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Abstract

We study security games with multiple defenders.
To achieve maximum security, defenders must per-
fectly synchronize their randomized allocations of
resources. However, in real-life scenarios (such as
protection of the port of Boston) this is not the case.
Our goal is to quantify the loss incurred by mis-
coordination between defenders, both theoretically
and empirically. We introduce two notions that
capture this loss under different assumptions: the
price of miscoordination, and the price of sequen-
tial commitment. Generally speaking, our theoreti-
cal bounds indicate that the loss may be extremely
high in the worst case, while our simulations estab-
lish a smaller yet significant loss in practice.

1 Introduction

Security games, a special class of Stackelberg games, have
been deployed as decision aids to schedule limited security
resources at critical infrastructure sites including key airports
and ports in the United States (e.g., Los Angeles, Boston,
New York) as well as in protecting transportation infrastruc-
ture (international flights and metro trains) [Tambe, 2011;
Shieh er al., 2012]. These deployments have fueled the se-
curity games research area, with focus on efficient compu-
tation for scale-up and handling the significant uncertainty
in this domain [Korzhyk et al., 2011a; Basilico et al., 2009;
Yin et al., 2010; Jain et al., 2010].

Previous research in security games has assumed a single
defender agency with control over all the security resources
even if there were multiple attacker types or multiple co-
ordinated attackers [Paruchuri er al., 2008; Korzhyk et al.,
2011b]. Yet at most major critical infrastructure sites, e.g.,
port of New York or the Los Angeles International Airport,
multiple defender agencies including city police, state and
federal law enforcement agencies are responsible for secu-
rity [Panel, 2011]; these agencies each have control over their
own security resources and schedules.
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In theory, achieving perfect coordination is simple: de-
fenders can pool their resources together, and employ a sin-
gle centralized algorithm to allocate resources. Our work is
motivated by the basic observation that this ideal is far from
reality; in practice we observe limited coordination between
defenders, which we believe can lead to significantly poorer
performance. For example, it is well known that at major
ports such as the port of New York, the US Coast Guard and
different police departments each schedule their own boat pa-
trols and security resources independently; there is no cen-
tralized scheduling. Our research question is therefore: how
much do defenders lose due to lack of coordination? While
the ideal coordination mechanism may not be feasible from
a policy perspective, our goal is to use it as a gold standard
in order to inform policy makers and ultimately bring about a
higher level of coordination.

To that end, the paper offers four key contributions. First,
we introduce and analyze the price of miscoordination (PoM)
in simultaneous move settings and provide bounds on the
worst case loss under different assumptions of target val-
ues. Second, we introduce the price of sequential commit-
ment (PoSC) when defenders move sequentially. We illus-
trate that even in situations with low PoM, PoSC may be un-
bounded. Third, we introduce techniques to compute PoM
and PoSC. Finally, we present experimental results based on
realistic port scenarios illustrating a smaller yet significant
loss in practice.

2 Background on Security Games

A security game is a 5-tuple (T, S, R, A, U). T is the set of
targets; we denoteTJT| = n. A schedule is a subset of the
target set 7; S C 2* denotes the collection of feasible sched-
ules. R is the set of resources that belong to the defender; we
denote |R| = m. Every resource has a collection of sched-
ules (a subset of .S) to which it can be assigned; A : R — 29
is the function that maps a resource to its collection of pos-
sible schedules. In our theoretical results we make the stan-
dard assumption that for any resource, any subset of a feasible
schedule is itself a feasible schedule [Yin et al., 2010]. When
aresource is assigned to a schedule, we say that all the targets
in the schedule are covered by the resource.

The payoffs are given by four different utility functions.
If target ¢ is attacked, the defender’s utility is U5 (¢) if ¢
was covered, and U}(t) if ¢t was not covered. Similarly,



the attacker’s utility is US(¢t) if ¢ was covered, and U (¢)
if ¢t was not covered. We assume that US(t) > UY(t) and
US(t) < UX(t). Note that it makes no difference to the play-
ers’ utilities whether a target is covered by one resource or by
more than one resources.

A pure strategy of the defender is an assignment of re-
sources to feasible schedules; a defender may opt to employ a
mixed strategy, which selects at random from pure strategies
according to a distribution. The solution of the security game
is the optimal Stackelberg strategy for the defender. Given the
defender’s mixed strategy that randomly allocates resources
to schedules, the attacker selects a best response by choosing
to attack a target that maximizes its expected utility. The de-
fender chooses its mixed strategy to maximize its own utility
given that the attacker best responds.

