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Abstract

The wisdom of the crowd has long become the de facto approach for eliciting information from
individuals or experts in order to predict the ground truth. However, classical democratic approaches
for aggregating individual votes only work when the opinion of the majority of the crowd is relatively
accurate. A clever recent approach, surprisingly popular voting, elicits additional information from the
individuals, namely their prediction of other individuals’ votes, and provably recovers the ground truth
even when experts are in minority. This approach works well when the goal is to pick the correct option
from a small list, but when the goal is to recover a true ranking of the alternatives, a direct application
of the approach requires eliciting too much information. We explore practical techniques for extend-
ing the surprisingly popular algorithm to ranked voting by partial votes and predictions and designing
robust aggregation rules. We experimentally demonstrate that even a little prediction information helps
surprisingly popular voting outperform classical approaches.

1 Introduction

The wisdom of the crowd has been the default choice for uncovering the ground truth. Suppose we wish to
determine the true answer to the question: “Is Philadelphia the capital of Pennsylvania?” Condorcet’s Jury
Theorem suggests that if we elicit votes from a large crowd, the majority answer will be correct with high
probability even if, on average, the crowd is only slightly more accurate than a random selection. However,
in some domains the crowd can be highly inaccurate and experts may be in minority. For example, when
the very question listed above is posed to real crowds, the majority answer is often (the incorrect) ‘yes’ [8].

To circumvent this difficulty and uncover the ground truth even when the majority is wrong, Prelec et al.
[21] introduce the surprisingly popular (SP) algorithm. This algorithm asks each individual not only what
she thinks the answer is (the vote), but also what fraction of the other participants she thinks will say yes/no
(the prediction). Then, instead of simply selecting the majority (i.e. popular) answer, the algorithm selects
the answer that is surprisingly popular, i.e., whose actual frequency in the votes is greater than its average
predicted frequency. They show that as the crowd gets larger in the limit, this approach will provably recover
the correct answer with probability 1, even if the crowd is less accurate than a random selection on average.

The intuition behind their algorithm, borrowed from their work, is as follows. Suppose there are two
hypothetical worlds, one where Philadelphia is the capital and one where it is not. In the former world, a
greater fraction (say 90%) would say ‘yes’ than the fraction (say 60%) that would say ‘yes’ in the latter.
However, the 60% of the people who believe the correct world is the former would predict the frequency
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of ‘yes’ to be 90%, whereas the remaining 40% would predict it to be 60%. This would make the average
predicted frequency of ‘yes’ to be somewhere between 60% and 90%, higher than its actual frequency of
60%. In other words, the majority but incorrect answer ‘yes’ would be surprisingly unpopular while ‘no’
would be surprisingly popular and correct.

Several works have demonstrated the effectiveness of this approach in a wide range of domains [14,
16, 19, 21, 24, 25]. Prediction questions have also been used to boost the accuracy of surveys on social
networks [10]. Prelec et al. [21] show how to apply their approach to questions with non-binary votes
and non-binary ground truth. When the true answer lurks among r options, their approach requires each
individual to predict the exact frequency of each of r options among other individuals’ votes. We are
interested in ranked voting, i.e., when the ground truth is a ranking of m alternatives. Note that in this case,
the approach of Prelec et al. [21], which we refer to as surprisingly popular (SP) voting, would require
eliciting predictions in the form of a distribution over r = m! options, which is clearly infeasible for even
moderate values of m. Thus, the main research questions we address are:

How do we extend surprisingly popular voting to effectively recover a ground truth ranking
of alternatives? If we elicit partial vote and prediction, how do we aggregate them and what
information-accuracy tradeoff does this offer?

Our contributions. We focus on eliciting only ordinal vote and prediction information. For the vote, we
ask individuals to provide their opinion of either just the top alternative of the ground truth ranking (Top) or
the full ground truth ranking (Rank). For the prediction, informally, we ask individuals to predict either just
a single alternative (Top) or a ranking of alternatives (Rank) based on the other individuals’ votes. The exact
prediction elicited under various conditions is described in Section 3. In addition to these four elicitation
formats, we use as benchmark two classical elicitation formats in which Top and Rank votes are elicited but
no prediction is elicited. Because the SP algorithm of Prelec et al. [21] does not work on partial votes and
predictions, we first design a novel aggregation method for such partial information.

Next, we conduct an empirical study with 720 participants from Amazon’s Mechanical Turk platform.
We ask the participants questions on geography, movies, and artwork which admit a ground truth ranking
of four alternatives and elicit their responses in the aforementioned six elicitation formats. We compare
the different elicitation formats using four metrics: difficulty (measured through response time as well
as perceived difficulty), expressiveness, error in recovering the ground truth top alternative, and error in
recovering the ground truth ranking.

