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Abstract

Sortition is a form of democracy built on random selection of representatives.
Two of the key arguments in favor of sortition are representation (a random panel
reflects the composition of the population) and fairness (everyone has a chance to
participate). Uniformly random selection is perfectly fair, but is it representative?
To answer this question, we introduce the notion of a representation metric on
the space of individuals, and assume that the cost of an individual for a panel is
determined by the q-th closest representative; the representation of a (random) panel
is measured by the ratio between the (expected) sum of costs of the optimal panel
for the individuals and that of the given panel. For k/2 < q ≤ k − Ω(k), where k
is the panel size, we show that uniform random selection is indeed representative
by establishing a constant lower bound on this ratio. By contrast, for q ≤ k/2,
no random selection algorithm that is almost fair can give such a guarantee. We
therefore consider relaxed fairness guarantees and develop a new random selection
algorithm that sheds light on the tradeoff between representation and fairness.

1 Introduction

Most people think of democracy as synonymous with elections. But that has not always been the
case: From the inception of democracy in ancient Athens until the American and French revolutions,
democracy had typically been associated with random selection of representatives [1], a paradigm
known as sortition.

Nowadays, sortition is mainly seen in the form of citizens’ assemblies — randomly selected groups
of people who deliberate on central questions, with the goal of informing policy. The impact and
prevalence of citizens’ assemblies around the world have motivated computational work on how to
fairly and transparently select assembly members [2–4]. But there are signs that sortition is becoming
even more widely accepted, including its recent institutionalization in Belgium, where permanent
sortition-based bodies are now working alongside the parliaments of the German-speaking region and
the Brussels region. In light of this progress, it may only be a matter of time until one of the many
blueprints for sortition-based democracy [5] is implemented at the level of an entire country.

The excitement about sortition is driven by several appealing qualities, which are seen as providing
solutions to some of the problems plaguing electoral democracy. We briefly present two of them in
the context of uniform selection, which selects a uniformly random panel and is considered to be the
ideal sortition method [6].

• Descriptive representation: A panel selected uniformly at random is likely to reflect the
composition of the population from which it was drawn. Representation lends legitimacy
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to the process [7, 8], as citizens are able to identify some panelists who are similar to
themselves.1

• Fairness: Under uniform selection, each citizen has an equal chance to participate. Po-
litical theorists have argued that this quality realizes philosophical ideals like equality of
opportunity and allocative justice [10].

By any reasonable measure of the fairness of selection probabilities — e.g., the minimum selection
probability of any individual [2] — uniform selection achieves perfect fairness, as selection proba-
bilities are equalized. We ask: Is uniform selection also representative in a rigorous sense? If we
had a similar measure of representation, we would be able to evaluate whether this is the case. But
quantifying representation poses a conceptual challenge.

Our approach. We address this challenge by assuming that there exists a representation metric on
individuals, which measures to what degree one individual represents another (smaller distance means
better representation). Readers familiar with the algorithmic fairness literature will no doubt make
the connection to the similarity metric of Dwork et al. [11], which has been criticized on the grounds
that it is difficult to explicitly construct [12]; a major obstacle is that the question of whether certain
features should be used to determine similarity is domain-specific and tied to legal interpretation.
By contrast, a representation metric is a more viable object, as it can be defined as a function of a
common set of features that are routinely used by practitioners for this purpose, such as gender, age,
ethnicity and education. Moreover, some of our main results, which pertain to uniform selection, are
fully independent of the metric — for these it sufficies that such a metric exists.

Note, however, that a distance metric (on individuals) does not directly tell us to what degree an
individual is represented by a panel. Following very recent work by Caragiannis et al. [13], we
assume that the cost of a panel for an individual is determined by the q-th closest member of the
panel, and our results are parameterized by q.

We can now define representation by taking a page from the literature on distortion in social
choice [14]. Specifically, for a given selection algorithm, we measure its representation via the
ratio between the social cost (sum of costs) of the optimal panel and that of the panel chosen by the
algorithm, in the worst case over underlying representation metrics.

Our results. Returning to the question of whether uniform selection is also representative, and, more
generally, the eponymous question of whether sortition is both representative and fair, our answer is
that “it depends” — on the value of q.

When k/2 < q ≤ k − Ω(k), where k is the size of the panel, we show that uniform selection (which
is perfectly fair) achieves constant representation. Qualitatively, we view this as providing positive
answers to our questions in the regime of q > k/2. Note that this regime has a natural interpretation:
each individual wants a majority of the panel to be representative of themselves. This is especially
justifiable when the panel makes decisions or recommendations through voting, which is often the
case in citizens’ assemblies.

By contrast, for the regime of q ≤ k/2, we prove that any selection algorithm that chooses each
individual with probability somewhat higher than q/n, where n is the number of individuals, must
have representation of precisely 0. This result clearly applies to uniform selection, where the minimum
selection probability is k/n, and it motivates us to consider weaker fairness guarantees. We design an
algorithm, RANDOMREPLACE, which selects each individual with probability at least q/n and has a
nontrivial representation guarantee of 1/(q + 1) for any value of q.

