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Abstract
Motivated by applications to crowdsourcing, we study voting rules that output a correct ranking

of alternatives by quality from a large collection of noisy input rankings. We seek voting rules that
are supremely robust to noise, in the sense of being correct in the face of any “reasonable” type of
noise. We show that there is such a voting rule, which we call the modal ranking rule. Moreover,
we establish that the modal ranking rule is the unique rule with the preceding robustness property
within a large family of voting rules, which includes a slew of well-studied rules.

1. Introduction

The emergence of crowdsourcing platforms and human computation systems (Law & von Ahn,
2011) motivates a reexamination of an approach to voting that dates back to the Marquis de Con-
dorcet (1785). He suggested that voters should be viewed as noisy estimators of a ground truth
— a ranking of the candidates by their true quality. A noise model governs how voters make mis-
takes. For example, under the noise model suggested by Condorcet — also known today as the
Mallows (1957) noise model — each voter ranks each pair of alternatives in the correct order with
probability p > 1/2, and in the wrong order with probability 1−p (roughly speaking). This specific
noise model is quite unrealistic, and, more generally, the very idea of objective noise is arguable in
the context of political elections, where opinions are subjective and there is no ground truth. How-
ever, the noisy voting setting is a perfect fit for crowdsourcing, where objective estimates provided
by workers — often as votes (Little, Chilton, Goldman, & Miller, 2010; Mao, Procaccia, & Chen,
2013) — must be aggregated.

From this viewpoint, Condorcet and, more eloquently, Young (1988), argued that the goal of a
voting rule — which aggregates input rankings into a single output ranking — should be to output
the ranking that is most likely to be the ground truth ranking, under the given noise model. This ap-
proach has inspired a significant number of recent papers by AI researchers (Conitzer & Sandholm,
2005; Conitzer, Rognlie, & Xia, 2009; Elkind, Faliszewski, & Slinko, 2010; Xia, Conitzer, & Lang,
2010; Xia & Conitzer, 2011; Lu & Boutilier, 2011; Procaccia, Reddi, & Shah, 2012; Mao et al.,
2013), some of which aim to design voting rules that are maximum likelihood estimators (MLEs)
specifically for crowdsourcing settings.

But the maximum likelihood estimation requirement may be too stringent. Indeed, our recent
work (Caragiannis, Procaccia, & Shah, 2013) points out that a voting rule may be an MLE for a
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specific noise model, but in realistic settings the noise can take unpredictable forms; see also (Mao
et al., 2013). Instead, they propose the following robustness property, called accuracy in the limit:
as the number of votes grows, the voting rule should output the ground truth ranking with high
probability, i.e., with probability approaching one.1 This allows a single voting rule to be robust
against multiple noise models. Moreover, the focus on a large number of votes is natural in the
context of crowdsourcing systems — the whole point is to aggregate information provided by a
massive crowd! For example, social networks are enabling organizations to solicit noisy information
from millions of users. Indeed, think of a technology company that asks fans to rank product
prototypes by their perceived chance of success. While a large company can expect millions of
votes, these votes are noisy and the type of noise is unpredictable.

In this paper, we seek voting rules that are robust against such unpredictable noise. Our research
challenge is to

... find voting rules that are robust (in the accuracy in the limit sense) against any
“reasonable” noise model.

1.1 Overview of Results

We give a rather clear-cut solution to the preceding research challenge: There is a voting rule that
is robust against any “reasonable” noise model, and it is unique within a huge family of voting
rules. We call this supremely robust voting rule the modal ranking rule. Given a collection of input
rankings, the modal ranking rule simply selects the most frequent ranking as the output. To the best
of our knowledge, this strikingly basic voting rule has not received any attention in the literature,
and for good reason: when the number of voters is not huge compared to the number of alternatives,
it is likely that every ranking would appear at most once, so the modal ranking rule does not provide
any useful guidance. However, when the number of voters is very large, the modal ranking rule is
quite sensible; we will prove this intuitive claim formally.