Our results show that even when the vote and prediction information are individually no better than ran-
dom guesses, by combining the two pieces of information SP voting performs significantly better. Further,
it outperforms a whole slew of conventional voting rules which ignore prediction information and only ag-
gregate the votes. We also observe that when it is necessary to choose between eliciting more complex vote
information and eliciting more complex prediction information, the latter may be the right choice.

1.1 Related Work

Our work builds on the SP voting approach of Prelec et al. [21]. This approach in turn builds on its precursor,
the Bayesian truth serum (BTS) [22], which also uses participants’ predictions, but for a different objective:
to decide payoffs to the participants which incentivize them to honestly report their votes and predictions.

Prediction markets [3, 7], quadratic voting [13], and peer prediction [18] are alternative approaches to
recovering the ground truth, which, like SP voting, allow a minority of experts to override the majority
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opinion. Instead of eliciting participants’ predictions of other participants’ votes, prediction markets and
quadratic voting ask participants to place a bet on their vote while peer prediction methods require them to
participate in multiple tasks.

These recent approaches stand in contrast to a large body of work on epistemic social choice [20] and
noisy voting [6], which build on the seminal work of de Condorcet [9], Galton [11], and Young [26]. Some
of this literature focuses on statistical models of errors in participants’ votes such as the Mallows model,
the Bradley-Terry model, the Thurstone-Mosteller model, and the Plackett-Luce model. However, all these
models assume that a participant is ever-so-slightly more likely to report the correct option than an incorrect
option. Hence, approaches based on these models can fail to recover the ground truth when the majority of
the crowd is misinformed.

Finally, our work is reminiscent of a recent flurry of work on the elicitation-distortion tradeoff in com-
putational social choice [1, 2, 12, 15, 17]. In this line of work, there is no ground truth; instead, participants
have subjective preferences and the goal is to identify the decision that maximizes the social welfare. Rather
than directly eliciting participants’ utility functions, various elicitation formats are used to elicit partial pref-
erences to analyze the tradeoff between the amount of information elicited and the approximation to social
welfare (called distortion). Our work replaces the distortion with its counterpart, that is, the accuracy of
recovering an underlying ground truth.

2 Model

Let A be a set of m alternatives and L(A) be the set of rankings over A. For a ranking σ ∈ L(A) and
x ∈ {1, . . . ,m}, let σ(x) be the alternative in the xth highest position in σ.

SP voting uses a Bayesian model; in the following, we present a special case of the model for ranked
voting. There exists a ground truth ranking π∗ ∈ L(A) drawn from a prior P . There are n voters; each
voter i observes a noisy ranking σi ∈ L(A) drawn from a signal distribution Prs(·|π∗). The voters know
both the prior P and the signal distribution Prs(·|π∗); however, the principal is unaware of both. Following
Prelec et al. [21], we assume that P(π),Prs(σ|π) > 0 for all rankings σ, π ∈ L(A) to avoid degeneracy.

Conventional voting would ask each voter i to simply report her observed noisy ranking σi and use a
voting rule such as the Kemeny rule or Borda count to aggregate the reported rankings. SP voting addition-
ally asks each voter i to make inferences about the reports of other voters. Given her observed noisy ranking
σi and the prior P , voter i can compute a posterior distribution over the ground truth, given by

Prg(π
∗|σi) =

Prs(σi|π∗) · P(π∗)∑
π′∈L(A) Prs(σi|π′) · P(π′)

.

In turn, the voter can also infer a distribution over the noisy ranking σj observed by another voter j:

Pro(σj |σi) =
∑

π∗∈L(A) Prs(σj |π∗) · Prg(π∗|σi).

SP voting asks each voter i to report not only her observed noisy ranking σi (the vote), but also her inferred
distribution Pro(·|σi) over other voters’ noisy rankings (the prediction). Given these reports, for a ranking
π ∈ L(A), let f(π) =

∑n
i=1 1[σi = π] denote the number of voters who vote π and g(·|π) denote the

average of reported predictions Pro(·|σi) across all voters i with σi = π. Then, the SP algorithm of Prelec
et al. [21] computes the prediction-normalized vote count for each possible ground truth π as

V (π) = f(π) ·
∑

π′∈L(A)
g(π′|π)
g(π|π′)

. (1)
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The following result due to Prelec et al. [21], rephrased in our context, guarantees that the ground truth rank-
ing will have the highest prediction-normalized vote count under the assumption that the highest posterior
probability for ground truth ranking π will be assigned by a voter who observes noisy ranking π.

Theorem 1 ([21]). Suppose the prior P and the signal distribution Prs are such that Prg(π|π) > Prg(π|π′)
for all distinct rankings π, π′ ∈ L(A). Then, we have that Pr[π∗ ∈ argmaxπ∈L(A)V (π)]→ 1 as n→∞.

