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Abstract
We consider the allocation of homogeneous divisi-
ble and indivisible goods to agents with linear ad-
ditive valuations. Our focus is on the case where
some agents are secretive and reveal no preference
information, while the remaining agents reveal full
preference information. We study distortion, which
is the worst-case approximation ratio when maxi-
mizing social welfare given such partial informa-
tion about agent preferences. As a function of the
number of secretive agents k relative to the overall
number of agents n, we identify the exact distortion
for every p-mean welfare function, which includes
the utilitarian welfare (p = 1), the Nash welfare
(p→ 0), and the egalitarian welfare (p→ −∞).

1 Introduction
We study a resource allocation problem in which divisible
goods must be allocated to agents with linear additive valua-
tions.1 Treating goods as divisible captures cases where they
are inherently divisible (such as land or food), and where they
are indivisible (such as jewelry or artwork) but can be allo-
cated randomly or timeshared. Formally, an allocation is a
matrix x, where xi,j ∈ [0, 1] is the fraction of resource j
given to agent i and

∑
i xi,j = 1 for all j. The preferences

of agent i are given by a valuation function vi such that her
utility from allocation x is vi(xi) =

∑
j vi(j) · xi,j .

A classic solution is to allocate the resources in a way that
maximizes some social welfare function, which maps the util-
ities of the agents to a single aggregate measure of alloca-
tion quality. Common examples include the utilitarian wel-
fare ( 1

n

∑
i vi(xi)), the Nash welfare ((

∏
i vi(xi))

1/n
), and

the egalitarian welfare (mini vi(xi)), where n is the number
of agents. In fact, these are members of the broader class of
p-mean welfare functions, given by ( 1

n

∑
i vi(xi)

p)1/p, with
p = 1, p→ 0, and p→ −∞ respectively.

When we have complete information about the valuation
function of each agent, finding an allocation that maximizes
social welfare is conceptually trivial (algorithmically, how-
ever, some welfare functions may be challenging to maxi-
mize [Lee, 2017; Garg et al., 2021; Bezáková and Dani, 2005;

1We defer the discussion of indivisible goods to the appendix.

Asadpour and Saberi, 2010]). But when we have only par-
tial information, it is less clear what outcomes are prescribed
by the social welfare maximization paradigm. One approach
in the literature is to consider the distortion, which is the
worst-case approximation ratio of the maximum social wel-
fare that could be achieved with full information to the social
welfare achieved by the allocation rule given partial infor-
mation. Distortion can be viewed as the “price” of missing
information, and minimizing distortion provably reduces the
(worst-case) impact that the missing information has on the
solution quality. Distortion was originally defined by Procac-
cia and Rosenschein [2006] in the contex of voting, where it
has led to an extensive literature of follow-up work; we point
the reader to the recent survey by Anshelevich et al. [2021]
for a summary. The approach has since been applied to
other settings including matching [Amanatidis et al., 2021;
Ma et al., 2021; Anshelevich and Zhu, 2021] and resource
allocation [Halpern and Shah, 2021].

Traditionally, the distortion framework has been applied
when every agent reports ordinal preferences [Boutilier et al.,
2015; Anshelevich et al., 2018; Halpern and Shah, 2021].
In this paper, we introduce and study a different model, in
which some agents provide complete cardinal valuation func-
tions while others provide no information. We term the lat-
ter agents secretive agents. In practice, agents may be se-
cretive because they do not want to disclose their valua-
tions for privacy reasons, or because they are simply un-
responsive to requests for information. For example, on a
popular resource allocation website Spliddit.org, more than
10% of the goods division instances did not succeed because
at least one user did not submit their valuation function.2
Prior work in resource allocation has considered secretive
agents [Asada et al., 2018; Frick et al., 2019; Chèze, 2019;
Arunachaleswaran et al., 2019], but these focus on guaran-
teeing certain fairness properties in the presence of secretive
agents, not on welfare maximization or distortion. Further,
unlike in our work, none of them allow more than a single
agent to be secretive because guaranteeing the fairness prop-
erties they seek becomes trivially impossible in this case.

In the presence of one or more secretive agents, it is not a
priori clear what a “good” allocation looks like. On the one

2We thank the Spliddit team for providing this statistic. For chore
division instances, it was even higher at more than 32%.
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hand, if we assign any good to a secretive agent, she might
turn out to have very low value for that good, resulting in the
good effectively being wasted. On the other hand, if we allo-
cate nothing to the secretive agents, we run the risk of facing
high distortion due to instances where the secretive agents are
the key to achieving high welfare. How do we balance these
considerations? Should we allocate any resources to the se-
cretive agents? If so, how do we determine how much of a re-
source should be allocated to the secretive agents? We answer
these questions by identifying worst-case optimal allocation
rules, which turn out to be surprisingly simple.

1.1 Our Results
Let n be the number of agents, k of whom are secretive. We
present our results for divisible goods in the main body and
defer the treatment of indiisible goods to the appendix. For
divisible goods, we provide a complete picture of the exact
distortion for all p-mean social welfare functions. We intro-
duce a family of allocation rules parametrized by α ∈ [0, 1]
and show that all our upper bounds can be achieved by set-
ting the right value of α as a function of p, n, and k. Given α,
the corresponding rule allocates α fractions of all the goods
to the non-secretive agents in such a way to maximize their
social welfare, and splits the remaining 1−α fraction of each
good equally among the secretive agents. In each case, we are
able to obtain an exactly matching lower bound. A summary
of our results is presented in Table 1 and Figure 1 shows how
the distortion varies with p, n, and k.

The distortion naturally increases as the number of secre-
tive agents k increases; for every p, the distortion starts at 1
when k = 0 (full information) and increases to n at k = n
(no information). Interestingly, for p = 1 (the utilitarian wel-
fare), p → 0 (the Nash welfare), and p → −∞ (the egalitar-
ian welfare), the distortion already becomes n at k = n − 1,
meaning that knowing the valuation function of a single agent
is not helpful for these welfare functions, but this is not the
case for intermediate values of p. When k = Θ(n), the dis-
tortion is Θ(n) for p 6 1 and Θ(n)1/p for p > 1. When
k � n, it is worth noting that the distortion for the Nash wel-
fare is ≈ 1 + k lnn/n, which grows linearly in k like for the
utilitarian and egalitarian welfare, but at a lower rate. More
generally, the Nash welfare leads to a surprisingly low distor-
tion; see Figure 1.

Finally. we conduct simulations on synthetic data and real
data from Spliddit.org to evaluate the empirical performance
of our algorithms with respect to the utilitarian social welfare.
While every α ∈ [1/(k+1), 1] is optimal in the worst case, we
find that higher values of α perform better empirically.