Lastly, we run experiments to compare the different selection algorithms using two real datasets. The
experiments show that worst-case representation guarantees predict representation in practice, and
give us a more nuanced understanding of the performance of different selection algorithms in terms
of representation.

Related work. The design of practical, fair and transparent algorithms for selecting citizens’
assemblies was explored in several previous papers [2–4] — two of which appeared in previous
NeurIPS conferences. Assemblies are required to be representative of the population with respect
to features like gender, age, ethnicity, education and geography. This is done by setting quotas on

1Another argument for representation is epistemic: a diversity of opinions leads to better decisions [9].

2



individual features; for example, a panel of 100 people might be required to include at least 48
men, at least 48 women, and at least 2 people who identify as non-binary. The challenge is that an
assembly is selected from a pool of volunteers, which is typically unrepresentative of the population
due to self-selection bias. Uniformly random selection, therefore, would likely itself result in an
unrepresentative panel. Instead, the primary selection algorithm advocated by Flanigan et al. [2]
computes a distribution over quota-compliant panels that (roughly speaking) maximizes the minimum
selection probability of any volunteer, thereby maximizing fairness subject to the demographic
constraints. By contrast, like Benadè et al. [15] and the political theory literature, we take a longer-
term view: We are interested in random selection directly from the population, which is a hallmark
of some plans for sortition-based democracy [5]. In addition, we take a fundamentally different,
and arguably more nuanced, view of representation. Indeed, our framework can accommodate
questions of intersectionality (to what degree is a rural, college-educated man represented by a rural,
college-educated woman?) and also provides a more holistic analysis of the composition of the
panel (to what degree is a rural, college-educated man represented by a panel that includes 10 rural,
college-educated men and 99 urban women with no college education?).

Our approach to evaluating representation through a metric is rooted in spatial theories of voting
from the political theory literature [16, 17]. The idea of measuring how poorly a panel represents
an individual by the distance of the q-th closest panel member to the individual was introduced by
Caragiannis et al. [13] in the context of committee elections. Finally, aiming to minimize the total
misrepresentation to all people and comparing that to the optimal panel makes our representation
measure the inverse of distortion in voting theory [18, 19], where distortion is the inverse of our
representation measure. In voting, it is assumed that we only have partial access to the metric in
the form of voters’ ranked preferences over the candidates induced by distance comparisons. In
contrast, our results for uniform selection use no knowledge of the underlying metric, while our other
algorithms assume complete access. When selecting a single candidate as the winner, it is known that
the best distortion achievable by deterministic selection is 3 (which maps to 1/3 representation in our
formulation) [20]. Our setting is closer to committee selection, where a committee of k candidates
is selected. Here, Caragiannis et al. [13] show that when each voter measures her distance to the
q-th closest committee member, there is a trichotomy: the best possible distortion is infinite when
q ≤ k/3, linear in the number of voters when q ∈ (k/3, k/2], and 3 for deterministic selection when
q > k/2. Sortition is a special case of committee elections in which the set of candidates is the
same as the set of voters. Hence, all the positive results from Caragiannis et al. [13] carry over in
the absence of any fairness constraints. However, our results show that when (perfect) fairness in
selection probabilities is sought in conjunction with representation, the distortion becomes infinite
(zero representation) for all q ≤ k/2 but constant distortion can still be achieved for q > k/2. The
idea of the set of voters acting as the set of candidates was explored by Cheng et al. [21, 22]. However,
they model infinitely many voters using a continuous distribution over the metric space.

2 Preliminaries

For all t ∈ N, define [t] = {1, . . . , t}. Let N = [n] be the set that constitutes the underlying
population. A panel P is a subset of the population. Let Sk(N) denote the set of all subsets of N of
size k. We omit N when it is clear form the context. The population lies in an underlying metric
space endowed with distance d, which we think of as the representation metric discussed earlier. For
each i, j ∈ N , d(i, j) denotes the distance between i and the following properties are satisfied: (a)
d(i, j) ≥ 0, and d(i, j) = 0 if and only if i = j, (b) d(i, j) = d(j, i), and (c) for each i, j, ` ∈ N ,
d(i, `) + d(`, j) ≥ d(i, j). The last property is known as the triangle inequality. An instance of our
problem is given by the underlying population along with distances as defined by d; hereinafter, we
simply denote such an instance by d.

Given a panel P of size k and a positive integer q ∈ [k], the q-cost of individual i for P , denoted
by cq(i, P ; d), is equal to the distance of i from her q-th closest representative in P . Note that for
q = 1, we have c1(i, P ; d) = minj∈P d(i, j) and for q = k we get ck(i, P ; d) = maxj∈P d(i, j).
Let topq(i, P ; d) be the set of q closest members of P to i (ties broken arbitrarily). The q-social cost
of panel P is given by SCq(P ; d) =

∑
i∈N cq(i, P ; d), i.e., the sum of the q-costs over all individuals.

We omit d from the notation when it is clear from the context.

