] showed that this rule achieves a distortion of O(
√

m) for a more general class of
utilities they call balanced utilities, which subsumes unit-range and unit-sum utilities. We prove that with
slight modifications of this rule we can achieve the distortion bounds in Theorem 7. First, we discuss the
class of unit-range utilities.

Definition 12 ( f range). For a preference profile σ⃗, f range returns a candidate probabilistically as follows. Let X be a
stable lottery over committees of size min{

√
n,
√

m} for σ⃗. Then,

• with probability 1/2, sample a committee X from X, and return a candidate of X uniformly at random,

• and with probability 1/2, perform random dictatorship, i.e., select one agent uniformly at random and return
their favourite candidate.

In other words, each candidate c is selected by the rule with the probability of

Pr[c] =
1

2
√

min{n, m}
PrX∼X [c ∈ X] +

1
2n
· |{i | σi(1) = c}|.

There are two main differences between the stable lottery rule (Definition 11) and f range. First, f range

utilizes a stable lottery over committees of size min
√

n,
√

m rather than
√

m as in Definition 11. Second, in-
stead of returning a random candidate uniformly at random, it performs serial dictatorship. Using random
dictatorship instead of uniform selection with committees of size

√
m still achieves the O(

√
m) distortion of

Ebadian et al. [15] for unit-range utilities — as also noted by Ebadian et al. [15]. However, it is the O(
√

m)
does not extend to unit-sum utilities.

Next, we prove that f range achieves the stronger distortion bound of O(min{
√

n,
√

m}) for unit-range
utilities, as stated in Theorem 7.

Theorem 13. The rule f range achieves a distortion of O(min{
√

n,
√

m}) for unit-range utilities.

Proof. Let σ⃗ be a preference profile induced by agents’ utility functions {ui}i∈N . Let K =
√

min{n, m}. Let
c∗ ∈ arg maxc∈C sw(c) be a social welfare maximizing candidate.

Upper bound on the optimum. For a committee X that is in the support of the stable lottery X of com-
mittees of size K computed by the algorithm, we have

sw(c∗) ⩽ ∑i∈V(c∗ ,X)
ui(c∗) + ∑i∈N\V(c∗ ,X)

max
c∈X

ui(c)

⩽ |V(c∗, X)| + ∑i∈N ∑c∈X ui(c), (ui(c∗) ⩽ 1 for i ∈ V(c∗, X))

⩽ |V(c∗, X)|+ ∑c∈X sw(c),
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where we partitioned the agents to two groups: (1) V(c∗, X) who prefer c∗ to every candidate in X, and (2)
N \V(c∗, X) who value at least one candidate in X as much as c∗. By taking the expectation over X, we get

sw(c∗) ⩽ EX∼X [|V(c∗, X)|] + EX∼X

[
∑c∈X sw(c)

]
⩽

n
K
+ 2K ·Ec∼ f range (⃗σ)[sw(c)], (6)

where in the last transition we used the fact that the rule, with probability 1/2, selects a member of a
sampled committee X from X uniformly at random.

Minimum welfare guarantee. Next, we show a universal lower bound on the minimum welfare guar-
antee of f range. Since the top vote of each agent is selected with probability of at least 1/2n and that
ui(σi(1)) = 1 for unit-range utilities, we have

Ec∼ f range (⃗σ)[sw(c)] ⩾ ∑i∈N
1
n

ui(σi(1)) = 1.

Following this, we introduce an additional minimum welfare guarantee. Divide agents based on their
favourite candidate, i.e., let Nc = {i ∈ N | σi(1) = c} for all c ∈ A. Then,

Ec∼ f range (⃗σ)[sw(c)] ⩾ ∑c∈C Pr[c ∈ f range] ·∑i∈Nc
1

⩾ ∑c∈C
|Nc|
2n
· |Nc| (by the random dictatorship part of f range)

⩾
1

2n
· (∑c∈C |Nc|)2

|C| (by the AM-QM inequality)

=
1

2n
· n2

m
=

n
2m

.

Combining the two lower bounds above, we have

Ec∼ f range (⃗σ)[sw(c)] ⩾
n

2 ·min{n, m} =
n

2K2 . (7)

Distortion bound. By Eq. (6), we have

sw(c∗)
Ec∼ f range (⃗σ)[sw(c)]

⩽
n/K + 2K ·Ec∼ f range (⃗σ)[sw(c)]

Ec∼ f range (⃗σ)[sw(c)]

⩽
n/K

n/2K2
+ 2K = 4K = 4

√
min{n, m},

where in the second transition we used Eq. (7).
Since the above bound holds for all instances with n agents and m candidates, the distortion of f range is

O(min{
√

n,
√

m}). The proof stands complete.