1.2 Related Work
In the voting literature, the idea of distortion has been ana-
lyzed under two primary frameworks, distinguished by what
they assume the underlying expressive preference format to
be: the utilitarian framework assumes that voters have utili-
ties for candidates [Boutilier et al., 2015; Caragiannis et al.,
2017; Benadè et al., 2017], while the metric framework as-
sumes that voters have costs for candidates satsifying the
triangle inequality [Anshelevich et al., 2018; Munagala and
Wang, 2019; Gkatzelis et al., 2020]. Following Halpern and

Mp Welfare Distortion with 0 6 k < n Optimal α

Egal. W. k + 1 α = 1
k+1

(−∞, 0) n
1
p

(
(n− k)

1
1−p + k

) p−1
p

α = (n−k)
1

1−p

k+(n−k)
1

1−p

Nash W. n (n− k)
−n−k

n α = n−k
n

(0, 1) n1−
1
p
(
(n− k)1−p + k

) 1
p α = n−k

n

Util. W. k + 1 α ∈ [ 1
k+1 , 1]

(1,∞) (k + 1)
1
p α = 1

Table 1: Summary of results for divisible goods. For k = 0, all
distortion values in the table evaluate to 1. However, for k = n the
correct distortion value is n for p 6 1 and n1/p for p > 1.

(a) Vary n with k = 8. (b) Vary k with n = 10.

Figure 1: Distortion value with divisible items as a function of p.

Shah [2021], our work follows the utilitarian framework as it
is more applicable to allocating goods.

Halpern and Shah [2021], like us, assume that agents have
additive cardinal valuations, but they study the case where
every agent reports a ranking of her t most favorite goods.
They analyze the best possible distortion with respect to the
utilitarian social welfare as a function of t in relation to the
number of goods m. In particular, when every agent ranks all
the goods (i.e., t = m), they show that the best possible dis-
tortion (with a randomized rule) is n, which is what one can
achieve with no preference information whatsoever. That is,
they argue that having access to ordinal preference informa-
tion is not helpful for welfare maximization. In contrast, our
distortion bound is better when k 6 n−2, i.e., even when we
have access to the valuation functions of just two agents. In
a sense, this shows the usefulness of eliciting cardinal prefer-
ences as opposed to ordinal preferences in resource allocation
settings.

Finally, we note that the idea of secretive agents is also ex-
plored in the voting literature, albeit with very different mo-
tivations. Borodin et al. [2019, Lemma 4] show that con-
stant metric distortion can be achieved in elections where
any subset of voters that is at least a constant fraction of the
electorate participate and submit ordinal preferences; such a
strong guarantee is known to be impossible to achieve in the
utilitarian framework, but may be possible if the participating
subset of voters is assumed to be drawn at random. Micha
and Shah [2020] study voting rules which have access to the
votes of only a subset of voters, but instead of analyzing the
distortion, their aim is to predict what popular voting rules
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would have returned given all the votes. One of their primary
motivations is to design voting rules to apply on polls in order
to predict the outcome of an upcoming election.

2 Preliminaries
A resource allocation instance (N ,M,v) consists of a set
of n agents N , a set of m goods M, and a utility profile
v = (v1, . . . , vn), where vi : M → R>0 is the valuation
function of agent i.

Allocations. An allocation is a division of the goods among
the agents, denoted by x = (x1, . . . ,xn), where xi,j is the
fraction of good j allocated to agent i and each good j is
fully allocated (i.e.,

∑
i∈N xi,j = 1 for each j). We consider

the class of linear additive utilities, where the utility of agent
i for her share xi is, with slight abuse of notation, defined as
vi(xi) =

∑
j∈M vi(j) · xi,j .

Welfare functions. A welfare function W aggregates the
utilities to the agents under an allocation x into a single non-
negative real number measuring the efficiency of the alloca-
tion. Following Barman et al. [2020b], we consider the fol-
lowing class of welfare functions.

Definition 1 (p-Mean Welfare). For p ∈ R, the p-mean wel-
fare of allocation x is defined as

Mp(x) =

(
1

n

∑
i∈N vi(xi)

p

)1/p

.

This class contains three popular welfare functions:

• Choosing p = 1 induces the utilitarian welfare, given by
UW(x) = (1/n) ·

∑
i∈N vi(xi),

• The limit p → 0 induces the Nash welfare, given by
NW(x) = (

∏
i∈N vi(xi))

1/n,

• The limit p → −∞ induces the egalitarian welfare,
given by EW(x) = mini∈N vi(xi).

It is known that p-mean welfare functions are character-
ized by five natural axioms [Moulin, 2003, pp. 66-69], and
further imposing the Pigou-Dalton principle induces p 6 1.
It is interesting that our result for the warm-up case of k = n
also differs depending on whether p 6 1 or p > 1 (see Sec-
tion 3.1).

It is useful to note that every p-mean welfare function satis-
fies homogeneity: Mp(b·x1, . . . , b·xn) = b·Mp(x1, . . . ,xn)
for every b ∈ R>0.

2.1 Secretive Agents & Distortion
In our setting, we assume that we have no information about
the valuation functions of k agents, whom we term secretive
agents, while we have complete information of the valua-
tion functions of the remaining agents, whom we term non-
secretive agents. Our goal is to find an allocation that min-
imizes the worst-case multiplicative loss of efficiency mea-
sured by a p-mean welfare function.

More formally, let Nsec and Nnonsec denote the sets of se-
cretive and non-secretive agents, respectively. An instance
of resource allocation with secretive agents (N ,M,vnonsec)

consists of a set of agent, a set of items, and a valuation func-
tion vi for each non-secretive agent (the valuation functions
implicitly define the sets Nsec and Nnonsec). We aim to find
an optimal strategy for the following game:

1. The adversary chooses the valuation functions of the
non-secretive agents, denoted by vnonsec = (vi)i∈Nnonsec

.
2. The player chooses an allocation x of the goods to all

agents (secretive and non-secretive).
3. The adversary chooses the valuation functions of the se-

cretive agents, denoted by vsec = (vi)i∈Nsec
, as well as

an allocation x∗.
4. The player incurs the (multiplicative) loss W(x∗)/W(x).
This game is formalized via the notion of distortion.

Definition 2 (Distortion with Secretive Agents). Given the
number of agents n, the number of secretive agents k, and a
welfare function W, the distortion is defined as

DW
n,k = sup

vnonsec

inf
x

sup
vsec,x∗

W(x∗)

W(x)
.

Note that the distortion is always at least 1 as the adversary
can always return the same allocation as the player returns,
i.e., x∗ = x.

A strategy for the player corresponds to an allocation rule
that maps instances to allocations. Because we express distor-
tion values that depend on n and m (that is, we are typically
interested in varying vnonsec), we suppress the dependence on
N and M and simply write A(vnonsec) to denote the output
of allocation rule A on instance (N ,M,vnonsec).
Definition 3 (Distortion of an Allocation Rule). Given the
number of agents n, the number of secretive agents k, and a
welfare function W, the distortion of an allocation rule A is
defined as

DW
n,k(A) = sup

vnonsec,vsec,x∗

W(x∗)

W(A(vnonsec))
.

If DW
n,k(A) = DW

n,k then we refer to A as an optimal strategy
for the player.