In this setting, a selection algorithm Ak,q that is defined over k and q takes as input d and outputs a
distribution over all panels of size k. We are especially interested in the uniform selection algorithm,
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denoted by Uk, that always outputs a uniform distribution over Sk, independently of the value of q.
In other words, it does not take into account the underlying metric space or q, but instead outputs a
committee of size k chosen uniformly at random.

Fairness: As discussed in the introduction, the main property of uniform selection is that each
individual is selected to be part of the panel with probability exactly equal to k/n, i.e., Pr[i ∈ Uk] =
k
n . In other words, all the individuals are treated equally since they have the same chances to be
chosen. We call this property perfect fairness, and in general an algorithm Ak,q provides perfect
fairness when for each instance d, it ensures that mini∈N Pr[i ∈ Ak,q] = k/n.

When perfect presentation is too restrictive, we relax this constraint by allowing some individuals to
be selected with probability less than k/n. Then, we measure the fairness of an algorithm Ak,q as the
worst-case ratio of the minimum probability of an individual to be selected by the algorithm and the
ideal selection probability k/n. More formally,

fairnessq(Ak,q) = inf
d

mini∈N Pr[i ∈ Ak,q(d)]

k/n
.

Representation: As we have discussed above, another key property we are interested in measuring
is representation. To do so, we consider a panel to be a good representative of the whole population
when the q-social cost is not much larger than the optimum. In other words, a selection algorithmAk,q
that outputs a distribution over the different committees of size k provides good representation when
the expected q-social cost of the panel is similarly small. More formally, we define the representation
of a selection algorithm Ak,q as the worst-case ratio of the minimum possible social q-cost of any
panel and the expected q-social cost of the panel chosen by Ak,q over all possible instances, i.e.,

reprq(Ak,q) = inf
d

minP ′∈Sk(N) SCq(P
′; d)

E[SCq(Ak,q(d)]
.

3 Representation with Perfect Fairness for q > k/2

We start with the case that q > k/2. We show that in this case uniform selection is asymptotically
optimal with respect to representation among all selection algorithms that are perfectly fair. Moreover,
the representation of uniform selection is constant for any q = c · k for 1/2 < c < 1.

Theorem 1. For q > k/2, uniform selection satisfies reprq(Uk) ≥ 1
2 ·

k−q+1
k .

A crucial property that we exploit in this section is that the q-costs of the individuals satisfy the
triangle inequality when q > k/2. This observation was first made by Caragiannis et al. [13]; we
present the lemma below for completeness.
Lemma 1. For q > k/2, individuals i, j ∈ N , and a panel P , cq(i, P ; d) + cq(j, P ; d) ≥ d(i, j).

Proof. Let Ti = topq(i, P ) and Tj = topq(i, P ) be the q closest neighbors of i and j, respectively,
in the panel P . As |Ti| = |Tj | > k/2, there exists an individual k ∈ Ti ∩ Tj . Therefore,

d(i, j) ≤ d(i, k) + d(k, j) ≤ cq(i, P ) + cq(j, P ).

This observation enables us to show the following lower bound on the social cost of the optimal
committee.
Lemma 2. For q > k/2, the q-social cost of the optimal panel P ∗ is at least

SCq(P
∗; d) ≥ 1

2(n− 1)
·
∑
i∈N

∑
j∈N\{i}

d(i, j).

Proof. By applying Lemma 1 for all pairs of individuals (i, j), we get∑
i∈N

∑
j∈N\{i}

(
cq(i, P

∗) + cq(j, P
∗)

)
≥
∑
i∈N

∑
j∈N\{i}

d(i, j).
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The q-cost of each person appears exactly 2(n− 1) times on the left hand side. Thus,

SCq(P
∗; d) =

∑
i∈N

cq(i, P
∗) ≥ 1

2(n− 1)

∑
i∈N

∑
j∈N\{i}

d(i, j).

We are now ready to prove the theorem.

Proof of Theorem 1. For any committee P of size k,

cq(i, P ) = min
q′∈{q,...,k}

cq′(i, P ) ≤ 1

k − q + 1

∑
q′∈[q,k]

cq′(i, P )

≤ 1

k − q + 1

∑
q′∈[1,k]

cq′(i, P ) =
1

k − q + 1

∑
j∈P

d(i, j),

where in the first inequality the minimum is upper bounded by the average. Therefore, the expected
social cost of uniform selection is at most

E[SCq(Uk(N))] =
∑
i∈N

EP∼Uk [cq(i, P )]

≤ 1

k − q + 1

∑
i∈N

EP∼Uk
[∑
j∈P

d(i, j)
]

=
1

k − q + 1

∑
i∈N

∑
j∈N\{i}

d(i, j) · PrP∼Uk [j ∈ P ]

=
1

k − q + 1

∑
i∈N

∑
j∈N\{i}

d(i, j) · k
n
.

By Lemma 2 and the upper bound shown above, we have

reprq(Uk) ≥
1

2(n−1)
∑
i∈N

∑
j∈N\{i} d(i, j)

1
k−q+1 ·

k
n ·
∑
i∈N

∑
j∈N\{i} d(i, j)

=
1

2
· n

n− 1
· k − q + 1

k
≥ 1

2
· k − q + 1

k
.