Given the emphasis on explicit game-theoretic models and
equilibrium analysis, our paper also complements research on
strategies for multi-robot patrol [Agmon, 2010; Agmon ef al.,
2009].

3 The Price of Miscoordination

We extend the basic model to the setting where multiple de-
fenders, with their disjoint sets of resources, defend a set of
targets against a single attacker. In particular, we analyze the
need for the defenders to coordinate their moves, and the in-
curred loss when coordination is lacking.

3.1 Our Model

Let D be the set of defenders; we denote |D| = d. Let the
set of resources R be partitioned into {R; };cp where R; is
the set of resources owned by defender ¢ € D. We take an
optimistic point of view by assuming that all defenders are
interested in overall security, hence they are all endowed with
the same utility functions U§ and U} as before.

The maximum utility is achieved by the defenders when
they pool their resources together, and schedule the whole set
R of resources as if they were owned by a single defender. We
call this strategy profile the optimal correlated profile (OCP)
as the mixed strategies of individual defenders are correlated.
In other words, the exact realizations of assignments of the
resources of different defenders may be dependent on each
other. This represents the scenario with full coordination.

Consider an alternative scenario, where the defenders
choose their mixed strategies but these mixed strategies are
uncorrelated. In other words, the instantiations of the various
mixed strategies are independent of each other. We define the
optimal uncorrelated profile (OUP) as the profile of uncorre-
lated mixed strategies for the defenders that yields maximum
utility among all profiles of uncorrelated mixed strategies.
Clearly, the utility to the defenders under OUP is no greater,
and may be strictly smaller, than the utility under OCP. We
define the supremum (over a given class of security games)
of the ratio of the utility under OCP to that under OUP as the
price of miscoordination (PoM).

Example 1. Let there be two defenders, defender 1 with
resource r; and defender 2 with resource ro. Let T' =
{t1,t2,ts}, with UY(t) = US(t) = 0 and U5(t) = U¥(t) =
1 for all ¢ € T. Resource r; can cover either target t; or

target to, and resource 75 can cover either target ¢o or target
t3. The optimal correlated profile (OCP) uniformly random-
izes between assigning the resources to {t1,t2}, {t1,t3}, and
{t2,t3}. Each target is covered with probability 2/3, hence
the defenders are guaranteed utility 2/3. In contrast, under
the optimal uncorrelated profile (OUP) each defender covers
its own target (¢; or t3) with probability (v/5—1)/2 = 0.618,
and the shared target ¢, with the complement probability
(which equalizes the coverage probability of ¢, with ¢; and
t3). The defenders’ utility is therefore 0.618, and the ratio of
the utilities under OCP and OUP is 1.078, which is therefore
a lower bound for the PoM.

The PoM is related to the notion of mediation value [Ash-
lagi et al., 2008; Bradonjic et al., 2009] (which in turn is in-
spired by the price of anarchy [Koutsoupias and Papadim-
itriou, 1999; Roughgarden and Tardos, 2002]). Briefly, the
mediation value in a game is the ratio between the maximum
social welfare (i.e., sum of utilities) in any correlated equilib-
rium and the maximum social welfare in any mixed-strategy
Nash equilibrium. If we define an artificial game between
the defenders, where the utility function of each defender is
the same as the common utility function, then the OCP is the
welfare-maximizing correlated equilibrium and the OUP is
the welfare-maximizing Nash equilibrium. Hence, the PoM
coincides with the mediation value in this game.

To guarantee that the PoM is meaningful, we assume here-
inafter that the defender utilities are non-negative. General
security games may have negative utilities; however, by shift-
ing all defender utilities by the minimum defender utility we
can obtain a security game with non-negative defender utili-
ties, which is equivalent in terms of its optimal strategies for
the defenders and the attacker. Moreover, the PoM of the
shifted game has a natural interpretation in the original game:
informally, it tells us what fraction of the gap between the
worst possible outcome and the best possible correlated out-
come is due to miscoordination.

3.2 Bounds on the PoM

Our first result shows that in some games coordination is cru-
cial, as the price of miscoordination may be arbitrarily large.