3 Distortion Values
In this chapter, we present allocation rules that provide prov-
able guarantees on the distortion with respect to p-mean wel-
fares.

3.1 Warm-up: k = 0 and k = n

First, let us consider two extreme cases where k = 0 and
k = n which provides us some intuition for the general case.
Case k = 0. If there are no secretive agents, then we have
full information of the utilities and we can return the alloca-
tion that maximizes the welfare for all agents. The adversary
cannot obtain a welfare higher than us, therefore, the distor-
tion value is 1. As N = Nnonsec in this case, we may say
our strategy was maximizing the welfare for the non-secretive
agents. Denote this strategy by

OPTnonsec(vnonsec) = arg max
x

(
1

n

∑
i∈Nnonsec

vi(xi)
p

)1/p

.



Case k = n. Suppose all agents are secretive and we do not
have any information from their utilities. To assist with intu-
ition, assume p 6 1. Our best response would be to return
a uniform allocation, i.e. allocate 1/n of each item to each
(secretive) agent. Intuitively speaking, this follows from the
concavity of Mp for p 6 1. If we act differently, the adver-
sary can use the asymmetry in our allocation to incur a higher
distortion (see Appendix A.1). Denote this strategy by

Uniformsec(vnonsec) = {xi,j =
1

|Nsec|
| ∀j ∈M, i ∈ Nsec}.

Regardless of the utilities, for all agents we have vi(x) =
1/n. Hence, the welfare obtained is 1/n. The adversary can-
not achieve a mean welfare more than 1. Thus, we get an
upper bound of DW

n,k=n 6 n. In Appendix A.1 we also show
a matching lower bound.
Lemma 1. For all p-mean welfare functions with p ∈
(−∞, 1] (including NW and UW) and EW, the distortion
with n secretive agents is DW

n,n = n.
The analysis presented does not hold for p > 1. By the

convexity of Mp when p > 1, our best response is to al-
locate all items to one agent. Then, only one agent will
have a utility of 1 while others get 0 utility. Therefore,
( 1
n

∑
i∈N vi(x)p)1/p = (1/n)1/p leading to an upper bound

of DMp
n,n 6 1

n−1/p = n1/p.

Lemma 2. For all p-mean welfare functions with p ∈ (1,∞),
the distortion is DW

n,n = n1/p.

3.2 Results for 1 6 k 6 n− 1

In general, our strategy for the general case is to mix the two
strategies described for the extreme cases of k ∈ {0, n}. That
is, our allocation rule is one from the following class of allo-
cation rules,

Aα = α OPTnonsec + (1− α) Uniformsec, (1)

where we allocate α ∈ [0, 1] portion of each item according
to the OPTnonsec rule, and the rest uniformly among the secre-
tive agents. The proper choice of α however depends on the
chosen welfare function.

We begin with a lemma that provides an upper bound on
the acdversary’s welfare.
Lemma 3. For all utility vectors of the nonsecretive agents
vnonsec, and all p-mean welfare functions W, it holds that

W(x∗) 6 (k + 1)W(A1/k+1(vnonsec)). (2)

That is, the welfare achieved by the adversary is at most k+1
times higher than the welfare achieved the the allocation rule
A1/(k+1).

Proof. Consider an instance with k + 1 copies of each good,
in which one copy of each good was allocated according to
the OPTnonsec rule, and each of the k secretive agents was
allocated one copy of each good. By homogenity, the (p-
mean) welfare achieved by this allocation is exactly the right
hand side of Equation (2). Using only the goods available in
the original instance (that is, one copy of each), the adver-
sary cannot achieve a higher welfare since they are unable to

improve upon the optimal allocation among the nonsecretive
agents nor upon each secretive agent being allocated every
good.

Lemma 3 immediately implies that the allocation rule
A1/(k+1) achieves a distortion of k + 1 for all p-mean welfare
functions.

Corollary 1. For all p-mean welfare functions W, the allo-
cation rule A1/(k+1) has distortion DW

n,k(A1/(k+1)) 6 k + 1 for
all n > k > 0.

It turns out that the upper bound of k + 1 is only tight
for the egalitarian and the utilitarian welfare functions. For
other values of p we can achieve lower distortion by tailoring
our strategy to the particular welfare function. The next two
lemmas contain common parts to the anlaysis that we will use
to prove our guarantees.

Lemma 4. Consider a resource allcoation instance with se-
cretive agents. For all α ∈ [0, 1] and any p-mean welfare Mp

we have

Mp(x∗)

Mp(Aα(vnonsec))
6

(
β + k

αpβ +
(
1−α
k

)p
k

) 1
p

= fp(β, α),

(3)
where β =

∑
i∈Nnonsec

vi(OPTnonsec(vnonsec))
p.

Proof. By Lemma 3, the welfare achieved by the adversary
is upper bounded by Mp(x∗) 6 1

n (β + k)1/p. Next, us-
ing the allocation rule Aα, the player achieves a welfare of

Mp(Aα(vnonsec)) =
(
αpβ +

(
1−α
k

)p
k
) 1

p .

Lemma 4 immediately implies that

D
Mp

n,k 6 D
Mp

n,k(Aα) 6 max
vnonsec

(
β + k

αpβ +
(
1−α
k

)p
k

) 1
p

.

Lemma 5. Let fp(β, α) be as defined in (3). Then, for a fixed
α > 1

k+1 , fp is non-increasing over β > 1.

Proof. As fp(β, α) > 1 and since log preserves monotonic-
ity, it is sufficient to show d

dβ log fp(β, α) 6 0 for all β > 1.

d

dβ
log fp(β, α) =

1

p

(
1

β + k
− 1

β +
(
1−α
αk

)p
k

)
.

By α > 1
k+1 , we have 1−α

αk 6 1. Then, we can check this
expression is non-positive both for p > 0 and p < 0.

As fp is non-increasing, to obtain an upper bound on the
distortion, we need a lower bound on β. This value, as well
as the proper choice of α, depends on p. In the rest of this
section, we will find the proper choices for α and β based on
the welfare function. We begin with p ∈ (−∞, 0).

Theorem 1. For p ∈ (−∞, 0), the allocation rule Az/(k+z)

with z = (n− k)
1

1−p achieves D
Mp

n,k(Aα) 6 n
1
p (z + k)

p−1
p .



Taking the limit as p→ 0 and p→ −∞ in Theorem 1 sug-
gests upper bounds of n( 1

n−k )
n−k
n and k+1 for the Nash and

egalitarian welfare respectively. For the egalitarian welfare,
we have already shown an upper bound of k + 1 in Corol-
lary 1, and the following lemma proves that this upper bound
is achievable for the Nash welfare.

Theorem 2. For the Nash welfare, the allocation rule An−k/n

achieves

DNW
n,k (Aα) 6 n

(
1

n− k

)n−k
n

.

Now, we will focus on the range p ∈ (0, 1].

Theorem 3. For p ∈ (0, 1], the allocation rule An−k/n

achieves D
Mp

n,k(Aα) 6 n
(

(n−k)1−p+k
n

) 1
p

.