In the proof above, the only property of uniform selection we use is that the marginal probabilities
are equal to k/n. Hence, this lower bound also holds for any perfectly fair selection algorithm.

We next establish an upper bound on the representation of any perfectly fair selection algorithm. It
shows that the lower bound of Theorem 1 is tight up to a factor of 4.

Theorem 2. For any q > k/2, every selection algorithm Ak,q with fairness(Ak,q) = 1 satisfies
reprq(Ak,q) ≤ 2 · k−q+1

k+1 .

Proof. First, note that if q = k+1
2 , the statement trivially holds, since reprq(Ak,q) ≤ 2 · k−q+1

k+1 = 1

which is true for any algorithm. Thus, we assume q > k+1
2 . Consider an instance with n = k + 1

individuals where k − q + 1 individuals are located at 0 and q individuals are at 1, denoted by N0

and N1, respectively. Any committee of size k leaves one person out of the committee, and for each
individual i ∈ N , this happens with probability of

PrP∼Ak,q
[i /∈ P ] = 1− PrP∼Ak,q

[i ∈ P ] = (1− k
k+1 ) = 1

k+1 .

Individuals in N0 will always have a q-cost of 1, because k + 1 − q < k+1
2 < q individuals are

located there. Therefore, EP∼Ak,q
[
∑
i∈N0

cq(i, P )] = |N0|. For individuals in N1, their q-cost is
1 if and only if less than q individuals are selected from N1, i.e., the single person left out of the
committee is located at 1. This event happens with probability

PrP∼Ak,q
[
⋃
i∈N1

(i /∈ P )] =
∑
i∈N1

PrP∼Ak,q
[i /∈ P ] = |N1|

k+1 ,
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ALGORITHM 1: RANDOMREPLACEk,q

1: Compute an optimal panel P ∗ ∈ arg minP∈Sk SCq(P )
2: Pick S ∈ Sq uniformly at random
3: Set PS ← P ∗

4: for i ∈ S \ PS do
5: Pick an arbitrary ji ∈ topq(i, P

∗) \ S
6: PS ← PS ∪ {i} \ {ji}
7: end for
8: return PS

where the first equality comes from the fact that the events are disjoint (which holds because any
committee leaves out exactly one individual). Therefore, EP∼Ak,q

[
∑
i∈N1

cq(i, P )] = |N1| · |N1|
k+1 ,

and the expected social cost of any perfectly fair algorithm is

EP∼Ak,q
[SCq(P ; d)] = |N0|+ |N1| ·

q

k + 1
≥ |N0|+ |N1| ·

1

2
.

The optimal committee would leave out a person fromN0 and achieve a social cost of |N0|. Therefore,
the representation of any algorithm with perfect fairness is at most

|N0|
|N0|+ 1

2 · |N1|
≤ |N0|

1
2 · |N0|+ 1

2 · |N1|
= 2 · k − q + 1

k + 1
.

4 Representation with Relaxed Fairness for q ≤ k/2

In stark contrast to the case of q > k/2, uniform selection and, more generally, any perfectly fair
selection algorithm, cannot obtain bounded representation when q ≤ k/2. In fact, the following
theorem shows that selection algorithms with fairness strictly more than q+(k mod q)

k (which itself is
upper bounded by (2q − 1)/k) suffer from unbounded representation. The proof is in Appendix A.
Theorem 3. For q ≤ k/2, ε > 0, and any selection algorithm Ak,q with fairness(Ak,q) ≥
q+(k mod q)

k + ε, reprq(Ak,q) is 0.

Although bounded representation is not feasible with fairness slightly larger than q
k , we design a

selection algorithm that can achieve representation of q+1 with fairness of qk . RANDOMREPLACEk,q ,
in Algorithm 1, starts with an optimal panel P ∗, randomly selects a panel S of q individuals, and
replaces individuals in P ∗ with individuals in S as follows. First, individuals in S ∩ P ∗ remain in
the final panel. Then, for i ∈ S \ P ∗, swap i with one of its q-closest neighbors in the optimal panel
topq(i, P

∗) that has not been replaced by the algorithm yet. The next theorem establishes the fairness
and representation guarantees of RANDOMREPLACE.
Theorem 4. For any q ∈ [k], we have that reprq(RANDOMREPLACEk,q) ≥ 1

q+1 and
fairness(RANDOMREPLACEk,q) ≥ q

k .

Proof. Let P ∗ be an optimal panel and S ⊆ N be a set of size q chosen uniformly at random. We
denote with PS the panel that is returned from the algorithm. First, we show that Line 5 of the
algorithm is valid. The algorithm reaches this line when considers i ∈ S \ PS , meaning that i is
not included in the panel PS and therefore is not included in P ∗. Hence, topq(i, P

∗) \ S cannot be
empty since | topq(i, P ∗)| = q, |S| = q and there exists i in S but not in topq(i, P

∗).

We see that that every individual in S is included in PS as in Line 6 the algorithms ensures that each
such individuals is included and is never excluded afterwards. Hence, as each individual is chosen in
S with probability at least q/n, we can see that fairness(RANDOMREPLACEk,q) ≥ q/k.