Theorem 1. The PoM is unbounded in general security
games.

Proof. Let there be two defenders, defender 1 with resource
r1 and defender 2 with resource ro. Let T = {t1,t2,t3}. Re-
source 71 can cover either target ¢; or target ¢5, and resource
ro can cover either target ¢, or target t3. In terms of structure,
this is identical to the game of Example 1. However, the util-
ities are defined differently. For the defenders, targets ¢; and
ts are identical. If either target is attacked, it gives the de-
fenders utility x if covered and 1 if uncovered, where x > 1.
Target to, if attacked, gives the defenders utility 0 whether
it was covered or not. Formally, U5(t1) = US(ts) = =,
U;(tl) = U;(tg) = 1 and Udc(tg) = U;(tg) = 0. For
the attacker, targets ¢; and ¢3 give utility 1 if uncovered and
0 if covered. Target ¢o gives the attacker utility 2 if uncov-
ered and 0 if covered. Formally, US(t) = O forall ¢t € T,
Uk(tr) = Uk(ts) = Land U¥(t2) = z.



Irrespective of the values of x and z, the defenders never
let the attacker attack target ¢, as it would give them the worst
possible utility (zero utility). Now fix = and increase z. As
z — o0, the utility of the attacker for a successful attack
against target to increases, hence it must be covered by the
defenders with probability 1 in the limit to avoid such an at-
tack. Thus, as z — oo, the OCP for the defenders converges
to assigning 1 — {¢1} and ro — {t2} with probability 1/2,
and r;1 — {t2} and ro — {¢3} with probability 1/2. This
way, target to is fully covered while both targets ¢; and t3
are covered with probability 1/2, giving the defenders utility
1/2 4+ x/2.

In the limit of the uncorrelated case, at least one defender
must cover target to with probability 1. The other defender
can only cover one of targets ¢, and t3. The attacker attacks
the other target, resulting in a utility of 1 for the defenders.
Thus, taking z — oo in this security game implies that the
ratio of utility under OCP and OUP is at least (1/2+x/2)/1.
As x can be arbitrarily large, the PoM is unbounded.

The proof of Theorem 1 relies on an extreme asymmetry in
the utilities for different targets. It is natural to ask, what is the
PoM when the targets are identical? Specifically, the utility
functions of the defenders satisfy U5(t) = z and U}(t) = 0
for all targets ¢ € T and some x > 0, where the utility for
targets being uncovered is zero since we shift the utility func-
tions to make the worst-case utility zero. Similarly, the utility
functions of the attacker satisfy US(t) = 0 and U*(¢t) = 2’
for all targets t € T and some ' > 0. We believe that al-
though this is a special case, it is useful for practitioners to
explore the extreme points of the problem. It is also worth
noting that the case of identical targets is still rich, even from
a complexity-theoretic point of view: it immediately follows
from existing proofs [Korzhyk er al., 2010, Theorem 5] that
computing the optimal defender strategy for this case is N'P-
hard, even for one defender and schedules of size at most 3.

It is easy to check that in the case of identical targets, the
attacker would attack the target that is covered with mini-
mum probability in order to maximize his own utility. There-
fore, the utility of the defenders is proportional to the min-
imum probability with which any target is covered. Let ¢,
denote the coverage probability of target ¢ € T in a strat-
egy profile, and let c,i, = minger ¢, denote the minimum
coverage probability. Then we are interested in the ratio
Cmin(OCP) /cmin (OU P). We show that in this case the PoM
is upper-bounded by a small constant.

Theorem 2. The PoM of security games with identical targets
is at most —=5 ~ 1.582.

Proof. Given a security game with identical targets and d de-
fenders, we claim that there exists an OCP where no target
is covered by more than one defenders simultaneously in any
pure strategy realization of the OCP. Indeed, if a target is cov-
ered by more than one defender in a realization, we remove
resources of all but one defender assigned to that target in
that realization (the assumption that any subset of a feasible
schedule is a feasible schedule plays a key role here).

Next, consider any such OCP. Let ¢, ; denote the prob-
ability with which defender ¢ covers target ¢ in the OCP.