3 Elicitation Formats & Aggregation Rules

Note that the prediction requested from voter i, Pro(·|σi), is a distribution over m! rankings. Eliciting this
would undoubtedly place significant cognitive burden on the voter. Thus, our goal is to elicit partial vote and
prediction information from the voters. Since eliciting numerical information is known to be difficult [5],
we focus on eliciting ordinal information for prediction. We develop aggregation rules for recovering the
ground truth from ordinal information and empirically evaluate the effectiveness of SP voting.

Elicitation formats: We focus on two types of vote reports, and for each of them, two types of prediction
reports. Below we provide formal explanations of these formats in the context of our model. In the next
section, we provide example phrasings that were used to pose the various questions to the participants in our
empirical study. Let ri and qi respectively denote the vote and prediction reports submitted by voter i.

• Top vote: Voter i reports the top alternative in her observed noisy ranking, i.e., ri = σi(1).

– Top prediction: Voter i estimates the most frequent alternative among the other votes, i.e. qi =
argmaxa∈A

∑
σ∈L(A):σ(1)=a Pro(σ|σi).

– Rank prediction: Voter i estimates the ranking of the alternatives by their frequency among the
other votes, i.e., qi ∈ L(A) such that

∑
σ∈L(A):σ(1)=qi(x) Pro(σ|σi) ≥

∑
σ∈L(A):σ(1)=qi(y) Pro(σ|σi)

for all x > y.

• Rank vote: Voter i reports her entire observed noisy ranking, i.e., ri = σi.

– Top prediction: Voter i estimates the alternative that appears most frequently in the top position
of the other votes. Formally, this is equivalent to the top prediction in case of a top vote: qi =
argmaxa∈A

∑
σ∈L(A):σ(1)=a Pro(σ|σi).

– Rank prediction: Voter i estimates the most frequent ranking among the other votes, i.e., qi ∈
argmaxσ∈L(A) Pro(σ|σi). Note that this is different from the rank prediction in case of a top
vote.

This gives rise to four elicitation formats, which we refer to as Top-Top, Top-Rank, Rank-Top, and Rank-
Rank with the first component denoting the vote format and the second denoting the prediction format. As
a benchmark, we use Top-None and Rank-None, where top and rank votes are elicited, respectively, but no
prediction information is elicited.

Aggregation rules: There are two difficulties in applying the SP algorithm of Prelec et al. [21] — maxi-
mizing V (π) given in Equation (1) — in our setting.

First, the effectiveness of the approach depends on how accurately functions f and g from Equation (1)
match their expected values, which in turn depends on how large the number of voters is compared to the
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number of options among which the ground truth lurks. In our case, since the ground truth is one of m!
rankings, the approach would be ineffective unless each question is answered by a number of voters much
larger than m!. Instead, we determine the ground truth comparison of each of

(
m
2

)
pairs of alternatives inde-

pendently by applying the algorithm from Equation (1) on the relevant pairwise comparison data extracted
from the reports of the voters.

Second, even for comparing a pair of alternatives, Equation (1) requires cardinal prediction information
whereas our input is ordinal. We propose a simple parametric model in which, for each elicitation format,
we use two parameters, α ∈ (0.5, 1) and β ∈ (0, 0.5), to convert ordinal pairwise predictions into cardinal
pairwise predictions to be utilized by the SP algorithm. In Section 4, we describe how we train these
parameter values. The formal algorithm and its detailed description are provided in the appendix.

Note that applying our algorithm for comparing each pair of alternatives independently results in a
tournament, which we use for two prediction tasks: predicting the top alternative in the ground truth ranking
and predicting the entire ground truth ranking. For the former task, we select the alternative that defeats the
maximum number of other alternatives in the resulting tournament, breaking ties uniformly at random, and
consider the frequency of predicting the correct top alternative. For the latter task, we compute the Kendall
Tau distance of the tournament from the ground truth ranking.

Finally, note that there are no prediction reports for Top-None and Rank-None and we consider a natural
extension of SP voting. In particular, for Top-None, SP voting returns an acyclic tournament comparing al-
ternatives by their plurality scores, and for Rank-None, it returns the (potentially cyclic) majority preference
tournament. We then select an alternative/ranking as described earlier.

4 Experiment Design

To test the effectiveness of SP voting for recovering ranked ground truth with only ordinal elicitation,
we conducted an empirical study by recruiting 720 participants (turkers) from Amazon Mechanical Turk
(MTurk), a popular crowdsourcing marketplace. An average turker spent about 15 minutes to complete the
survey. The survey was designed as follows.