Now, we prove that for any S ∈ Sq and any agent i′ ∈ N ,

cq(i
′, PS) ≤ cq(i′, P ∗) + max

i∈S
cq(i, P

∗) ≤ cq(i′, P ∗) +
∑
i∈S

cq(i, P
∗). (1)
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The second inequality holds as the maximum is at most the sum. Therefore, we focus on the first. If
cq(i

′, PS) ≤ cq(i
′, P ∗), then it trivially holds. Hence, assume that cq(i′, PS) > cq(i

′, P ∗). In this
case, we can show that there exists i ∈ S \ P ∗ such that d(i′, i) ≥ cq(i′, PS) and ji ∈ topq(i

′, P ∗).
First, note if for each i ∈ S \ P ∗, ji does not belong in topq(i

′, P ∗), then it is not possible that
cq(i

′, PS) > cq(i
′, P ∗), since topq(i

′, P ∗) ⊆ PS . Next, suppose for contradiction that for every i that
was included in PS when ji ∈ topq(i

′, P ∗) was excluded from it, it holds that d(i′, i) < cq(i
′, P ∗).

Then, in PS there are | topq(i′, P ∗) \ ∪i∈S\P∗({ji} ∩ topq(i
′, P ∗))| individuals that have distance

at most cq(i′, P ∗) < cq(i
′, PS) from i′ and |{i ∈ S \ P ∗ : ji ∈ topq(i

′, P ∗)}| individuals that have
distance less than cq(i′, PS) from i′. Note that

| ∪i∈S\P∗ ({ji} ∩ topq(i
′, P ∗))| = |{i ∈ S \ P ∗ : ji ∈ topq(i

′, P ∗)}|,
and hence we get that there are at least | topq(i′, P ∗)| = q individuals in Ps with distance strictly less
than cq(i′, PS) from i′ and we reach a contradiction.

From the above observation , we have that
cq(i

′, PS) ≤ d(i′, i) ≤ d(i′, ji) + d(ji, i) ≤ cq(i′, P ∗) + cq(i, P
∗) ≤ cq(i′, P ∗) + max

i∈S
cq(i, P

∗)

where the penultimate inequality holds because ji ∈ topq(i
′, P ∗) and ji ∈ topq(i, P

∗) form the
definition of ji. This proves (1).

Summing (1) over all i′ ∈ N , we have

SCq(PS) ≤ SCq(P
∗) + n ·

∑
i∈S

cq(i, P
∗).

Taking the expectation of the above equation with respect to S, and using the fact that Pr[i ∈ S] =
q/n, we have

E[SCq(PS)] ≤ SCq(P
∗) + n ·

∑
i∈N

q

n
· cq(i, P ∗) = (q + 1) · SCq(P

∗),

as needed.

The next theorem shows that when q = Ω(k), RANDOMREPLACEk,q attains an asymptotically
optimal fairness-representation tradeoff. The proof is in Appendix A.
Theorem 5. For any q ≤ k/2 such that k mod q = 0, every selection algorithm Ak,q with
fairness(Ak,q) ≥ q/k satisfies reprq(Ak,q) ≤ k/q2.

From the above theorem, it follows that Algorithm 1 achieves the highest possible fairness of q/k
subject to positive representation.

5 Experiments

Next, we conduct an empirical comparison between the selection algorithms that we have considered
above. Data on the metric-structure preferences of groups in their full richness are difficult to come
by, but it is reasonable to expect that the extent to which individuals feel well-represented by one
another is at least partly a function of their relative characteristics along some observable features.

We therefore begin with two datasets that express the characteristics of populations along a range of
features, and randomly construct synthetic metric preferences from these feature signatures. We think
it reasonable to expect that the resulting metrics capture the high-dimensional correlations between
salient features which may influence individuals’ positions in the metric space and the variety of
opinion within populations, even if they stop short of encoding the population’s true preferences for
any particular issue of interest.

Metric construction. We choose some set of features along which to evaluate the individuals in
the population. These are the features which will inform our metric. For each feature s, F s is the
set of possible values that this feature can take. Each individual i is then represented as a vector of
feature values, where fsi is the value that i has for feature s. For each feature we sample a weight
wt ∼ U [0, 1] uniformly at random from the interval [0, 1]. Finally the distance between individuals i
and j and our metric d is defined to be d(i, j) :=

∑
s ws · (1− 1{fsi = fsj }).
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Figure 1: The q-social cost of UNIFORMSELECTION and OPTPROXY for k = 1 to k = 20 and a
selection of q, based on Adult.

Data sets and experimental parameters. Our first source of demographic data is the UCI Adult
dataset, which was derived from the 1994 Current Population Survey of the US Census Bureau, and
is made available by the UCI Machine Learning Repository under a CC BY 4.0 license [23]. It
contains a range of demographic variables principally related to employment. Our experiments do
not require Adult to be representative of any actual population, nor should this an assumption be
made lightly [24]. For Adult we choose the features workclass, education, marital status
and sex. Adult contains n = 30162 individuals with values for each feature, who may be viewed
as a distribution over the 721 unique feature vectors which they collectively hold. For the empirical
evaluation of our selection algorithms on these randomly generated metrics, we suppose that this is in
fact the distribution for a population large enough that there are at least k individuals with any given
feature vector. As these metrics represent populations, the q-social costs in Figure 1 and Figure 3 are
normalized by population size. Figure 1 and Figure 2a depict data averaged over 100 random metrics
constructed in this manner.