Since a target is not covered by more than one defender at
a time, the coverage probability of target ¢ is Zle Ct.i» SO
Cmin(OCP) = minger Z‘Zzl Cti-

Now consider the marginal uncorrelated profile (MUP)
where each defender ¢ schedules its resources as they were
scheduled in the OCP, but the mixed strategies of different de-
fenders are now uncorrelated.! In other words, each defender
follows the mixed strategy that is obtained as the marginal of
the OCP. In this case, target ¢ is still covered by defender ¢
with probability ¢; ;. However, a target may be covered by
more than one defender simultaneously, so the probability of

target ¢ being covered overall is 1 — H?zl (1 — c¢t,). Thus,
d
emin(OUP) = Canin(MUP) = min l1 - il;[l(l - cm)l :
and it follows that
minger Z?:l Ct,i
minger (1 - H?zl(l - Ct,i)) .

We claim that forall t € T,

PoM <

d

d
1_II“_CM)Z<1_i>'Z;%’ (1)

i=1

Indeed, if Zle ¢ti = 0, then Equation (1) follows triv-
ially. Hence, assume that >>%_ ¢, ; > 0. Now,

LTI, (= eei) o
Z?:l Ct’i B Zj:l Ct’i B ¢

where the first transition holds because 1 — x < e~ %, and the
last transition is true since f(x) = (1—e~%)/x is a decreasing
function in (0, 1], so f(z) > f(1) for all z € (0,1]. Also,
Zle ct,; is the coverage probability of target ¢ in the OCP,

so 0 < 25:1 ¢t.i < 1. We have thus established (1). We can
now conclude that

1—e Xiicni 1

. d
Miler ) ;g Cri
minger [1 - H?:l(l - Ct,i)}
. d
minger Y iy Cir i
1- Hi‘l:1(1 — Cti)
Z?:l ct>i < €

_6—1’

PoM <

= Imax

< max 7]
el 1 —TLmi (1 —eri)

where the last transition is due to Equation (1). O]
Is it possible that the upper bound for identical targets is in

fact much closer to 1? Our next theorem answers this ques-
tion in the negative.

Theorem 3. The PoM of security games with identical targets
is at least 4/3.

'The mixed strategy assignments of various resources of the
same defender are still correlated as before.



Proof. Consider the following security game with identical
targets. There are d defenders, each defender ¢ has a single
resource 7;. There are d + 1 identical targets, t1,...,¢t441.
For 1 <7 < d, resource r; can cover either target ¢; or target
ti+1.

Consider the following d+ 1 pure strategies where strategy
1 leaves only target ¢ uncovered. This is uniquely achieved
by assigning resource r; to target ¢; for 7 < ¢ and resource
r; to target t;, 1 for j > 4. Since at least one target must be
uncovered in any pure strategy, the OCP uniformly random-
izes over these d + 1 pure strategies to achieve the optimal
minimum coverage probability cyin(OCP) =1—1/(d+1).

We next prove that ¢, (OU P) < 0.75. Suppose for con-
tradiction that ¢;,i, (OU P) > 0.75, so all targets are covered
with probability at least 0.75. First, we prove by induction
that for all 1 < ¢ < d, resource r; covers target t; with prob-
ability at least 0.5. For the base case of resource r1, this is
obvious since target ¢; is covered with probability at least
0.75 and ry is the only resource that can cover it. Suppose
it is true for resource rp. Observe that resource r; covers
target ¢, with probability at least 0.5, hence it covers target
ti+1 with probability at most 0.5. If resource r41 covers
target ¢54; with probability less than 0.5, then due to the lack
of correlation between the assignments of resources 7 and
Tk+1, the probability of coverage of ¢;; would be less than
0.5+ 0.5 —0.5-0.5 = 0.75, which contradicts the assump-
tion. Hence, r;41 must cover ¢ with probability at least
0.5. Therefore, the induction hypothesis holds. In particular,
resource 4 covers target t; with probability at least 0.5, and
hence target 41 with probability at most 0.5. It follows that
the coverage probability of target ¢4 is at most 0.5, which
yields a contradiction. Hence, ¢y, (OU P) < 0.75.

We conclude that PoM > (1 —1/(d + 1))/0.75. Taking
d — oo, we get that PoM > 4/3. O

4 The Price of Sequential Commitment

The PoM is optimistic in a sense, because it compares the
optimal correlated utility with the optimal uncorrelated util-
ity. Even achieving the optimal uncorrelated utility requires
some level of coordination among the defenders: they are
not pooling their resources together, but they are coordinating
their mixed strategies. Below we consider a more pessimistic
model of defender commitment, and show that in this model
the loss is unbounded even when targets are identical.