Datasets. To generate questions with an underlying ground truth comparison of alternatives, we used three
datasets from three distinct domains:

1. The geography dataset1 contains 230 countries with their 2019 population estimates according to the
United Nations.

2. The movies dataset2 contains 15,743 movies with their lifetime box-office gross earnings.

3. The paintings dataset3 contains 80 paintings with their latest auction prices.

Questions. In each domain, the numerical values associated with the alternatives allow a ground truth
comparison among the alternatives. For each domain, we considered the top 50 alternatives with the highest
values. From these, we generated 20 questions, each comparing four alternatives selected such that two
consecutive alternatives in the ground truth ranking were exactly 6 ranks apart in the global ranking of all
50 alternatives. Collectively, we had 60 questions across all three domains. For each of the 60 questions and

1Retrieved from worldpopulationreview.com
2Retrived from boxofficemojo.com/chart/top lifetime gross
3Generously provided by the authors of Prelec et al. [21].
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each of the 6 elicitation formats described in Section 3, we elicited 20 responses, generating a total of 7, 200
responses.

Turker assignment. Figure 1 shows the workflow faced by a turker. Each of the 720 turkers responded
to 10 questions split evenly among two randomly assigned elicitation formats. , The turkers were divided
roughly equally between the 30 ordered pairs of elicitation formats called treatments. Further, as mentioned
above, each question under each elicitation format was assigned to the same number of turkers.

Preview &
Consent

Tutorial
(Elicitation
Format 1)

5 Questions
(Elicitation
Format 1)

Review
(Elicitation
Format 1)

Tutorial
(Elicitation
Format 2)

5 Questions
(Elicitation
Format 2)

Review
(Elicitation
Format 2)

QuizSubmit

Figure 1: The workflow of a turker.

Tutorials. As shown in Figure 1, each set of five questions in a fixed elicitation format was preceded by
a tutorial. The tutorial was designed specifically for the elicitation format and tested turkers’ understanding
of the vote and prediction formats. It contained a sample question along with pre-specified beliefs over the
correct answer as well as over the other responses. Turkers had to successfully pass the tutorial by converting
the given beliefs into the requested vote and prediction format in order to proceed to the questions.

Reviews. Each set of five questions was also succeeded by a review, which asked the turkers to rate the
difficulty (from Very Easy to Very Difficult) and expressiveness (Very Little to Very Significant) of the
elicitation format of the preceding questions. While we controlled the difficulty level of various questions
from a given domain, as we show in Section 5 the three domains themselves differed significantly in their
difficulty. In anticipation of this and to ensure that the turkers’ implicit comparison between their two
assigned elicitation formats is not influenced by the domains, the study was designed such that the sequence
of domains encountered by a turker in the first five questions precisely matched that in the next five questions.

See the appendix for details such as the consent form, the tutorial for each domain, the review, and other
details.

Response qualifications & payment. To ensure high-quality responses, in addition to providing training
in the form of tutorials, we restricted participation in our study to turkers who had (a) at least 90% approval

Figure 2: Average time spent. Figure 3: Perceived difficulty. Figure 4: Perceived expressiveness.

6



rate on previous tasks, (b) at least 100 completed tasks, and (c) the region set to US East (us-east-1) on
MTurk.

Finally, at the end of the survey, the turkers were required to answer a quiz, which repeated the four
alternatives from the last question they answered and asked them to identify the alternative they chose or
ranked first in their vote. The turkers were incentivized to answer the quiz correctly (see below). In our case,
over 82% of turkers passed the quiz.

The payment was divided into two parts. A base payment of 50¢ was provided conditioned on complet-
ing the entire survey including all tutorials, questions, and reviews. A bonus payment of 50¢ was provided
conditioned on correctly answering the quiz question.

Elicitation formats. In Section 3, we discussed six elicitation formats and described what vote and predic-
tion a given voter i should submit as a function of her observed noisy ranking σi, the prior P , and the signal
distribution Prs. In our empirical study, we design natural and intuitive phrasing to elicit the corresponding
responses from the turkers.

For example, consider a question which asks to compare four countries (United Kingdom, Vietnam,
Russia, and Kenya) by their population. Under the Top-Rank elicitation format, the vote and prediction
questions would be as follows:

• Part A (vote): Which country do you think is the most populated among the following?

• Part B (prediction): Imagine that other participants will also answer Part A. How do you think
the following countries will be ordered from the most common response (top) to the least common
(bottom)?

See the appendix for sample phrasings for all six elicitation formats and screenshots from our user
interface.

Training. Recall that in our aggregation method, for each elicitation format, we use two parameters, α ∈
(0.5, 1) and β ∈ (0, 0.5), to convert ordinal predictions into cardinal predictions that can be then used in the
SP algorithm. To learn effective values of these parameters, we split the dataset into a training and a test set.
For each elicitation format, we selected 5 questions from each of three domains, reserving the remaining 15
questions from each domain for the test set. Using these 15 questions, we performed a grid search over α
ranging from 0.55 to 0.95 in increments of 0.025 and β ranging from 0.05 to 0.45 in increments of 0.025
and selected the values with the lowest mean squared error.