Our second source of demographic data is the European Social Survey (ESS) [25], which is made
available by the Norwegian Centre for Research Data under a CC BY 4.0 license. We use the
ESS Round 9 (2018) data, which consists of 46,276 people in 27 countries, and contains ∼1450
features regarding socioeconomic demographic, political beliefs, geographical region, house-hold
composition, personal values, media use and trust, etc. Most of the features are country-specific,
which leaves roughly 250 features available per country, while each country has between 781 and
2745 entries (with a mean of 1713). Each entry is assigned an analysis weight which is aimed to
correct the differential selection probabilities. In contrast to our experiments with Adult, we use all
of the available features available in ESS. The metric construction is similar to Adult. Figure 2b is
based on the data of the United Kingdom (2204 entries), averaged over 100 randomly constructed
metrics. Similar to Adult, we assume there are at least k people associated with each feature vector.

In evaluating UNIFORMSELECTION and RANDOMREPLACE, we use a proxy for the optimal q-social
cost, since n and k are too large to support finding SCq(P ∗, d) exactly. This selection algorithm
OPTPROXY is an implementation of the fault-tolerant metric k-medians algorithm of Kumar et
al. [26], which guarantees a constant-factor approximation to SCq(P ∗, d). This algorithm uses a
constant-factor metric k-medians algorithm as a primitive; we implement the local search algorithm
of Arya et al. [27] with single swaps. In order to evaluate the fidelity of OPTPROXY we compare it
with SCq(P ∗, d) for 100 metrics d constructed by drawing 30 randomly chosen feature vectors from
the supports of Adult instances described above. For panels of size k = 10 and all values of q we
find that OPTPROXY recovers SCq(P ∗, d) exactly (Figure 1c).

Experimental Results. In Figure 1a, we see UNIFORMSELECTION behaving as expected. For a
fixed k, the q-social cost of a uniformly random panel is reliably higher for larger q, and for a fixed
q, it decays smoothly as we increase the panel size k. The behavior of OPTPROXY under the same
conditions (fig. 1b) is rather choppier. Here, all of our approximately optimal panels Pq start at the
same value of SCq(Pq, d) when q = k and decay as q remains fixed and the size of the panel k
increases. This first property is to be expected: when q = k and points in the metric may appear on
the panel multiple times (as is the case with these distributions), it is without loss of generality to
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Figure 2: Comparison of different algorithm for fixed k, where RANDOMREPLACEr,q is applied to
the panel selected by OPTPROXY. As r ranges from 0 to k, the q-social cost of RANDOMREPLACEr,q
interpolates between that of OPTPROXY and UNIFORMSELECTION.

take the optimal panel P ∗q to be k copies of a (carefully chosen) single point in the metric. For these
panels Pq , OPTPROXY is simply finding that point.

The fact that the q-social cost attained by OPTPROXY for fixed q and k/2 < q < k appears
constant, on the other hand, is not universally true of SCq(P ∗, d). These plateaus are due to the way
OPTPROXY selects panels. For this range of q, OPTPROXY selects q individuals from the optimal
1-median location and chooses the remaining k − q uniformly at random. Hence, when q > k/2,
it is guaranteed that the qth closest member in the panel is at this optimal 1-median location. More
generally, OPTPROXY selects q individuals from an (approximately) optimal bk/qc-median solution,
which explains the other steps. Since P ∗q need not be of this form, it is interesting to note that it
exhibits this same step-like behavior in Figure 1c.

Finally, we consider Figure 2a and Figure 2b, which illustrate the q-social costs of RANDOMRE-
PLACEr,q for k = 20 and for k = 40, of the Adult and ESS data, respectively, and for a range of r
and q. OPTPROXY again exhibits step-like behavior, consistent with Figure 1b. On the other hand,
UNIFORMSELECTION increases very smoothly from q = 1 to q = k, which is suggestive of a metric
that is not comprised of a few well-separated groups. Additionally, we see RANDOMREPLACEr,q
interpolating nicely from OPTPROXY at q = 0 up to UNIFORMSELECTION up at q = k. The
strangest portion of this plot is the kink that appears in RANDOMREPLACEq/2,q at q = k/2. This
inversion is perhaps odd because we expect SCq(P, d) to be monotonically increasing in q for any
fixed panel P . This may be due to the implementation of PROXYOPT: if q = k/2 then PROXYOPT
chooses k/2 individuals from each of the optimal 2-medians centers. After replacing some of this
panel, every individual is now likely closest to either some random other individual or the further
center. In the likely event that these two locations are far apart, we should expect this replacement to
dramatically increase SCq/2(P, d) for the average individual. We can perhaps view this as providing
an illustration of the inapproximability of reprq(P

∗) by UNIFORMSELECTION, in miniature: if these
two 2-medians centers were the entirety of their metric, then any swaps at all would send the expected
q = k/2-social cost from zero to nonzero.