To better understand this result (still on an informal level), we need to clarify two points: What
do we mean by “reasonable” noise model? And what is the huge family of voting rules? Starting
from the noise model, we employ additional notions introduced in our recent work (Caragiannis
et al., 2013). We are interested in noise models that are d-monotone with respect to a distance func-
tion d on rankings, in the sense that the probability of a ranking increases as its distance according
to d from the ground truth ranking decreases. A voting rule that is accurate in the limit with respect
to any d-monotone noise model is said to be monotone-robust with respect to d. So, slightly more
formally, the requirement is that the rule be monotone-robust with respect to any distance metric d.

Regarding the family of voting rules in which we prove that modal ranking is the unique robust
rule, it is formed by the union of three families of rules: generalized scoring rules (GSRs) (Xia &
Conitzer, 2008, 2009; Xia, 2013) with a “no holes” property, pairwise majority consistent (PM-c)
rules, and position dominance consistent (PD-c) rules (Caragiannis et al., 2013). GSRs are a large
family of voting rules that is known to capture almost all commonly-studied voting rules. Theorem 1
in Section 3 asserts that a GSR with no holes is monotone-robust with respect to all distance metrics
if and only if it is the modal ranking rule. The no holes property is a technical restriction, but we
show (Theorem 2 in Section 4) that it is quite mild by establishing that all prominent rules that are

1. In statistics, this property is known as consistency, but we avoid this terminology as it has completely different
interpretations in social choice theory.
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Figure 1: The modal ranking rule is uniquely robust within the union of three families of rules.

known to be GSRs have the no holes property. We believe that the concepts and proof techniques
introduced in Section 4 may be of independent interest to the social choice community.

PM-c and PD-c rules together also contain most prominent voting rules (Caragiannis et al.,
2013). These two families are disjoint, and neither is contained in the family of GSRs. Theorem 3
in Section 5 asserts that no PM-c or PD-c rule has the desired robustness property, thereby further
extending the scope of the modal ranking rule’s uniqueness to all rules that are either PM-c or PD-c
or GSRs with no holes. See Figure 1 for a Venn diagram that illustrates the relation between these
families of rules.

1.2 Related Work

This paper is most closely related to our recent work (Caragiannis et al., 2013), where we introduced
the classes of PM-c and PD-c rules as well as the notions of d-monotone noise models, accuracy
in the limit, and monotone-robustness. The main result in that paper is a characterization of the
distance metrics d for which all PM-c and PD-c rules are monotone-robust. In other words, we fixed
the family of voting rules to be PM-c or PD-c rules, and asked which distance metrics induce noise
models for which all the rules in these families are robust. While the answer is a family of distance
metrics that contains three popular distance metrics, it does not contain several other prominent
distance metrics — moreover, it is by no means clear that natural distance metrics are the ones that
induce the noise one encounters in practice. In contrast, in the current paper, instead of fixing the
family of rules, we fix the family of distances to be all possible distance metrics d, and characterize
the “family” of voting rules that are monotone-robust with respect to any d (this family turns out to
be a singleton set).

On a conceptual level, unlike common voting rules, our modal ranking rule always returns a
ranking from the given profile. Endriss and Grandi (2014) investigated a similar idea in the context
of aggregation of binary opinions where each voter provides a yes/no opinion for a number of issues.
In contrast to the modal ranking rule which (in our context) chooses the most frequent vote in the
input profile, they investigated rules that return the input vote that is closest to the average or the
majority vote.

On a technical level, we view our input profile (vector of rankings) as a point in Qm! (m! is
the number of possible rankings), where each coordinate represents the fraction of times a ranking
appears in the input profile. This geometric approach to the analysis of voting rules was initiated
by Young (1975), and was later used by various other authors (Saari, 1995, 2008; Xia & Conitzer,
2009; Conitzer et al., 2009; Obraztsova, Elkind, Faliszewski, & Slinko, 2013; Mossel, Procaccia, &
Rácz, 2013).
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2. Preliminaries

LetA be the set of alternatives, where |A| = m. Let L(A) be the set of rankings (linear orders) over
A, and D(L(A)) be the set of probability distributions over L(A). A vote σ is a ranking in L(A),
and a profile π is a collection of votes. A voting rule (sometimes also known as a “rank aggregation
rule”) is formally a deterministic (resp., randomized) social welfare function (SWF) that maps every
profile to a ranking (resp., a distribution over rankings). In this paper, we focus on randomized
SWFs. Deterministic SWFs are a special case where the output distributions are centered at a single
ranking. We do not study social choice functions (SCFs), which map each profile to a (single)
selected alternative.