5 Results

In this section, we present our results averaged across all three domains. In the appendix, we present more
detailed results averaged across each domain separately. All confidence intervals shown are 95% intervals.
We compare the elicitation formats using four key metrics: difficulty (i.e. cognitive burden), expressiveness,
error in predicting the ground truth top alternative, and error in predicting the ground truth ranking.

5.1 Difficulty & Expressiveness

We measure the following three metrics.
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• Response time: Response time is known to be a good objective proxy for the cognitive load associated
with a task [23]. We measure the amount of time spent by the turkers on the tutorials and questions of
the elicitation format.

• Perceived difficulty: As a subjective indicator of difficulty, we consider the perceived difficulty re-
ported by the turkers (from Very Easy to Very Difficult) during the review stage of the elicitation
format.

• Perceived expressiveness: Expressiveness indicates the amount of information that the turkers felt
they were able to convey through the elicitation format (from Very Significant to Very Little).

Figure 2 shows the average time spent by the workers on the tutorial and on an average question under
the six elicitation formats along with 95% confidence intervals (lower is better). We observe a statistically
significant trend: when we fix a vote format (say Top or Rank), the average time spent increases for both
tutorials and questions as we make the prediction format more complex (None → Top → Rank). In the
appendix, we show the average time spent for each domain and observe that the choice of the domain does
not significantly affect it regardless of the elicitation format.

Figure 3 and Figure 4 respectively show the reported distributions of perceived difficulty (easier is better)
and perceived expressiveness (higher is better). Interestingly, the turkers found the six elicitation formats to
be of very similar difficulty and similar expressiveness.

5.2 Predicting the Ground Truth Top Alternative

We now turn to analyzing how effectively the different elicitation formats help us predict the ground truth.
In addition to measuring the error of the ground truth estimate returned by our algorithm, we also measure
the error in the input votes and predictions themselves. Note that every vote and prediction is an estimate of
some truth (either the ground truth or a summary statistic of the other votes); thus, its error can be measured
with respect to the truth it is attempting to uncover.

First, we consider predicting simply the top alternative in the ground truth ranking. For our algorithm as
well as for the input votes and predictions, we use, as error measure, the frequency of incorrectly guessing
the top alternative of the truth they attempt to estimate. Figure 5 shows the average prediction errors for
various elicitation formats (lower is better).4 We remind the reader that the effectiveness of SP voting
should be judged based only on elicitation formats which include some prediction information.

Given four alternatives, selecting an alternative uniformly at random would result in a prediction error
of 0.75. Interestingly, both the vote and prediction reports individually have average error around this
benchmark. Yet, by combining these two pieces of individually erroneous information, SP voting is able to
achieve significantly lower error. This is not surprising because SP voting approach is design precisely to
pick out the minority of experts lurking among a majority of non-experts by combining vote and prediction
information. Moreover, for a fixed type of vote (either Top or Rank), as the prediction formats become more
complex (None→ Top→ Rank), the performance of SP voting improves.

Figure 6 compares SP voting to several standard voting rules including Plurality, Plurality with Runoff,
Borda, Copeland, Instant Runoff Voting (IRV), and Maximin Rule, which ignore the prediction information
and simply aggregate the vote information in a democratic manner.5 The conventional voting rules run on
elections containing votes from three elicitation formats (Rank-None, Rank-Top, and Rank-Rank) whereas

4SP voting errors are obtained by averaging over 60 elections associated with 60 questions. Vote/Prediction errors are averaged
over 1200 responses and have narrower confidence intervals.

5See [4] for definitions of these rules.
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Figure 5: Average error in predicting the top alternative
in the ground truth. By combining both the vote and pre-
dictions, SP voting achieves a much lower error than in
either piece of information.

Figure 6: Comparing SP voting with conventional voting
for predicting the top alternative. Incorporating the pre-
diction reports helps SP voting significantly outperform
conventional voting.

Figure 7: Average error in predicting the ground truth
ranking. By combining both the vote and prediction in-
formation, SP voting achieves a much lower error than
in either piece of information.

Figure 8: Comparing SP voting with conventional vot-
ing for predicting the ground truth ranking. Incorporat-
ing the prediction reports helps SP voting significantly
outperform conventional voting.

SP voting runs on each elicitation format individually. We can see that for Rank-Rank, SP voting (rightmost
orange bar) outperforms all conventional voting rules, despite having access to just a third of the samples.
This indicates that the prediction information helps significantly.

These observations hold even when we consider each domain separately. These results are provided in
the appendix.