4.1 Our Model

We assume that the defenders commit sequentially. The first
defender commits to a mixed strategy that optimizes the joint
utility function in the absence of the other defenders. Subse-
quently, each defender chooses a mixed strategy that max-
imizes the joint utility function given the strategies of the
earlier defenders, in the absence of the later defenders; note
that there may be more than one optimal strategy. The mixed
strategies of various defenders are still uncorrelated.”

In such a model, we can now consider the loss in utility
due to sequential commitment compared to the OCP. We de-

2Qur results hold even if the defenders commit to mixed strate-
gies that are correlated with the strategies of the earlier defenders.

fine two prices: the price under the best order of commitment
(PoSCy) and the price under the worst order of commitment
(PoSCy). Formally, PoSCy, (resp. PoSC,,) is the supremum
(over all security games) of the ratio of the utility under the
OCP to the maximum (resp. minimum) utility over all orders
of sequential commitment.? It is easy to check that the PoM is
a lower bound for the PoSCy, which in turn is a lower bound
for the PoSC,,.

4.2 Bounds on the PoSC

While Theorem 2 shows that the PoM in security games with
identical targets is upper-bounded by a small constant, we
show that this is not the case even for PoSCy, in security games
with identical targets.

Theorem 4. The PoSCy, (even) in security games with identi-
cal targets is unbounded.

Proof. Consider a security game with two defenders: de-
fender 1 owns resource r; and defender 2 owns resource 7.
The target set T = T U T consists of 2 - k identical targets,
where |T1| = |T»| = k. Resource 7 can either cover all the
targets in 7 simultaneously or any single target in 75, and re-
source 72 can either cover all the targets in 7, simultaneously
or any single target in 77.

The defender who commits first has k£ + 1 feasible sched-
ules for its resource. To maximize the minimum coverage
probability, it uniformly randomizes over the feasible sched-
ules to cover each target with identical probability 1/(k 4 1).
Due to the uniform coverage by the first defender, the de-
fender committing later also uniformly randomizes over its
k + 1 feasible schedules. Hence, each target is covered with
probability at most 2/(k+1). Note that the optimal strategies
are unique. In contrast, we have ¢y (OCP) = 1 because
defenders 1 and 2 can respectively cover targets in 7} and 75
simultaneously. Thus, the price under the best order of com-
mitment in this particular security game is at least (k + 1) /2.
Hence, PoSC, is ©2(k), and k can be arbitrarily large. O

The proof of Theorem 4 uses a very simple construction:
only two symmetric defenders and identical targets. How-
ever, to obtain the lower bound the defenders need to be able
to cover an increasingly larger number of targets simulta-
neously. It turns out that we can obtain a matching upper
bound that scales linearly with the maximum number of tar-
gets any defender can cover simultaneously; call this parame-
ter the max-simultaneous-coverage. In the security game con-
structed in the proof of Theorem 4, the max-simultaneous-
coverage is k. We additionally assume that every defender
can cover every target — otherwise an optimal strategy for a
defender who commits first and cannot cover all targets would
be to not cover anything, as any strategy would yield a utility
of 0. We call this property complete individual coverage.

Theorem 5. Denote the max-simultaneous-coverage by k.
Then the PoSC,, is O(k) in security games with identical tar-
gets and complete individual coverage.

*0ur lower bound on PoSC;, in Theorem 4 (resp. upper bound
on PoSC,, in Theorem 5) works even with the best (resp. worst)
tie-breaking among the set of all optimal strategies at each step.



Proof. Let d be the number of defenders and n be the num-
ber of targets. Since any defender can cover at most k targets
simultaneously, the total number of targets covered simulta-
neously in any pure strategy is at most d - k. It follows that
the minimum coverage probability in any mixed strategy (and
hence in the OCP) is at most (d - k) /n. Moreover, the min-
imum coverage probability cannot be more than 1. Hence,
Cmin(OCP) < min(d - k/n, 1).