Proof. The requirement of Lemma 5 is met, as for k < n,
(n− k)(k + 1) > n⇒ n−k

n > 1
k+1 .

By Lemma 4, distortion is bounded by (3), and by
Lemma 5, this bound is maximized when β is mini-
mized. For any given vnonsec, one suboptimal allocation is
Uniformnonsec. Each agent gets vi = ( 1

n−k )p utility from
this rule. Hence, β > (n− k)( 1

n−k )p = (n− k)1−p.
By substituting β and α in (3), we have

D
Mp

n,k(Aα) 6

(
(n− k)1−p + k(

n−k
n

)p
(n− k)1−p + k

np

) 1
p

= n

(
(n− k)1−p + k

n− k + k

) 1
p

.

Note that for p = 1, Theorem 3 implies an upper bound of
k + 1 for the utilitarian welfare, matching the upper bound
from Corollary 1. Moreover, by taking the limit p → 0 in
Theorem 3, we get the same upper bound proven in Theo-
rem 2.

In fact, for the case of utilitarian welfare, a range of strate-
gies all yield a distortion of k + 1.

Proposition 1. For the utilitarian welfare and for all α ∈
[ 1
k+1 , 1], the allocation rule Aα achieves DUW

n,k (Aα) 6 k + 1.

Proof. By Lemma 4 we have DUW
n,k 6 maxβ

β+k
αβ+(1−α) . As

the utilitarian welfare in any instance is at least 1, e.g. by
giving all items to one agent, by Lemma 5 and setting β = 1
we have DUW

n,k 6 1+k
α+(1−α) = k + 1.

Lastly, the following theorem treats the case of p > 1.

Theorem 4. For p ∈ (1,∞), the allocation rule A1 achieves
D

Mp

n,k(A1) 6 (k + 1)
1
p .

In Appendix B, we present matching lower bounds for all
of the upper bounds proven in this section.

4 Experiments
In this section, we measure the average utilitarian welfare
ratio achieved by different rules based on synthetic and real-
world data. In principle one could conduct a similar analysis
with other welfare measures, but we focus on utilitarian for
simplicity and conciseness.

Rules. We compare the following allocation rules moti-
vated by Section 1.1: Uniform (allocate items uniformly to
all agents), Aα with α = 1

k+1 , α = n−k
n , and α = 1. Recall

that Aα=1 returns a utilitarian welfare maximizing allocation
for the nonsecretive agents, and all three of the Aα rules tested
are optimal with respect to minimizing distortion for utilitar-
ian welfare.

Measurement. For a resource allocation instance with se-
cretive agents, we measure the ratio between the maximum
feasible welfare by full information and the welfare obtained
by the rule, averaged over many instances. This provides us
with an average-case analogue of distortion, which is a worst-
case measure.

4.1 Synthetic Data
Data Generation. We generate utilities for each agent, ei-
ther secretive or nonsecretive, sampled i.i.d. from a Dirichlet
distribution with m concentration parameters all set at 1, i.e.
Dir(1, . . . , 1). Each reported datum is the average of welfare
ratios over 1000 randomly generated instances.

Experiments. We conduct three experiments each varying
a parameter while fixing the others: vary k (Figure 2a), vary
n with a fixed k (Figure 2b), vary n with a fixed ratio of k/n
(Figure 2c), and vary m (Figure 5, in Appendix D).

Results. In all four figures we see a consistent relationship
between the rules: rules with higher α outperform rules with
lower α and all three of the Aα rules outperform Uniform.
This is perhaps not surprising, since higher values of α more
heavily exploit the information available to the rule from the
non-secretive agents, with the Uniform rule being one exam-
ple of an extreme case that ignores all available information
about the utility functions.

In Figure 2a we see all three Aα rules achieve average wel-
fare ratio 1 when k = 0, with the welfare ratio converging to
that of Uniform when k = n, as expected. Of particular note
is A1, which achieves an average welfare ratio close to 1 even
for relatively large values of k (for example, the average wel-
fare ratio is ∼ 1.23 when k = 10) before rapidly increasing
for large k. Of note is that all algorithms significantly outper-
form the worst-case bound of k + 1 displayed with a dotted
line in the figure.

Figure 2b reveals an interesting separation between Aα and
A(n−k)/n compared to A1/(k+1) and Uniform. The average wel-
fare ratio of the former rules decreases to 1 as n increases
(with k = 5) while the average welfare ratio of the other
rules actually increases with n. Figure 2c suggests that this
increase persists even when the ratio k/n is held (approxi-
mately) constant.

4.2 Spliddit Data
Data Generation. We also used the real-world goods division
instances from Spliddit.org. For each instance with n agents



(a) Vary k with n = 20. The dashed line is the
line y = k + 1, i.e. the distortion value. (b) Vary n with k = 5. (c) Vary n with k = d0.2ne.

Figure 2: Average welfare ratio achieved by different strategies. Error bands indicate the standard deviation. In all plots m = 200.

Figure 3: Average welfare ratio by different strategies on the Spliddit
data. The x-axis is sorted by n and then k.

and a fixed k, we randomly sampled k (secretive) agents, hid
their utilities from the allocation rules and measured the wel-
fare ratio based on the actual utilities. Similar to the simulated
experiments, we report the average of 1000 such simulations.

Data Statistics. The report is based on 4679 Spliddit
instances. The distribution of the number of agents n is
{2 : 27.5%, 3 : 67.3%, 4 : 2.4%, 5 : 1.7%, 6 : 0.4%, and
n > 7 : 0.7%}. The number of goods m was in the range
[2, 96] with the mean and std. dev. of 31.1± 26.3.

Experiments. We divided instances based on n and var-
ied k from 1 to min(5, n − 1). The average welfare ratio is
presented in Figure 3 and Figure 6 (in Appendix D).

Results. In line with the results on synthetic data, we see
higher α outperform lower α (and all outperform Uniform).
The dependence on n and k also follows similar patterns as
the synthetic case. Additionally, it is interesting to note the
magnitude of the welfare ratio achieved by our rules. For
Spliddit instances with 5 or fewer agents and at least 2 non-
secretive agents (k 6 n − 2), the average welfare ratio is
never higher than 1.5 for the rule A1. That is, on average, we
could achieve two thirds of the maximum possible utilitarian
welfare even if one or two agents do not respond to requests
for their utility information.

5 Discussion
In this work, we studied distortion in resource allocation
when k of the agents are secretive. For the utilitarian welfare,
we identified a family of rules parametrized by α ∈ [1/k+1, 1]
as worst-case optimal. Among this family, we find the rule
with α = 1 to be particularly interesting, since it allocates no
resources to the secretive agents. While α < 1 may some-
times provide an incentive to an agent to be secretive, α = 1
provides no such adverse incentives. In practice, this can lead
to fewer agents being secretive, which can further improve
the distortion bounds.