5.3 Predicting the Ground Truth Ranking

We now consider predicting the full ground truth ranking. For SP voting result as well as the individual
votes and predictions, we use the Kendall-Tau (KT) distance to measure the error of the SP voting result,
votes, and predictions compared to the true ranking they aim to estimate. Figure 7 shows the average KT
distance for different elicitation formats (lower is better). Given four alternatives, selecting a uniformly
random ranking will have an average KT distance of 3. Both the votes and prediction reports have average
error around this benchmark. Similar to predicting the top alternative, SP voting produces significantly
lower average error by combining these two noisy pieces of information. Moreover, for each vote format
(either Top or Rank), as the prediction report becomes more expressive (None→ Top→ Rank) the average
error of SP voting decreases.

Finally, we compare SP voting with standard voting rules (Figure 8) in terms of the average KT distance
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and find that SP voting again outperforms all voting rules for Rank-Rank.

5.4 Prediction vs. Vote

Our results illustrate the importance of prediction in recovering the ground truth. While eliciting ranked
votes and predictions (Rank-Rank) achieves the lowest error, an intriguing question arises when we seek to
choose an elicitation format that provides a reasonable tradeoff between accuracy and difficulty/expressiveness.
Figures 5 and 7 show that Top-Rank significantly outperforms Rank-Top while both formats are comparable
in terms of response time, perceived difficulty, and perceived expressiveness. Thus, if we wish to choose
an elicitation format slightly more complex than Top-Top, making the prediction more expressive is more
promising than that of the vote. The same observation holds when comparing Top-Top versus Rank-None.
This shows that when a tradeoff between more complex vote and more complex prediction is necessary,
eliciting more complex prediction may be better.

6 Discussion

We extended surprisingly popular voting to recover a ground truth ranking of alternatives and, through a
crowdsourcing study across different domains, showed that it outperforms conventional voting approaches
without significantly increasing elicitation. In our study, the ground truth is a ranking over four alternatives,
and a challenging future direction is to extend this approach to rankings with more than four alternatives.
For a large number of alternatives, any practical elicitation scheme would ask the voters to report a partial
rank over the alternatives, which will make it challenging to design aggregation rules for such partial ranks.

Another interesting direction would be to derive theoretical performance guarantees for surprisingly
popular voting when the number of participants is finite (the results of Prelec et al. [21] hold only in the
limit) and when only partial votes and predictions are elicited (this may require assuming a parametric signal
distribution such as the Mallows model).

Acknowledgements. The authors were partly supported by NSF grant #1850076 (HH), a postdoctoral
fellowship from Columbia DSI (DM), and an NSERC Discovery Grant (NS).
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Appendix

A Additional Material for Section 4

A.1 Experiment Design

Since we are interested in recovering the rank of four alternatives, any question where the four alterna-
tives are ranked very close to each other in the ranked list of 50 alternatives, would be a hard question
for most of the turkers. For this reason, we decided to formulate each question by selecting four alterna-
tives where the distance between successive alternatives is exactly six. For example, some questions had
alternatives ranked (1, 7, 13, 19), (3, 9, 15, 21), . . . , (31, 37, 43, 49). The consecutive alternatives were kept
exactly 6 distance apart to control the difficulty level of the questions. The first 16 questions have alter-
natives ranked (1, 7, 13, 19), (3, 9, 15, 21), . . . , (31, 37, 43, 49). The last four questions have alternatives
ranked (2, 8, 14, 20), (12, 18, 24, 30), (22, 28, 34, 40), (32, 38, 44, 50).

Elicitation Formats. Below, we provide the phrasings used in our study to elicit the various types of
responses from a turker. As an example question, consider a question which asks to compare four countries
(United Kingdom, Vietnam, Russia, and Kenya) by their population.

1. Top-None: A turker is provided with four choices and is asked to vote the best option according to
her opinion.

• Part A (vote): Which country do you think is the most populated among the following?

The turker is just asked one question and there is no additional prediction question regarding others’
opinions.

2. Top-Top: A turker is asked two questions in this format. She is asked to vote her top choice as in
format Top-None. Moreover, she is asked a prediction question about the votes of other participants.

• Part A (vote): Which country do you think is the most populated among the following?

• Part B (prediction): Imagine that other participants will also answer Part A. Which of the
following four countries do you think will be the most common response?

3. Top-Rank: Like Top-Top, this rule also asks a turker two questions. However, the prediction question
is different, and asks to rank the four choices based on the votes of other participants.

• Part A (vote): Which country do you think is the most populated among the following?

• Part B (prediction): Imagine that other participants will also answer Part A. How do you
think the following countries will be ordered from the most common response (top) to the least
common (bottom)?

4. Rank-None: This elicitation format asks the turker to order the four choices based on her own opinion.

• Part A (vote): How do you think the following four countries should be ordered from the most-
populated (top) to the least-populated (bottom)?

5. Rank-Top: This format also asks a turker to rank four choices and same as in Rank-None. Addition-
ally, it asks the turker a prediction question about the votes of other participants.

13



• Part A (vote): How do you think the following four countries should be ordered from the most-
populated (top) to the least-populated (bottom)?