Next, consider sequential commitment with the worst or-
der. The first defender commits to a mixed strategy that max-
imizes the minimum coverage probability in absence of the
other defenders; if this probability is p1, then it is easy to see
that the worst choice of optimal strategy for the defender is
the strategy that covers every target with probability exactly
p1. Such a mixed strategy is feasible since one can reduce
the coverage probability of a target as much as required by
removing it from the schedules in some of the pure strategy
assignments (recall that any subset of a schedule is a feasible
schedule). Inductively, each successive defender also com-
mits to a mixed strategy that covers all targets with identical
probability, maximizing this probability. Denote the identical
coverage probability by defender ¢ as p;. Due to complete
individual coverage, p; > 1/n for all ¢ as the defenders can
achieve uniform coverage probability of at least 1/n by uni-
formly randomizing over pure strategies that cover different
targets. Hence, every target is covered with probability at

least 1— [0, (1—p;) > 1—(1—1/n)* > 1—e~%/"_ Thus,

min(d - k/n, 1) <. min(d/n, 1)

PoSC,, <

1—e-d/n — 1—ed/n
1
<k o
- 1-—et (k),

where the third transition holds because the function f(z) =
min(z,1)/(1 — e~*) achieves its maximum at z = 1. O

From the proof of Theorem 4 and the statement of Theo-
rem 5, we obtain a complete picture regarding the price of
sequential commitment.

Corollary 1. Denote the max-simultaneous-coverage by k.
Both PoSCy, and PoSC,, are O(k) in security games with iden-
tical targets and complete individual coverage.

Note that PoSC, > PoM, and Theorem 1 shows that the
PoM can be unbounded even with £ = 1 if targets are non-
identical. However, that proof crucially uses a game that does
not have the complete individual coverage property. We can
actually construct an example with kK = 1 and complete in-
dividual coverage where the price under the best order scales
with the utilities, showing that PoSC,, is unbounded for non-
identical targets even with k = 1.

5 Experimental Results

We now turn to an empirical investigation of the PoM and
PoSC; our goal is to quantify the loss caused by defenders’
miscoordination in realistic security games.

We compute the PoM and PoSC in these games as follows.
The OCP can be computed by solving the traditional security

game (with a single defender) where all the resources are as-
sumed to belong to one defender. Computing PoSC is also
easy; the optimal sequential strategies can be computed by
rolling the coverage of earlier defenders into the utility func-
tions, and at each step solving a traditional security game with
a single defender using existing computational tools [Tambe,
2011]. The computation of the OUP is trickier; we formulate
a nonlinear program whose solution is the OUP, and solve
it using the YALMIP toolbox of MATLAB [Lofberg, 2004];
we omit the nontrivial details due to lack of space. We worry
about the computational efficiency (or lack thereof) of our al-
gorithms only insofar as it restricts our simulations, because
— while our simulations can inform policy decisions — these
are not computations that we expect defenders to perform on
a regular basis.

For realistic security games, we use the port patrolling
problem where a patrolling boat (resource) goes around and
checks multiple targets a day [Shieh er al., 2012]. Specifi-
cally, we use the actual map of Boston Port shown in Fig-
ure 1(a). The figure also shows the time required for the boat
to move between various nodes. We assume that the boat
requires two time units at each target it visits for the check
procedure. Due to the extreme computational burden, we re-
strict ourselves to the case of two defenders, each with one
boat. Figure 1(b) shows the locations of homebases of the
two defenders (marked in black). The other nodes are con-
sidered potential targets. In any schedule, a boat starts from
its homebase, visits some targets and finally returns back to
its homebase. All visited targets are considered to be covered
by the boat in that schedule. The boat must return within a
patrolling time limit.

(a) Map (b) Graph Structure

Fig. 1: Boston Port, homebases, and targets.

We consider two distributions of target valuations, both of
which create non zero-sum security games with non-identical
targets. The importance of non-zero-sum security games in
realistic domains has been emphasized in the risk analysis
literature [Powell, 2007]. Denote by U [a, b] the uniform dis-
tribution over all integers between a and b.

e Homogeneous distribution: Under this distribution, ev-
ery target’s utility to the defenders is in U[20, 39] if cov-
ered, and in U[0, 9] if uncovered (and vice versa for the
attacker). Thus, there is homogeneity in target valua-
tions although the actual realizations may create non-
identical targets.