Our work opens the door for interesting directions for fu-
ture work. Most immediately, it would be interesting to
study instance-wise optimal allocations, that is, allocations
that minimize the worst-case approximation ratio on a given
instance as opposed to only when you also take the worst case
over all instances. It is likely that such allocations would
more carefully decide which (and how much of) resources
to allocate to the secretive agents depending on how highly
they are valued by the non-secretive agents. The complexity
of computing an instance-wise optimal allocation would also
be interesting.

Next, one may wish to reconcile distortion (welfare maxi-
mization) with fairness in the presence of secretive agents. If
the goal is to only ensure fairness (e.g., proportionality [Stein-
haus, 1948] or envy-freeness [Varian, 1974]) among the non-
secretive agents, one can easily modify the rules proposed in
this work by replacing OPTnonsec (the welfare-optimal alloca-
tion to the non-secretive agents) by an allocation to the non-
secretive agents that maximizes welfare subject to the fairness
guarantee. The additional loss in welfare incurred is precisely
the price of fairness, which is very well understood [Cara-
giannis et al., 2012; Bertsimas et al., 2011; Bei et al., 2019;
Barman et al., 2020a].3 However, if the goal is to ensure
fairness to all agents, it may be necessary that no more than
a single agent is secretive, and even then, achieving fairness
alone can already be quite challenging [Arunachaleswaran et
al., 2019].

3For ensuring proportionality to the non-secretive agents, we
would need α > (n − k)/n, which can be set for p ∈ [0, 1] while
still using our analysis.
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[Chèze, 2019] Guillaume Chèze. How to share a cake with a secret
agent. Mathematical Social Sciences, 100:13–15, 2019.

[Frick et al., 2019] Florian Frick, Kelsey Houston-Edwards, and
Frédéric Meunier. Achieving rental harmony with a secretive
roommate. The American Mathematical Monthly, 126(1):18–32,
2019.

[Garg et al., 2021] Jugal Garg, Edin Husić, Aniket Murhekar, and
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A Missing Proofs of Section 3
A.1 Proofs of Lemmas 1 and 2
In Lemma 6, we show matching lower bound examples for the upper bounds shown in Section 3.1. Lemmas 1 and 2 also derive from the
following.

Lemma 6. Suppose k = n, i.e. all agents are secretive. Then, DMp
n,n > n for p 6 1 as well as NW and EW, and D

Mp
n,n > n1/p for p > 1.

Proof. Consider an instance with n items and n agents. No information about the utilities are revealed due to all agents being secretive. Let
x be the allocation returned by the player. Take any n disjoint matchings from agents to items. For example, suppose in the j-th matching
for j ∈ [n], agent i ∈ [n] is matched to item mj,i = ((j + i) mod n) + 1. Note that

∑
j∈[n],i∈[n] xj,mi,j = n. Then, at least for one of the

matchings j? we have
∑
i∈[n] xi,mj?,i

6 1.

Setting Utilities. Suppose each agent i values her matched item mj?,i at 1 and the rest at 0. The adversary’s allocation can be according to
this matching, obtaining a utility of 1 for each agent and hence a welfare of 1. Therefore, W(x∗) = 1.

Lower Bounds. Denote ui = vi(x) and observe that ui = xi,mj?,i
. Let α =

∑
i∈[n] ui. Note that α =

∑
i∈[n] xi,mj?,i

6 1.

Case p ∈ (1,∞). For p > 1, xp is convex, and (
∑
i∈n u

p
i )

1/p is maximized when ui = α for an agent i and uj = 0 for agents j 6= i.
Hence, Mp(x) 6 ( 1

n
)p ⇒ D

Mp
n,n > n1/p.

Case p ∈ (−∞, 1). We will show W(x) 6 1/n based on W, and conclude that DW
n,n > n.

• Egalitarian Welfare. EW(x) = mini∈[n] ui 6
1
n

∑
i∈[n] ui 6

1
n

.

• p ∈ (−∞, 0). As p < 0, ( 1
n

∑
i∈[n] u

p
i )

1/p is maximized when
∑
i∈[n] u

p
i is minimized. Furthermore, by the convexity of xp for

x > 0, the sum is minimized when ui’s are equal to α/n 6 1/n. Hence, Mp(x) 6 1/n.

• Nash Welfare. By the concavity of
∏
i∈[n] ui, the Nash welfare is maximized when ui’s are equal, i.e. ui = α/n 6 1/n. Therefore,

NW(x) 6 1/n.

• p ∈ (0, 1]. The result again follows by the concavity of xp, i.e. ( 1
n

∑
i∈[n] u

p
i )

1/p is maximized when ui’s are equal, i.e. ui = α/n 6
1/n⇒ Mp(x) 6 1/n.

A.2 Proof of Theorem 1
Proof. Lemma 5 requires z

k+z
> 1

k+1
. The function f(x) = x

k+x
is increasing over x, and z > 1 due to n − k > 1 and p < 0. Hence,

z
k+z

> 1
k+1

.
By Lemma 4, we can bound the distortion by (3). Furthermore, by Lemma 5, this bound is maximized when β is minimized. We know for

all i ∈ Nnonsec, vi 6 1. Therefore, vpi = (1/vi)
−p = (1/vi)

|p| > 1. Consequently, β > n− k.
Putting all together, by substituting β and α we get

D
Mp

n,k(Aα) 6

(
n− k + k

αp(n− k) +
(
1−α
k

)p
k

) 1
p

(sub. β)

= n
1
p

(
zp(n− k)
(z + k)p

+
k

(z + k)p

)− 1
p

(sub. α)

= n
1
p

(
(n− k)

1
1−p

(z + k)p
+

k

(z + k)p

)− 1
p

= n
1
p

(
z + k

(z + k)p

)− 1
p

= n
1
p (z + k)

p−1
p .

A.3 Proof of Theorem 2
Proof. Let β = maxx

∏
i∈Nnonsec

vi(x) be the maximum Nash welfare possible for the nonsecretive agents. Following the definition of
Aα=(n−k)/n, each secretive agent will have a utility of (1− α)/k, and

NW(x) =

(
αn−kβ ·

(
1− α
k

)k) 1
n

= β
1
n

((
n− k
n

)n−k
·
(
1

n

)k) 1
n

Furthermore, by Lemma 3, we have NW(x∗) 6 β
1
n . Hence,

DNW
n,k 6

NW(x∗)

NW(x)
= n

(
1

n− k

)n−k
n

.
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Figure 4: Lower bound example for the Egalitarian and Mp<0 welfare functions.

A.4 Proof of Theorem 4
Proof. By Lemma 4 and our choice of α = 1, the distortion value is bounded by maxβ (β+k

β
)
1
p . This term is maximized when β is

minimized, and β > 1 as one suboptimal allocation is to give all items to one agent and obtain
∑
i∈Nnonsec

vpi = 1. By substituting β = 1,
we get the desired bound.

B Lower Bounds
In this section we present matching lower bounds for the results in Section 3.2. We use a similar high-level approach for all welfare functions.