Families of SWFs. In order to capture many SWFs simultaneously, our results employ the defini-
tions of three broad families of SWFs.

• PM-c rules (Caragiannis et al., 2013): For a profile π, the pairwise-majority (PM) graph is
a directed graph whose vertices are the alternatives, and there exists an edge from a ∈ A to
b ∈ A if a strict majority of the voters prefer a to b. A randomized SWF f is called pairwise-
majority consistent (PM-c) if for every profile π with a complete acyclic PM graph whose
vertices are ordered according to σ ∈ L(A), we have Pr[f(π) = σ] = 1.

• PD-c rules (Caragiannis et al., 2013): In a profile π, alternative a is said to position-dominate
alternative b if for every k ∈ {1, . . . ,m − 1}, (strictly) more voters rank a in the first k
positions than b. The position-dominance (PD) graph is a directed graph whose vertices are
the alternatives, and there exists an edge from a to b if a position-dominates b. A randomized
SWF f is called position-dominance consistent (PD-c) if for every profile π with a complete
acyclic PD graph whose vertices are ordered according to σ ∈ L(A), we have Pr[f(π) =
σ] = 1.

• GSRs (Xia & Conitzer, 2008): We say that two vectors y, z ∈ Rk are equivalent (denoted
y ∼ z) if for every i, j ∈ [k] we have yi ≥ yj ⇔ zi ≥ zj . We say that a function g :
Rk → D(L(A)) is compatible if y ∼ z implies g(y) = g(z). A generalized scoring rule
(GSR) is given by a pair of functions (f, g), where f : L(A) → Rk maps every ranking to
a k-dimensional vector and g : Rk → D(L(A)) is a compatible function that maps every
k-dimensional vector to a distribution over rankings, and the output of the rule on a profile
π = (σ1, . . . , σn) is given by g (

∑n
i=1 f(σi)). GSRs are characterized by two social choice

axioms (Xia & Conitzer, 2009), and have interesting connections to machine learning (Xia,
2013). While GSRs were originally introduced as deterministic SCFs, the definition naturally
extends to (possibly randomized) SWFs.

Popular SWFs. Let us define some popular SWFs that are captured by the families of SWFs defined
above. First, define the weighted pairwise majority (PM) graph of a profile as the graph where the
alternatives are the vertices and there is an edge from every alternative a to every other alternative b
with weight equal to the fraction of voters that prefer a to b. Its main difference from the unweighted
PM graph defined above is that the latter has at most one unweighted directed edge between two
alternatives a and b, indicating which alternative is preferred by the (strict) majority of the voters.

• The Kemeny rule: Given a profile π, the Kemeny score of a ranking is the total weight of the
edges of the weighted PM graph of π in its direction. The Kemeny rule selects the ranking
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with the highest Kemeny score. Tie-breaking is used to choose among all the rankings with
identical highest Kemeny score.

• Positional scoring rules: A scoring rule is given by a scoring vector α = (α1, . . . , αm) where
αi ≥ αi+1 for all i ∈ [m] and α1 > αm. Under this rule, for each vote σ in π and i ∈ [m],
αi points are awarded to the alternative in the ith position. The alternatives are then sorted in
descending order of their total points. Tie-breaking is used to sort alternatives with identical
total points. Some example of positional scoring rules include plurality, Borda count, veto,
and k-approval.

• Single transferable vote (STV): STV proceeds in rounds, where in each round the alternative
with lowest plurality score is eliminated, until only one alternative remains. The rule ranks
the alternatives in the reverse order of their elimination. At each stage, tie-breaking is used to
choose among the alternatives with identical plurality score in that stage.