We now shift our focus to unit-sum utilities. First, we prove Theorem 8 that any randomized rule incurs
a distortion of at least Ω(min{n,

√
m}), and then provide a matching upper bound.

Theorem 8. Every randomized voting rule incurs a distortion of at least Ω(min{n,
√

m}) under unit-sum utilities.

Proof. Boutilier et al. [14] prove a lower bound of Ω(
√

m) on the distortion guarantee of all randomized
rules. Their instance works when n ⩾

√
m. We extend their instance for the cases where n = o(

√
m) or

equivalently n2 = o(m).
Let c1, . . . , cm be the m candidates. For agent i ∈ [n], let

σi = ci ≻i ci+1 ≻i . . . ≻i cn ≻i c1 ≻i . . . ≻i ci−1 ≻i cn+1 ≻i cn+2 ≻i . . . ≻i cm.
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That is, the top n candidates of the agents is constructed by cyclic shifts of c1, . . . , cn, and the bottom m− n
positions of all agents is comprised of cn+1, . . . , cm. Take a randomized voting rule f . By pigeon-hole
principle, at least one of the candidates cj ∈ {c1, . . . , cn} is selected with probability at most

Pr[cj ∈ f (⃗σ)] ⩽ 1/n.

Suppose agent j, whose favourite candidate is cj, has a utility of 1 for cj and 0 for the rest; and, all other
agents are indifferent between all candidates, i.e., ui(c) = 1/m for all i ∈ N \ {j} and c ∈ C. Since i ∈ N \ {j}
are indifferent between candidates, Ec∼ f (⃗σ)[ui(c)] = 1/m, and for j, Ec∼ f (⃗σ)[ui(c)] = Pr[cj ∈ f (⃗σ)] ⩽ 1/n.
Therefore, we can bound the expected social welfare of f by

Ec∼ f (⃗σ)[sw(c)] =
n− 1

m
+ Pr[cj] · uj(cj) ⩽

n− 1
m

+
1
n
⩽

2
n

,

where the last inequality holds by the assumption of n2 ⩽ m. For cj, however, we have

sw(cj) =
n− 1

m
+ 1 ⩾ 1.

By combining the two inequalities we have

sw(cj)

Ec∼ f (⃗σ)[sw(c)]
⩾

n
2

.

Thus, any randomized rule incurs a distortion of at least Ω(min{n,
√

m}) under unit-sum utilities. This
completes the proof.

Towards proving the matching upper bound for unit-sum utilities, we first note that a distortion bound
of n can be easily achieved by only running random dictatorship. Importantly, this bound holds without
any assumptions on the utilities.

Lemma 6. The random dictatorship rule achieves a distortion of at most n for the class of all utilities.

Proof. Let σ⃗ be a preference profile profile induced by agents’ utilities {ui}i∈N . Let c∗ be the social welfare
maximizing candidate. Denote the random dictatorship mechanism by RD.

Since, ui(c∗) ⩽ ui(σi(1)) for all i ∈ N and Pr[σi(1) ∈ RD(⃗σ)] ⩾ 1
n for all i, we have

sw(c∗) ⩽ ∑
i∈N

ui(σi(1)) ⩽ ∑
i∈N

ui(σi(1)) · (Pr[σi(1)] · n) ⩽ n ·Ec∼RD(⃗σ)[sw(c)].

Hence, the distortion of RD is upper bounded by n.

Using the above result, we can mix the stable lottery rule of Definition 11 with random dictatorship to
achieve a distortion of O(min{n,

√
m}). We include the definition of the rule and its guarantee below.

Definition 14 ( f sum). For a ranked preference profile σ⃗, f sum returns a candidate as follows,

• with probability 1/2, selects a candidate drawn from the stable lottery rule f slr (⃗σ),

• and with probability 1/2, perform random dictatorship, i.e., select one agent uniformly at random and return
their favourite candidate.

In other words, each candidate c is selected by the rule with the probability of

Pr[c] =
1

4
√

m
PrX∼X [c ∈ X] +

1
4m

+
1

2n
· |{i ∈ N | σi(1) = c}|,

where X is the stable lottery over committees of size
√

m computed in f slr.
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Theorem 15. The rule f sum achieves a distortion of O(min{n,
√

m}) for unit-range utilities.

Proof. The O(
√

m) and O(n) distortion bounds follow from the stable lottery rule and the random dictator-
ship rule accordingly. Since f sum mixes the two rules with constant probability, it achieves the (asymptotic)
distortion bound of O(min{n,

√
m}).

Theorems 13 and 15 together prove Theorem 7.
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