B.1 Approach
First, we present the common parts of the lower bound construction and its analysis.

Suppose we present an instance to the player based on the welfare function, and the player returns an allocation x. For all item j ∈M, let
pj denote the total portion of j allocated to the nonsecretive agents combined. Sort the items in decreasing order of pj , i.e. p1 > p2 > . . . >
pm. Take the top k items w.r.t. pj , and define λ = 1

k

∑k
i=1 pi. As λ is the average of the top k values,

1

m

∑
j∈[m]

pj 6
1

k

∑
i∈[k]

pi = λ. (4)

Deciding on vsec. Take any k disjoint matchings from the secretive agents to the selected items. For example, suppose in the t-th matching
for t ∈ [k], the secretive agent i ∈ [k] is matched to item mt

i = ((t+ i) mod k) + 1. Note that
∑
t

∑
i xi,mt

i
=
∑k
i=1 1− pi = k(1− λ).

Then, at least for one of the matchings t? we have
∑
i xi,mt?

i
6 1− λ.

Suppose the adversary then sets the utilities of the secretive agents according to this matching, i.e. secretive agent i values her matched
item mt?

i at 1 and values the rest at 0. Then, ∑
i∈Nsec

vi(x) =
∑
i∈Nsec

xi,mt?
i

6 1− λ. (5)

Deriving a Lower Bound. Next, we obtain an upper bound on W(x) based on λ. Optimize for the choice of λ to eliminate our
dependence on it, and we finish the proof with a lower bound on W(x∗).

B.2 Egalitarian and Mp∈(−∞,0) Welfares
We use the following example to show lower bounds for the egalitarian and Mp∈(-∞,0) welfares.
Example 1. Let m = (n − k)` for a positive integer `. Suppose the utility vector of the i-th nonsecretive agent is 1/` for items in range
[(i− 1)`+ 1, i`] and 0 for the rest of the items (see Figure 4).

In the following two lemmas, we take Example 1 and let ` > kd/ε, where d is the proposed distortion value for a fixed welfare function
defined in the lemma statement.
Theorem 5. For k < n and ε > 0, there exists an example such that any allocation incurs a distortion value with the egalitarian welfare of
at least d− ε for d = k + 1.

Proof. Deciding on vsec. Let j1 = argmaxj∈M pj and λ′ = pj1 . One of the secretive agents at most owns (1−λ′)/k fraction of j1. Name
this agent i1 and set vi1,j1 = 1. Take any other k − 1 items, and for each one let a unique secretive agent (other than i1) value this item at 1.

Bounding EW(x). By the choice of j1, we know at least 1 − λ′ fraction of any item is given to the secretive agents. Hence, the utility
of any nonsecretive agent is at most λ′. Furthermore, vi1(x) = (1 − λ′)/k. Hence, EW(x) 6 min{(1 − λ′)/k, λ′}. The choice of
λ′ = 1/(k + 1) maximizes this amount. Therefore, EW(x) 6 1

k+1
= 1/d.

Bounding EW(x∗). As for the adversary’s allocation, suppose we match each secretive agent with the item they value at 1 and assign
the rest of the items to the nonsecretive agent that value it at 1/`. This way, ∀i ∈ Nsec, vi = 1 and ∀i ∈ Nnonsec, we have vi > 1 − k/`.
Therefore, EW(x∗) > 1− k/` > 1− ε/d.

Therefore, DEW
n,k > EW(x∗)

EW(x)
> 1−ε/d

1/d
= d− ε.



Theorem 6. For k < n, p ∈ (−∞, 0), and ε > 0 there exists an example such that any allocation incurs D
Mp

n,k > d − ε, where d =

n
1
p ((n− k)

1
1−p + k)

p−1
p .

Proof. Suppose we set vsec according to Appendix B.1.
Bounding Mp(x). By (4), sum of the utilities for the nonsecretive agents is at most

∑
i∈Nnonsec

vi 6 1
`

∑
j∈M pj 6 mλ/`. By the

concavity of Mp,
∑
i∈Nnonsec

vpi is bounded by λp(n − k) when vi’s are equal to mλ
`(n−k) = λ for all i ∈ Nnonsec. Similarly, by (5) and the

concavity of Mp,
∑
i∈Nsec

vpi is bounded by
(
1−λ
k

)p
k when vi’s are equal to (1− λ)/k. Hence,

Mp(x) 6

(
1

n

(
λp(n− k) +

(
1− λ
k

)p
k

)) 1
p

.

The above is maximized when λ = z
k+z

for z = (n− k)
1

1−p . Substituting λ, we have Mp(x) 6 n
− 1

p (z + k)
− p−1

p = 1/d.
Bounding Mp(x

∗). For the adversary, assign each secretive agent i her matched item mt?,i, hence vi = 1. For the nonsecretive agents,
we can assign each item to the single agent that values it at 1/` except the selected k items. For each nonsecretive agent i, vi > 1− k/`. By
the fact that Mp(x) > EW(x), we have Mp(x

∗) > 1− k/` > 1− ε/d.
Putting the two bounds together, we have D

Mp

n,k > d− ε.

B.3 Nash and Mp∈(0,∞) Welfares
Example 2. Suppose each nonsecretive agent values each item uniformly at 1/m.

In the next three lemmas, we use Example 2 with m > kd/ε items, where d is the proposed distortion value for a fixed welfare function
defined in the lemma statement.

Set vsec according to Appendix B.1. Then, by (4) and that the nonsecretive agents have uniform utilities,∑
i∈Nnonsec

vi(x) 6
1

m

∑
j∈M

pj 6 λ. (6)

We use this inequality in the proof of the following lemmas.

Theorem 7. For k < n and ε > 0, there exists an example such that any allocation incurs a distortion value with the Nash welfare of at
least d− ε where d = n( 1

n−k )
n−k
n .

Proof. Bounding Mp(x). By (6) and the concavity of NW,
∏
i∈Nnonsec

vi is bounded by ( λ
n−k )

n−k when vi’s are equal to λ
n−k for all

i ∈ Nnonsec. Similarly, by (5) and the concavity of Mp,
∏
i∈Nnonsec

vi is bounded by ( 1−λ
k

)k when vi’s are equal to (1− λ)/k. Hence,

NW(x) 6

((
λ

n− k

)n−k (
1− λ
k

)k) 1
n

.

The maximum is achieved at λ = n−k
n

. Hence, NW(x) 6 1
n

.
Bounding NW(x∗). For the adversary, assign each secretive agent i her matched item mt?,i, hence vi = 1. Allocate the other m − k

items uniformly among the nonsecretive agents. This way vi = 1
n−k ·

m−k
m

, and we have

NW(x∗) >

((
m− k
m

· 1

n− k

)n−k
· 1k
) 1

n

>
m− k
m

(
1

n− k

)n−k
n

=

(
1− k

m

)
d

n
.