• Copeland’s method: The Copeland score of an alternative a in a profile π, denoted PW π(a),
is the number of outgoing edges from a in the unweighted PM graph of π, i.e., the number
of other alternatives that a defeats in a pairwise election. Copeland’s method ranks the al-
ternative in non-increasing order of their Copeland scores. Tie-breaking is used for sorting
alternatives with identical Copeland scores.

• The maximin rule: Given a profile π, the maximin score of an alternative a is the minimum of
the weights of the alternative’s outgoing edges in the weighted PM graph of π. The maximin
rule returns the alternatives in descending order of their maximin score. Tie-breaking is used
to sort alternatives with identical maximin scores.

• The Slater rule: Given a profile π, the Slater rule selects the ranking which minimizes the
number of pairs of alternatives on which it disagrees with the unweighted PM graph of π.
Note that this is, in some sense, the unweighted version of the Kemeny rule, which, as defined
above, minimizes disagreement with the weighted PM graph of π. Tie-breaking is used to
choose among rankings having equal disagreement with the unweighted PM graph of π.

• The Bucklin rule: The Bucklin score of an alternative a is the minimum k such that a is
ranked among the first k positions by a majority of the voters. The Bucklin rule sorts the
alternatives in a non-decreasing order according to their Bucklin scores. Tie-breaking is used
to sort alternatives with identical Bucklin scores.2

• The ranked pairs method: Under the ranked pairs method, given a profile π, all ordered
pairs of alternatives (a, a′) are sorted in a non-increasing order of the weight of the edge
from a to a′ in the weighted PM graph of π. Then, starting with the first pair in the list,
the method “locks in” the outcome using the result of the pairwise comparison. It proceeds
with subsequent pairs and locks in every pairwise result that does not contradict (by forming
a cycle) the partial ordering established so far. Finally, the method outputs the total order
obtained. Tie-breaking is used initially to sort ordered pairs of alternatives with identical
weight in the weighted PM graph of π.

2. Sometimes, a deterministic scheme is used to break ties by the number of votes that rank an alternative among the
first k positions, where k is the Bucklin score of the alternative. However, we cling to our assumption of an inclusive
tie-breaking scheme for uniformity.
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Noise models. A noise model G is a collection of probability distributions over rankings. For every
σ∗ ∈ L(A), G(σ∗) denotes the distribution from which noisy estimates are generated when the
ground truth is σ∗. The probability of sampling σ ∈ L(A) from this distribution is denoted by
PrG[σ;σ∗].

In order to rule out noise models that are completely outlandish, we focus on d-monotonic noise
models with respect to a distance metric d, using definitions from our recent work (Caragiannis
et al., 2013). In more detail, a distance metric over L(A) is a function d(·, ·) that satisfies the
following properties for all σ, σ′, σ′′ ∈ L(A):

• d(σ, σ′) ≥ 0, and d(σ, σ′) = 0 if and only if σ = σ′.

• d(σ, σ′) = d(σ′, σ).

• d(σ, σ′′) + d(σ′′, σ′) ≥ d(σ, σ′).

A noise model G is called d-monotone for a distance metric d if for all σ, σ′, σ∗ ∈ L(A),
PrG[σ;σ∗] ≥ PrG[σ′;σ∗] if and only if d(σ, σ∗) ≤ d(σ′, σ∗). That is, the closer a ranking is to the
ground truth, the higher its probability.

Robust SWFs. We are interested in SWFs that can recover the ground truth from a large number
of i.i.d. noisy estimates. Formally, an SWF f is called accurate in the limit with respect to a noise
model G if, given an arbitrarily large number of samples from G with any ground truth σ∗, the rule
outputs σ∗ with arbitrarily high accuracy. That is, for every σ∗ ∈ L(A), limn→∞ Pr[f(πn) = σ∗] =
1, where πn denotes a profile consisting of n i.i.d. samples from G(σ∗). A voting rule f is called
monotone-robust with respect to a distance metric d if it is accurate in the limit for all d-monotonic
noise models.