• Part B (prediction): Imagine that other participants will also answer Part A. In your opinion,
which country will be the most common top choice?

6. Rank-Rank: In this format, both the vote and prediction questions ask the turker to rank the four
choices.

• Part A (vote): How do you think the following four countries should be ordered from the most-
populated (top) to the least-populated (bottom)?

• Part B (prediction): Imagine that other participants will also answer Part A. In your opinion,
which will be the most common ordering of the following countries?

B Details of the Aggregation Method

We now discuss our aggregation method that takes as input pairs of (vote, prediction) reports from the voters
and returns either a rank or a single alternative. Recall that we considered six different elicitation formats
with different types of votes and prediction reports. Both the vote and the prediction report can be either the
top alternative or a ranking over the alternatives. Our aggregation method is a general aggregation rule and
works when the votes and prediction reports are either ranked choices or top alternatives. At a high level,
our method (algorithm 1) considers pairs of alternatives (say (a, b)) in turn, extracts the relevant information
for that pair from the input, and determines whether a � b or not in the true ranking π?.

Algorithm 2 describes how to extract the relevant information about a pair (a, b) from the input. We
first describe how to extract the relevant votes about the pair (a, b) from the input. Consider a vote ri from
voter i. If ri is a rank over the alternatives, then we set r(a,b)i either 1 or 0 based on whether a �ri b or
not. On the other hand, if ri is just an alternative, then set r(a,b)i to either 1 or 0 depending on whether the
reported alternative equals a or b. If the top alternative ri is neither a nor b, we just discard report of voter i
for determining the order for the pair of alternatives a, and b.

In order to extract the relevant prediction report about the pair (a, b), note that qi can be either a rank or
an alternative, and we want to convert it to a probability estimate of P (a � b|a � b) or P (a � b|b � a). So
algorithm 2 takes as input two additional parameters α, and β and they are used to determine the value of
the probability estimates. If qi is a rank over the alternatives, then we first choose either α or β depending
on the value of r(a,b)i . Call this choice p. Then set q(a,b)i either p or 1 − p based on whether a �qi b or not.
On the other hand, if qi is just an alternative, then set q(a,b)i to either p or 1 − p depending on whether the
prediction equals a or b. Finally, in case the predicted alternative is neither a nor b, we set q(a,b)i to 1/2.

After extracting the relevant information about the pair (a, b), algorithm 1 executes the SP algorithm on
two possible comparisons between a and b – a � b and b � a. In particular, we compute the prediction-
normalized vote for a � b and b � a, denoted as V (a � b) and V (b � a) respectively, and choose
whichever has higher normalized vote. The formula for the prediction-normalized vote for a comparison
(say a � b) is given as

V (a � b) = f(a � b)
∑
i

g
(
r
(a,b)
i |a � b

)
g
(
a � b|r(a,b)i

)
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Here f(a � b) is the true frequency of the order a � b among the voters, which we approximate from
the votes {r(a,b)i }i∈[n]. Similarly, the conditional probabilities are approximated from the prediction reports

{q(a,b)i }i∈[n]. For more details about the guarantees of this algorithm, the reader is referred to the supple-
mentary materials of [21].

ALGORITHM 1: SP Voting
Input: Information reports {ri}i∈[n], prediction reports {qi}i∈[n], and probabilities α > 0.5 and β < 0.5.
for each pair of alternatives (a, b) do(

{r(a,b)i , q
(a,b)
i }i∈[n]

)
← Extract-Reports({ri, qi}i∈[n], (a, b), α, β)

/* Signal 1 (resp. 0) corresponds to a � b (resp. b � a). */

Na�b =
{
j : r

(a,b)
j = 1

}
Nb�a =

{
j : r

(a,b)
j = 0

}
f(a � b) =

∑
i 1

{
r
(a,b)
i = 1

}
/(|Na�b|+ |Nb�a|)

f(b � a) = 1− p?(a � b)
g(1|1) = 1

|Na�b|
∑

i∈Na�b
qi and P (0|1) = 1− P (1|1)

g(1|0) = 1
|Nb�a|

∑
i∈Nb�a

qi and P (0|0) = 1− P (1|0)
/* Compute prediction-normalized vote */

V (a � b) = f(a � b)
∑
i

g
(
r
(a,b)
i |1

)
g
(
1|r(a,b)i

)
V (b � a) = f(b � a)

∑
i

g
(
r
(a,b)
i |0

)
g
(
0|r(a,b)i

)
T ← φ /* Create a tournament */

for each pair of alternatives (a, b) do
/* Ties are broken u.a.r. */

if V (a � b) > V (b � a) then
T ← T ∪ a � b

else
T ← T ∪ b � a

return T
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ALGORITHM 2: Extract-Reports
Input: Information reports {ri}i∈[n], prediction reports {qi}i∈[n], pair (a, b), and probabilities α > 0.5, and