e Heterogeneous distribution: This distribution is related
to the target valuation of the worst case instance of The-
orem 1, and captures realistic scenarios where some tar-



gets are far more valuable than others. For the gray tar-
gets (which are in some sense shared between the two
defenders), the utility to the defenders is in U[6, 10] if
covered, and in U[1, 5] if uncovered. The utility to the
attacker for these targets is 0 if covered and in U[30, 59]
if uncovered. These targets are highly valuable; the de-
fenders do not want them to be attacked whether or not
they are covered, and the attacker has high utility for
a successful attack. For the remaining targets, the util-
ity to the defenders is in U[30,59] if covered, and in
UJ10, 15] if uncovered. The utility to the attacker is 0 if
covered, and in U[1, 5] if uncovered. These represent
targets which the attacker is almost indifferent about,
and the defenders do not have drastically low utility even
in case of a successful attack.

Note that these are shifted utility functions as explained in
Section 3.1. Figures 2 and 3 show the PoM and PoSC for the
homogeneous and heterogeneous distributions, respectively.*
All values are averaged over 100 random trials on target utili-
ties. In both graphs, the x-axis shows the patrolling time limit
for both defenders. Legends PoSC;, and PoSCy, show the av-
erage loss (under the 100 random trials) where the average is
taken over the best and the worst sequence respectively in ev-
ery instance, whereas legend PoSCy; (resp. PoSC1g) shows
the average loss under the fixed commitment sequence where
defender O (resp. defender 1) commits first.
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Fig. 2: PoM and PoSC under the Homogeneous Distribution.

Interestingly, the PoM in the homogeneous case (Figure 2)
is almost 1 (the worst patrol times give an average PoM of
1.038), but the PoSC,, can be significant (as high as 1.749).
As expected, the loss due to miscoordination is much higher
in the heterogeneous case (Figure 3), with the PoM reaching
1.434, and the PoSC,, achieving a whopping 3.347.

Corollary 1 shows that both the PoSC, and PoSC,, are
O(k) where k is the max-simultaneous-coverage parameter,
which reduces to the maximum schedule size (over all re-
sources) when every defender has one resource. The maxi-
mum schedule size is a monotonic function of the patrolling
time limit. Hence, the graphs show various losses as func-
tions of the maximum schedule size. While the theoretical

“Technically the figures show average ratios rather than the PoM
and PoSC themselves, which are defined as supremums.

PoSC or PoM

18 20 22 24 26 28
Patrolling Time Limit

Fig. 3: PoM and PoSC under the Heterogeneous Distribution.

results predict a monotonic increment in PoSCy, and PoSC,,
in the worst-case, they seem to have an inverse U shape re-
lationship with the maximum schedule size in our empirical
analysis. The difference arises because the lower bound of
Theorem 4 uses an example with an increasing number of
targets while the targets are fixed in our case. Hence at a
threshold patrolling time limit, the defenders can fully pro-
tect all targets in the OCP, and increasing it further maintains
the utility in the OCP while increasing the utility in the un-
correlated case for both PoSC and PoM — this results in the
downward curves when time limits are large. The low PoM
and PoSC for low patrol time limits is due to the small over-
lap between the schedules of the two defenders, which entails
less need for coordination among their strategies.

Another interesting observation is that in our particular
graph structure, the commitment sequence where defender 1
commits first generally outperforms the sequence where de-
fender 0 commits first. Further, always using the former se-
quence helps avoid the extremely high PoSC in the disastrous
special cases. Thus, the commitment sequence (even if fixed)
has great influence on the PoSC.

6 Discussion

Our theoretical results suggest that the loss due to miscoordi-
nation can be extremely high or relatively low, depending on
the assumptions that are made. In general though, the PoM
(which in the worst case is arbitrarily high) can be significant
(more than 30% loss) in realistic simulations. The PoSC is
consistently significant, with a loss of as much as 70% in our
simulations. We view the PoSC as a better proxy of reality,
and in fact one can argue that even the PoSC is optimistic. We
therefore interpret our results as suggesting a need for greater
coordination among defenders in critical infrastructure sites.

As we hinted in our introduction, the challenge for future
work is not purely computational. Indeed, the simplest and
most effective solution is scheduling the joint pool of re-
sources, but it seems unrealistic to expect organizations as
independent as, e.g., the New York Police Department and
the Coast Guard to adopt such a policy. Hence, to design re-
alistic coordination mechanisms, it is necessary to determine
what feasible form of coordination can overcome most of the
loss while keeping policy makers in the loop.
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