3. Modal Ranking is Unique Within GSRs

In this section, we characterize the modal ranking rule — which selects the most common ranking
in a given profile — as the unique rule that is monotone-robust with respect to all distance metrics,
among a wide sub-family of GSRs. For this, we use a geometric equivalent of GSRs introduced by
Mossel et al. (2013) called “hyperplane rules”. Like GSRs, hyperplane rules were also originally
defined as deterministic SCFs. Below, we give the natural extension of the definition to (possibly
randomized) SWFs.

Given a profile π, let xπσ denote the fraction of times the ranking σ ∈ L(A) appears in π. Hence,
the point xπ = (xπσ)σ∈L(A) lies in a probability simplex ∆m!. This allows us to use rankings from
L(A) to index the m! dimensions of every point in ∆m!. Formally,

∆m! =

x ⊆ Qm!

∣∣∣∣∣∣
∑

σ∈L(A)

xσ = 1

 .

Importantly, note that ∆m! contains only points with rational coordinates. Weights wσ ∈ R for all
σ ∈ L(A) define a hyperplaneH whereH(x) =

∑
σ∈L(A)wσ ·xσ for all x ∈ ∆m!. This hyperplane

divides the simplex into three regions; the set of points on each side of the hyperplane, and the set
of points on the hyperplane.
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Definition 1 (Hyperplane Rules). A hyperplane rule is given by r = (H, g), where H = {Hi}li=1

is a finite set of hyperplanes, and g : {+, 0,−}l → D(L(A)) is a function that takes as input
the signs of all the hyperplanes at a point and returns a distribution over rankings. Thus, r(π) =
g(sgn(H(xπ))), where

sgn(H(xπ)) = (sgn(H1(x
π)), . . . , sgn(Hl(x

π))),

and sgn : R→ {+, 0,−} is the signum function given by

sgn(x) =


+ x > 0

0 x = 0

− x < 0

Next, we state the equivalence between hyperplane rules and GSRs in the case of randomized
SWFs. This equivalence was established by Mossel et al. (2013) for deterministic SCFs; it uses the
output of a given GSR for each set of compatible vectors to construct the output of its corresponding
hyperplane rule in each region, and vice-versa. Simply changing the output of the g functions of
both the GSR and the hyperplane rule from a winning alternative (for deterministic SCFs) to a
distribution over rankings (for randomized SWFs) and keeping the rest of the proof intact shows the
equivalence for randomized SWFs.

Lemma 1 (Mossel et al., 2013). For randomized social welfare functions, the class of generalized
scoring rules coincides with the class of hyperplane rules.

We impose a technical restriction on GSRs that has a clear interpretation under the geometric
hyperplane equivalence. Intuitively, it states that if the rule outputs the same ranking (without ties)
almost everywhere around a point xπ in the simplex, then the rule must output the same ranking
(without ties) on π as well. More formally, consider the regions in which the simplex is divided
by a set of hyperplanes H. We say that a region is interior if none of its points lie on any of the
hyperplanes in H, that is, if for every point x in the region, sgn(H(x)) does not contain any zeros.
For x ∈ ∆m!, let

S(x) =
{
y ∈ ∆m!

∣∣∣ ∀σ ∈ L(A), xσ = 0⇒ yσ = 0
}

denote the subspace of points that are zero in every coordinate where x is zero. We say that an
interior region is adjacent to x if its intersection with S(x) contains points arbitrarily close to x.

Definition 2 (No Holes Property). We say that a hyperplane rule (generalized scoring rule) has no
holes if it outputs a ranking σ with probability 1 on a profile π whenever it outputs σ with probability
1 in all interior regions adjacent to xπ.

When this property is violated, we have a point xπ such that the output of the rule on xπ is
different from the output of the rule almost everywhere around xπ, creating a hole at xπ. We later
show (in Section 4; see Theorem 2) that the no holes property is a very mild restriction on GSRs.
We are now ready to formally state our main result.