β < 0.5.
for i = 1, . . . , n do

/* Extract information report */

if ri is a rank then

Set r(a,b)i =

{
1 if a �ri b
0 o.w.

else if ri is a top alternative and ri ∈ {a, b} then

Set r(a,b)i =

{
1 if ri = a
0 if ri = b

else
Ignore (ri, qi) for determining a � b

/* Extract prediction report */

if qi is a rank then

Set q(a,b)i =


α if a �qi b and r(a,b)i = 1

1− α if b �qi a and r(a,b)i = 1

1− β if a �qi b and r(a,b)i = 0
β o.w.

else if qi is a top alternative and qi ∈ {a, b} then

Set q(a,b)i =


α if qi = a and r(a,b)i = 1

1− α if qi = b and r(a,b)i = 1

1− β if qi = a and r(a,b)i = 0
β o.w.

else
Set q(a,b)i = 1/2.

return
(
{r(a,b)i , q

(a,b)
i }i∈[n]

)

C Missing Figures for Different Domains

C.1 Mean Time Spent

Figure 9 shows the average time spent by a turker on a single question, for three different domains. For each
domain, we observe the same pattern. For a fixed type of vote (either Top or Rank), as we ask more complex
prediction reports (none→ top→ rank), the particular elicitation format requires more time to answer one
question.
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Figure 9: Average time-spent on a question, for different elicitation formats, grouped by domain.

C.2 Predicting Top Alternative for Different Domains

Figure 10 show the average error in predicting the top alternative of the ground truth ranking for different
elicitation formats and different domains. For each domain, we see that, for a fixed type of vote (Top or
Rank) as we make the prediction reports more complex, the average prediction error generally goes down. In
particular, except for the domain Paintings, the following orders always hold among the elicitation formats:
Top-None > Top-Top and Rank-None > Rank-Top.

Figure 11 compares our method with six conventional voting rules in terms of predicting the top alter-
native of the ground truth. We see the same phenomenon as we saw when all questions were combined.
SP voting trained on just Rank-Rank elicitation format, outperforms all six voting rules for the domains
Geography and Movies.
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Figure 10: Average error in predicting the top alternative of the ground truth ranking, across different elicitation
formats and different domains.

Figure 11: Average error in predicting the top alternative of the ground truth ranking, for different voting rules,
and SP voting on three elicitation formats (Rank-None, Rank-Top, and Rank-Rank).

C.3 Predicting Ground Truth Ranking for Different Domains

Figure 12 shows the average Kendall-Tau distance from the ground truth ranking for different elicitation
formats and different domains. For each domain, we see that, for a fixed type of vote (Top or Rank) as
we make the prediction reports more complex, the average prediction error generally goes down. In par-
ticular, except for the domain Paintings, the following orders always hold among the elicitation formats:
Top-None > Top-Rank and Rank-None > Rank-Rank.

Figure 13 compares our method with six conventional voting rules in terms of the average Kendall-Tau
distance from the underlying true ranking. We see the same phenomenon as we saw when all questions were
combined. SP voting trained on just Rank-Rank elicitation format, outperforms all six voting rules for all
the domains.
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Figure 12: Average Kendall-Tau distance from the true rankings, across different elicitation formats, and differ-
ent domains.

Figure 13: Average Kendall-Tau distance from the true rankings, for different voting rules, and SP voting on
three elicitation formats (Rank-None, Rank-Top, and Rank-Rank).
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D Screenshots from Our User Interface

In this section, we provide screenshots of different pages of our user interface.

D.1 Preview and Consent Form

Figure 14 shows the Preview and the Consent pages. After accepting our HIT, a turker first sees the Preview
page. The turker needs to accept the consnt for participation before continuing with the tutorials.

Figure 14: Preview and consent form

D.2 Tutorials

Figure 15 shows the tutorials for Rank-Top and Top-Rank elicitation formats. The tutorial provides the
turker with a scenario (a correct answer, and a belief about other participants’ votes), and asks the turker to
complete the vote and prediction (if required) questions. Each turker must successfully complete the tutorial
to proceed to the actual questions.
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Figure 15: Tutorials for Rank-Top and Top-Rank formats.

D.3 Sample Questions

Figures 16 and 17 show sample questions for different elicitation formats. Each turker completes five ques-
tions from two elicitation formats.

Figure 16: Sample questions from Top-None, Top-Top, and Top-Rank questions.

D.4 Difficulty/Expressiveness

We assign each turker to two elicitation formats. After answering five questions from each format, the turker
is asked to complete a survey about the difficulty and expressiveness of that format (shown in figure 18).
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Figure 17: Sample questions from Rank-None, Rank-Top, and Rank-Rank questions.

Figure 18: Difficulty and expressiveness questions
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