6 Discussion

Our results in Section 4 show that in some cases, relaxing fairness requirements allows improving
representation dramatically. More generally, it is interesting to understand the tradeoff between
representation and fairness, and to chart the Pareto frontier. In Appendix B, we take some first steps
in this direction. One observation is that a generalization of RANDOMREPLACE that replaces r
individuals instead of q gives representation at least 1/(r+ 1) and fairness at least r/k. We also show
that a random-dictatorship-like algorithm gives nontrivial fairness and representation guarantees in
the regime of q > k/2. However, there remain several open questions: for example, when q ≤ k/2,
what level of fairness can be achieved if we seek constant representation?
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We focused our attention on the q-cost formulation of Caragiannis et al. [13], in which each individual
measures their distance to the q-th closest panel member. One can analyze the representation-fairness
tradeoff with other cost functions. For example, what if different individuals use different values of q?
Another appealing choice is when each individual measures the average distance to all panel members;
in Appendix C, we show that for this cost function, uniform selection achieves representation of at
least 1/2 for all q > k/2.

More broadly, one can use measures of representation other than the total cost to all individuals.
For example, one may wish to use a selection algorithm that minimizes the maximum cost to any
individual, or strikes a balance between maximum cost and total cost. We hope that answers to some
of these questions will lead to a better understanding of the strengths of sortition, and to new ways of
realizing this democratic paradigm.
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A Missing Proofs

A.1 Proof of Theorem 3

Proof. Assume that n > 2 ·max{
√
kq/ε, k+ 1}, and let m = bk/qc−1. Consider the real line, and

suppose there are sets of q individuals at each position in {1, 2, . . . ,m}, denoted by X1, . . . , Xm,
respectively, and the set of remaining n−mq individuals, denoted by Xm+1, is at position m+ 1.
The optimal panel P ∗ would have at least q people from each position, i.e., |P ∗ ∩Xi| ≥ q for all
i ∈ [m + 1]. The q-cost of each person for P ∗ is 0 as at least q people are selected from her own
position. Hence, SCq(P

∗) = 0.

Turning to the analysis of Ak,q , we claim that

EP∼Ak,q
[|Xm+1 ∩ P |] ≥ q + (k mod q) + ε. (2)

To prove this, note that since each individual is included with a marginal probability of at least
q+(k mod q)

n + ε, we have

EP∼Ak,q
[|Xm+1 ∩ P |] ≥

(
q + (k mod q)

n
+ ε

)
(n−mq)

= q + (k mod q)− mq · (q + (k mod q))

n
+ (n−mq) · ε

We will show that the right hand side is at least q+(k mod q)+ε. Becausemq < k, q+k mod q < 2q,
and n−mq > n− k ≥ n/2 + 1, the right hand side is at least

q + (k mod q)− qk

n/2
+ nε/2 + ε ≥ q + (k mod q) + ε,

where the inquality follows from our choice of n > 2
√
kq/ε. This establishes Equation (2).

Now, as the panel size is k, it holds that
∑
i∈[m+1] EP∼Ak,q

[|Xi ∩ P |] = k. By Equation (2),∑
i∈[m]

EP∼Ak,q
[|Xi ∩ P |] < k − (q + (k mod q))− ε = mq − ε.

Therefore, there exists i ∈ [m] such that EP∼Ak,q
[|Xi ∩ P |] ≤ q − ε/q. Using Markov’s inequality,

PrP∼Ak,q
(|Xi ∩ P | ≥ q) ≤ q−ε/q

q ≤ 1− ε.

Thus, with probability at least ε, less than q people are selected from position i, in which case the q-cost
of each person in Xi will be at least 1. Hence, EP∼Ak,q

[SCq(Ak,q)] ≥ qε while SCq(P
∗) = 0.

A.2 Proof of Theorem 5

Proof. Let m = k/q. Consider an instance with n > 2k individuals on the real line, where one
individual i0 is located at 0, dn/me − 1 people are at 1, and at least bn/mc people are located at
each position j ∈ {2, . . . ,m}. This way, there are at least n/m− 1 = (n/k) · q − 1 ≥ 2q − 1 ≥ q
individuals located at each j ∈ [m].