Theorem 1. Let r be a (possibly randomized) generalized scoring rule with no holes. Then, r
is monotone-robust with respect to all distance metrics if and only if r coincides with the modal
ranking rule on every profile with no ties (i.e., r outputs the most frequent ranking with probability
1 on every profile where it is unique).
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Before proving the theorem, we wish to point out three subtleties. First, our assumption of
accuracy in the limit imposes a condition on the rule as the number of votes goes to infinity. This
has to be translated into a condition on all finite profiles; we do this by leveraging the structure of
generalized scoring rules.

Second, if there are several rankings that appear the same number of times, a monotone-robust
rule can actually output any ranking with impunity, because in the limit this event happens with
probability zero.

Third, every noise model G that is monotone with respect to some distance metric satisfies
PrG[σ∗;σ∗] > PrG[σ;σ∗] for all pairs of different rankings σ, σ∗ ∈ L(A). It seems intuitive that
the converse holds, i.e., if a noise model satisfies PrG[σ∗;σ∗] > PrG[σ;σ∗] for all σ 6= σ∗ then
there exists a distance metric d such thatG is monotone with respect to d— but this is false. Hence,
our condition asks for accuracy in the limit for noise models that are monotone with respect to some
metric, instead of just assuming accuracy in the limit with respect to all noise models where the
ground truth is the unique mode.

Proof of Theorem 1. Let r be a (possibly) randomized generalized scoring rule with no holes. Using
Lemma 1, we represent r as a hyperplane rule (H, g) whereH = {Hi}li=1 is the set of hyperplanes.

First, we show the simpler forward direction. Let r output the most frequent ranking with
probability 1 on every profile where it is unique. We want to show that r is monotone-robust with
respect to all distance metrics. Take a distance metric d, a d-monotonic noise model G, and a true
ranking σ∗. We need to show that r outputs σ∗ with probability 1 given infinitely many samples
from G(σ∗).

Note that d satisfies d(σ∗, σ∗) = 0 < d(σ, σ∗) for all σ 6= σ∗. Hence, G must satisfy
PrG[σ∗;σ∗] > PrG[σ;σ∗] for all σ 6= σ∗. Now, given infinite samples fromG(σ∗), σ∗ becomes the
unique most frequent ranking with probability 1. Thus, r outputs σ∗ with probability 1 in the limit,
as required.

For the reverse direction, let r be d-monotone-robust for all distance metrics d. Take a profile π∗

with a unique most frequent ranking σ∗. Recall that xπ
∗
σ denotes the fraction of times σ appears in

π∗ and note that xπ
∗
σ∗ > xπ

∗
σ for all σ 6= σ∗. We also denote by Xπ∗

σ the number of times σ appears
in π∗.

The rest of the proof is organized in three steps. First, we define a distance metric d, a d-
monotonic noise model G, and a true ranking. Second, we show that given samples from G(σ∗), in
the limit r outputs σ∗ with probability 1 in every interior region adjacent to xπ

∗
. Finally, we use the

no holes property of r to argue that Pr[r(π∗) = σ∗] = 1.

Step 1: We define d as

d(σ, σ′) =

{
max(1, |Xπ∗

σ −Xπ∗
σ′ |) if σ 6= σ′,

0 otherwise.

We claim that d is a distance metric. Indeed, the first two axioms are easy to verify. The triangle
inequality d(σ, σ′) ≤ d(σ, σ′′) + d(σ′′, σ′) holds trivially if any two of the three rankings are equal.
When all three rankings are distinct,

d(σ, σ′′) + d(σ′′, σ′) = max(1, |Xπ∗
σ −Xπ∗

σ′′ |) + max(1, |Xπ∗
σ′′ −Xπ∗

σ′ |)
≥ max(1 + 1, |Xπ∗

σ −Xπ∗
σ′′ |+ |Xπ∗

σ′′ −Xπ∗
σ′ |)

≥ max(1, |Xπ∗
σ −Xπ∗

σ′ |) = d(σ, σ′).