Putting the two bounds together, we have

D
Mp

n,k >

(
1− k

m

)
d = d− dk

m
> d− ε. (7)

Theorem 8. For k < n, p ∈ (0, 1), and ε > 0 there exists an example such that any allocation rule incurs D
Mp

n,k > d − ε for d =

n
(

(n−k)1−p+k
n

)1/p
.

Proof. Bounding Mp(x). Following the same analysis for the case of Nash welfare in Theorem 7, to obtain an upper bound on Mp(x), we
may assume for all i ∈ Nnonsec, vi = λ

n−k and for all i ∈ Nsec, vi = 1−λ
n−k . Hence,

Mp(x) 6

(
1

n

((
λ

n− k

)p
(n− k) +

(
1− λ
k

)p
k

)) 1
p

.



The maximum is achieved at λ = n−k
n

. Hence, Mp(x) 6 1
n

.
Bounding Mp(x

∗). For the adversary, assign each secretive agent i her matched item mt?,i, hence vi = 1. Allocate the other m− k items
uniformly among the nonsecretive agents. This way vi = 1

n−k ·
m−k
m

, and we have

Mp(x
∗) >

(
1

n

((
m− k
m

· 1

n− k

)p
(n− k) + k

)) 1
p

>
m− k
m

(
(n− k)1−p + k

n

) 1
p

=

(
1− k

m

)
d

n
.

Putting the bounds together, we arrive at the same expression as in (7). Hence, DMp

n,k > d− ε.

Theorem 9. For k < n, p ∈ (1,∞), and ε > 0 there exists an example such that any allocation rule incurs D
Mp

n,k > d − ε, where
d = (k + 1)1/p.

Proof. Bounding Mp(x). For the nonsecretive agents, by (6) and the convexity of Mp,
∑
i∈Nnonsec

vpi is bounded by λp when vi = λ for one
agent and vi′ = 0 for other nonsecretive agents i′ 6= i. Similarly, for the secretive agents, by (5) and the convexity of Mp,

∑
i∈Nsec

vpi is
bounded by (1− λ)p when vi = 1− λ for one secretive agent i and the rest have 0 utility. Hence,

Mp(x) 6

(
λp + (1− λ)p

n

) 1
p

6

(
1

n

) 1
p

,

because the maximum is achieved at λ ∈ {0, 1}.
Bounding Mp(x

∗). For the adversary, assign each secretive agent i her matched item mt?,i, hence vi = 1. Allocate the other m− k items
all to a single nonsecretive agent i. This way vi = m−k

m
while the rest get 0 utility. Then,

Mp(x
∗) >

(
(m−k
m

)p + k

n

) 1
p

>
m− k
m

(
k + 1

n

) 1
p

.

Putting the bounds together, we get the same result as in (7).

C Distortion with Indivisible Items
In the divisible case, the player has the advantage of dividing items uniformly among the secretive agents, which allows, the player to
guarantee a minimum welfare for each secretive agent. However, in the indivisible case, we will show in Appendix C.2 that the adversary can
set vsec in a way that all secretive agents have a utility of 0. The only exception is when we allocate all items to one secretive agent. That
agent is guaranteed to have a utility of 1, while any other agent will have a utility of 0. In either case, if k > 0, the adversary can make the
utility of at least one agent 0 leading to a Nash and egalitarian welfare of 0 and an unbounded Mp welfare for p < 0.

C.1 Upper Bounds
While the Nash, the egalitarian, and the Mp<0 welfare functions have unbounded distortion (shown in Appendix C.2), for p > 0, an almost
worst-case optimal strategy is as follows:

• Case k = n. Allocate all items to one (secretive) agent.

• Case 0 6 k < n. Return the allocation maximizing the Mp welfare for the nonsecretive agents — similar to A1 in the divisible case.

Theorem 10. For p > 0, the distortion value with Mp welfare in the case of indivisible items is upper bounded by min{(k + 1)
1
p , n

1
p }.

Proof. For k = n, we allocate all items to one agent. That agent will have a utility of 1, while the rest will have a utility of 0. Hence,
Mp(x) = n−1/p. The mean welfare of adversary is at most 1, therefore the distortion is upper bounded by n1/p.

For 0 6 k < n, suppose the welfare maximizing allocation for the nonsecretive agents achieve
∑
i∈Nnonsec

vpi = β. The player returns this
allocation. Therefore, Mp(x) = (β/n)1/p. Similar to the proof of Lemma 3, the adversary cannot improve on β for the nonsecretive agents.
Moreover, they cannot obtain a utility more than 1 for each secretive agent. Hence, Mp(x

∗) 6 ((β + k)/n)
1
p .

Putting the bounds together, we have

D
Mp

n,k 6

(
β + k

β

) 1
p

6 (k + 1)
1
p ,

where the last inequality follows from two facts. First, that x+k
x

is a decreasing function over x > 0, and second, that β > 1 as allocating all
items to one agent ensures it for any instance.



C.2 Lower Bounds
Note that in the case of n = 1 or k = 0 (no secretive agents), the distortion value is always 1 as the player has full information to compute
the optimal allocation. The following theorem shows a lower bound for n > 1 and k > 0.

Theorem 11. For the Nash, egalitarian, and Mp<0 welfares functions, the distortion value in the case of indivisible items is unbounded.

Proof. Suppose the instance consists of m = n items. If one agent is given all items by the player, then, as n > 1, at least one agent has a
utility of 0. Otherwise, take any secretive agent i. At least one item j is not allocated to i. Let vi,j = 1. This way vi(x) = 0. As at least one
agent has a utility of 0, the Nash and the egalitarian welfares are 0, while Mp is undefined for p < 0 (as limx→0 x

p = ∞). The adversary
can obtain a positive welfare by matching each secretive agent with an item that values it at 1 and each nonsecretive agents with at least one
1/m valued item. Hence, the distortion is unbounded.

The following lemma is useful proving the lower bounds for the other welfare functions.

Lemma 7 (Matching Argument). Suppose there does not exist an agent that is given all items. Then, there exists a matching from the secretive
agents to items m : Nsec →M such that item mi is not allocated to i.

Proof. Take the bipartite graph from the secretive agents to all items where each item has an edge to the agent owning the item. For the
complement of this graph, the Hall’s theorem condition is satisfied for the secretive agents. This holds because each secretive agent has at
least one edge, and for all subsets S of agents of size at least two, every item j is allocated to at most one agent i, hence there exists at least
one edge from S \ {i} to the j. By Hall’s theorem, there exists a complete matching in the complement graph from the secretive agents to
items.

First, we will resolve the case k = n using the lemma above.

Lemma 8. For k = n and p > 0, the distortion value in the case of indivisible items is lower bounded by n
1
p .

Proof. If all items are not allocated to one agent, by Lemma 7 there is matching such that agent i is not given mi. The adversary can set
vi(mi) = 1, leading to Mp(x) = 0. The adversary can allocate items according to the matching. Hence, Mp(x

∗) = 1 and the distortion is
unbounded.