Any optimal panel would include q individuals from each position j ∈ [m], which results in a q-cost
of 1 for i0 and a q-cost of 0 for the rest. Hence, SCq(P

∗) = 1. However, any selection algorithm
with fairness of at least q/k selects i0 with probability of at least q/n. When i0 is selected, there
must exist a group j ∈ [m] from which the algorithm selects at most q − 1 people, incurring a q-cost
of 1 for at least n/m people (person i0 and at least n/m− 1 people at position j). Hence,

E[SCq(Ak,q)] ≥
q

n
· nq
k

=
q2

k
,

which completes the proof.
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ALGORITHM 2: RANDOMDICTATORk,q

1: Pick i ∈ N uniformly at random
2: Let X ← topq(i,N ; d) // Ensure that i ∈ X
3: Pick S ∈ Sk−q(N \X) uniformly at random
4: return X ∪ S

B Tradeoffs between Representation and Fairness

We start with the case of q > k/2 and show that a simple algorithm, which is a variant of the natural
random dictatorship rule, provides constant representation by sacrificing some quantity of perfect
fairness. Specifically, the algorithm RANDOMDICTATORk,q, presented as Algorithm 2, works as
follows: Given an instance d, it chooses an individual i from the underlying population uniformly
at random, and returns the panel P = topq(i,N ; d) ∪ S, where topq(i,N ; d) is the set of q people
closest to i (we break ties in a way to ensure that this contains i herself), and S is a panel of size
k − q chosen uniformly at random from the remaining people.
Theorem 6. For any q > k/2, it holds that

reprq(RANDOMDICTATORk,q) ≥
1

3
and fairness(RANDOMREPLACEk,q) ≥

k − q + 1

k
.

Proof. We start by proving the fairness guarantee of the algorithm. Note that each individual i is
included in the panel P returned by RANDOMDICTATORk,q either if i is selected at the first step,
which happens with probability 1/n, or if i is not selected in the first step, it is selected in the second
step with probability at least (k − q)/(n− q). Hence, the probability of i being selected is at least
(1/n) + (1− 1/n) · (k− q)/(n− q) ≥ (k− q + 1)/n, yielding fairness(RANDOMREPLACEk,q) ≥
(k − q + 1)/k.

For q > k/2, Caragiannis et al. [13] (Corollary 2) show that random dictatorship, i.e. returning a
panel minimizing q-cost to a randomly selected individual i, achieves a representation of at least 1/3.
The panel returned by RANDOMDICTATORk,q consists of q closest neighbors of i which obtains the
minimum q-cost with respect to i, and fills the other k − q members of this panel randomly which
does not affect the q-cost of the returned panel to i. Hence, RANDOMDICTATORk,q can be seen as a
variant of the random dictatorship rule which randomly breaks ties between top panel choices of a
randomly selected individual.

Now, we turn our attention to the case that q ≤ k/2. In Section 4, we introduced
RANDOMREPLACEk,q with fairness q/k and representation 1/(q + 1). In fact, if we replace q
with any r ∈ [q], we can show that the algorithm provides representation of at least 1/(r + 1) with
fairness r/k, Essentially, RANDOMREPLACEk,r for any r ∈ [q] in Line 2 of Algorithm 1 chooses a
subset S of the underlying population with size r instead of q uniformly at random.
Proposition 1. For any q ∈ [k] and r ∈ [q], it holds that

reprq(RANDOMREPLACEr,q) ≥
1

r + 1
and fairness(RANDOMREPLACEr,q) ≥

r

k
.

We omit the proof of this proposition as it is essentially identical to the proof of Theorem 4 with q
replaced by r in the appropriate places.

C Average Cost Function

Let cavg(i, P ) = 1
k

∑
j∈P d(i, j) denote the average cost of panel P of size k to an individual i.

Similarly, define SCavg(P ) =
∑
i∈N cavg(i, P ), and let repravg(Ak) denote the representation of a

selection algorithm Ak with respect to the average cost function. It turns out that uniform selection
(or any algorithm with perfect fairness) performs very well with the repravg objective and achieves a
representation of 1/2.
Proposition 2. For all k ≥ 1, uniform selection satisfies repravg(Uk) > 1/2.
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Proof. Sort the population as N = (i1, i2, . . . , in) in a non-decreasing order of SC(i`) =∑
i∈N d(i, i`), so that SC(i1) ≤ SC(i2) ≤ . . . ≤ SC(in). Note that for any panel P , SCavg(P ) =

1
k

∑
i∈P SC(i), so the optimal panel is P ∗ = {i1, . . . , ik}. Then,

SCavg(P ∗) =
1

k

∑
i`∈P∗

SC(i`) ≥ min
i`∈P∗

SC(i`) = SC(i1).

Note that {i1} = minP ′∈Sk=1(N) SCq=1(P ′) is the optimal panel for the case where q = k = 1. As
q > k/2 in this scenario, by Lemma 1, we have

SCavg(P ∗) ≥ SC(i1) = SC1({i1}) ≥
1

2(n− 1)

∑
i∈N

∑
j∈N\{i}

d(i, j).

The average social cost of uniform selection is

E[SCavg(Uk(N))] =
1

k

∑
i∈N

∑
j∈N

d(i, j) · PrP∼Uk [j ∈ P ]

=
1

k

∑
i∈N

∑
j∈N\{i}

d(i, j) · k
n
,

where in the last transition we used the fact that d(i, i) = 0 and the marginal inclusion probabilities
are equal to k/n. Putting all together, we have that repravg(Uk) ≥ n

2(n−1) >
1
2 .
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Figure 3: Comparison of different algorithms for fixed k, where RANDOMREPLACEr,q is applied
to the panel selected by OPTPROXY. The y-axis shows the average ratio of the q-social cost of
OPTPROXY to that of different algorithms.
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