Otherwise, vi = 1 for an agent i and the rest have 0 utility. This way Mp(x) = n−1/p. The adversary can again take an arbitrary matching
and allocate accordingly to obtain Mp(x

∗) = 1. Hence, DMp

n,k > n1/p.

Next, we will show a lower bound matching the upper bound of (k + 1)1/p for p > 1. However, for p ∈ (0, 1), our bounds are not tight.
We have two lower bounds for this case, one shown in Theorem 12 and another in the Theorem 13. We conclude that the distortion value for
p ∈ (0, 1) is more than the maximum of the two.

Theorem 12. For k < n, p > 1, and ε > 0, the distortion value in the case of indivisible items is lower bounded by (k + 1)
1
p − ε.

Furthermore, for p ∈ (0, 1), the distortion value is at least
(
z+k
z

) 1
p − ε for z = (n− k)1−p.

Proof. Let m > k(n− k)d/ε where d = (k + 1)1/p. We break the analysis into two cases.
Case 1. Suppose the player allocates all items to one agent. Then Mp(x) = n−1/p. For the adversary, take any matching from the first

k items to the secretive agents. Each value their matched item at 1, hence their utility is 1. Give all of other items to one of the nonsecretive
agents, that is her utility is 1− k/m > 1− ε/d. This way,

Mp(x
∗) >

(
1

n

(
k +

(
1− ε

d

)p))1/p

>
(
1− ε

d

)
dn
− 1

p = (d− ε)n−
1
p .

Combining the two bounds leads to D
Mp

n,k > (k + 1)1/p − ε.
Case 2. No agent is allocated all items by the player.
Deciding on vsec. Take the matching from Lemma 7, and for each secretive agent, suppose they value their matched item at 1 and the rest

at 0. This way, vi(x) = 0 for all secretive agents i.
Bounding Mp(x). Let β = maxx

∑
i∈Nnonsec

vpi (x), be the maximum p-mean welfare achievable for this instance. We showed the
adversary can make

∑
i∈Nsec

= 0, therefore, Mp(x) 6 (β/n)1/p.
Bounding Mp(x

∗). Suppose the adversary assigns each secretive agent i her matched item, hence vi = 1. We will show below that the
adversary can guarantee

∑
i∈Nnonsec

vi(x
∗) > β(1− ε/d)p. Together, we can conclude Mp(x

∗) > (1− ε/d)((k + β)/n)1/p.
Bounding Distortion. Combining the two bounds, we have

D
Mp

n,k > (1− ε/d)
(
β + k

β

)1/p

. (8)

Case 2.1 (p > 1). By the convexity of Mp and that
∑
i∈Nnonsec

vi = 1, β is maximized when vi = 1 for one agent i and the rest have 0
utility. Hence, β 6 1.

The adversary also gives m− k items to one of the nonsecretive agents and ensures∑
i∈Nnonsec

vi(x
∗) > (1− k/m)p > β(1− ε/d)p.



Therefore, substituting β = 1 in (8) we have D
Mp

n,k > (k + 1)
1
p − ε.

Case 2.2 (0 < p < 1). By the concavity of Mp and that
∑
i∈Nnonsec

vi = 1, β is maximized when vi = 1/(n − k) for all nonsecretive

agents i. Hence, β 6
(

1
n−k

)p
(n− k) = (n− k)1−p = z.

Similarly the adversary divides m− k equally among the nonsecretive agents and ensures∑
i∈Nnonsec

vi(x
∗) >

(
m− k
m

· 1

n− k

)p
(n− k) > z(1− ε/d)p > β(1− ε/d)p.

Therefore, substituting β = z in (8) we have D
Mp

n,k >
(
z+k
z

) 1
p − ε where we used the fact that

(
z+k
z

) 1
p 6 d =

(
1+k
1

) 1
p . This holds because

x+k
x

is decreasing over x > 0 and z > 1.

Note that limp→0(1 + k
(n−k)1−p )

1/p = ∞ as expected and for p = 1 the bound is k + 1, which implies tightness when p is close to 1.

Next, we will show another lower bound of k1/p. This lower bound is mostly higher than the former, however, for p = 1, it evaluates to k
which has a gap of 1 with k + 1.

Theorem 13. For k < n, p ∈ (0, 1), the distortion value in the case of indivisible items is lower bounded by max{k
1
p ,
(
z+k
z

) 1
p − ε} for

z = (n− k)1−p and any ε > 0.

Proof. In Theorem 12, we showed that the distortion is lower bounded by
(
z+k
z

) 1
p − ε. Now, we show it is also lower bounded by k

1
p .

Take an instance with m = k + 1 items, where all nonsecretive agents value item j1 at 1 and the rest at 0.
Case 1. Suppose there is a secretive agent i such that the player has allocated all items inM\ {j1} to i. As the adversary, set vi,j1 = 1

and 0 for the other items. Take any k − 1 items fromM \ {j1} and match it arbitrarily to the other k − 1 secretive agents. Suppose they
value their matched item at 1.

The adversary can match Nsec \ {i} to their matched item, and allocate j1 to a nonsecretive agent. This way, Mp(x
∗) > (k/n)1/p.

However, the player will obtain 0 utility for secretive agents other than i, and at most one nonsecretive agent or agent i is allocated j1 and has
a utility of 1. Hence, Mp(x) 6 (1/n)1/p. Combining the bounds, we conclude that the distortion value is at least k1/p.

Case 2. Now, suppose no secretive agent is allocated all items from M \ {j1}. Then, according to Lemma 7, match each secretive
agent i with an item mi not allocated to them. Set vi,mi = 1. Then, the player obtains vi(x) = 0 for all secretive agents. Similar to the
former case, at most one nonsecretive agent is allocated item j1 and has a utility of 1. Therefore, Mp(x) 6 (1/n)1/p. The adversary can
allocate each secretive agent her matched item and obtain a utility of 1, while allocation j1 to one of the nonsecretive agents. Therefore,
Mp(x

∗) ge((k + 1)/n)1/p. Putting all together, we achieve a lower bound of (k + 1)1/p for this case.

D Experiment Plots

Figure 5: Average welfare ratio achieved by different strategies while incrasing m with n = 20 and k = 4.



Figure 6: Average welfare ratio by different strategies on the Spliddit data. The x-axis is sorted by k and then n.


	Introduction
	Our Results
	Related Work

	Preliminaries
	Secretive Agents & Distortion

	Distortion Values
	Warm-up: k =0 and k =n
	Results for 1 k n - 1

	Experiments
	Synthetic Data
	Spliddit Data

	Discussion
	Missing Proofs of sec:upper-bounds
	Proofs of lem:k=n-distortion-p<1,lem:k=n-distortion-p>1 
	Proof of lem:negative-p-distortion
	Proof of lem:nash-distortion
	Proof of lem:1-infty-p-distortion

	Lower Bounds
	Approach
	Egalitarian and Mp (-, 0) Welfares
	Nash and Mp (0, ) Welfares

	Distortion with Indivisible Items
	Upper Bounds
	Lower Bounds

	Experiment Plots