8
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Now, define the noise model G where

PrG[σ;σ′] =
1/(1 + d(σ, σ′))∑

τ∈L(A) 1/(1 + d(τ, σ′))
for σ′ 6= σ∗.

and PrG[σ;σ∗] = xπ
∗
σ . Note that G is trivially d-monotone for true rankings other than σ∗. De-

noting the number of votes in π∗ by n∗, since σ∗ is the unique most frequent ranking, we have
that d(σ, σ∗) = n∗(xπ

∗
σ∗ − xπ

∗
σ ) for all σ 6= σ∗. Hence, PrG[σ1;σ

∗] ≥ PrG[σ2;σ
∗] if and only if

d(σ1, σ
∗) ≤ d(σ2, σ

∗) and G is also d-monotone for the true ranking σ∗. We conclude that G is a
d-monotonic noise model.

Step 2: Let πn denote a profile consisting of n i.i.d. samples from G(σ∗). Since r is monotone-
robust for every distance metric, we have

lim
n→∞

Pr[r(πn) = σ∗] = 1. (1)

If π∗ has only one ranking, then only that ranking will ever be sampled. Hence, we will have
Pr[xπn = xπ

∗
] = 1, and Equation (1) would imply that the rule must output σ∗ with probability 1

on π∗.
Assume that π∗ has at least two distinct votes. We want to show that r outputs σ∗ with probabil-

ity 1 in every interior region adjacent to xπ
∗
. As n→∞, the distribution of xπn tends to a Gaussian

with mean xπ
∗

and concentrated on the hyperplane∑
σ∈L(A)|xπ∗σ >0

xπnσ = 1.

This follows from the multivariate central limit theorem; see (Mossel et al., 2013) for a detailed
explanation. Note that the sum ranges only over the rankings that appear in π∗ because in the
distribution G(σ∗), the probability of sampling a ranking σ that does not appear in π∗ is zero.

Since the Gaussian lies in the subspace S(xπ
∗
), we set the coordinates corresponding to rankings

that do not appear in π∗ to zero in all the hyperplanes, and remove the hyperplanes that become
trivial. Hereinafter we only consider the rest of the hyperplanes, and the regions they form around
xπ
∗
, all in the subspace S(xπ

∗
).

If none of the hyperplanes pass through xπ
∗
, then there is a unique interior region K which

actually contains xπ
∗

as its interior point. In this case, the limiting probability of xπn falling in
K will be 1, as the Gaussian becomes concentrated around xπ

∗
. Thus, Equation (1) implies that r

outputs σ∗ with probability 1 in K, and therefore on π∗.
If there exists a hyperplane passing through xπ

∗
, then each interior region K adjacent to xπ

∗

is the intersection of finitely many halfspaces whose hyperplanes pass through xπ
∗
. Let K and

S(xπ∗) denote the closures of K and S(xπ
∗
) in Rm!, respectively.3 Thus, K is a pointed convex

cone with its apex at xπ
∗
, and must subtend a positive solid angle (in S(xπ∗)) at its apex since the

hyperplanes are distinct. By definition, the solid angle that K forms at xπ
∗

is the fraction of volume
(the Lebesgue measure in S(xπ∗)) covered by K in a ball of radius ρ (again in S(xπ∗)) centered at
xπ
∗
, as ρ→ 0 (see, e.g., Section 2 in Desario & Robins, 2011).

3. We remark that considering the closures is necessary since ∆m! contains only points with rational coordinates; hence
it (as well as any subset of it) has measure zero.
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Since the Gaussian is symmetric in S(xπ∗) around xπ
∗
, and the limiting distribution of xπn

converges to the Gaussian, the limiting probability of xπn lying in K is positive. This holds for
every interior region K adjacent to xπ

∗
. Thus, Equation (1) again implies that r outputs σ∗ with

probability 1 in every interior region adjacent to xπ
∗
.

Step 3: Finally, since r has no holes and it outputs σ∗ with probability 1 in every interior region
adjacent to xπ

∗
, we conclude that r must also output σ∗ with probability 1 on π∗. � (Proof of

Theorem 1)

4. How Restrictive is the No Holes Property?

To complete the picture, we wish to show that the no holes condition that Theorem 1 imposes on
GSRs is indeed unrestrictive, by establishing that many prominent voting rules (in the sense of
receiving attention in the computational social choice literature) are GSRs with no holes. One issue
that must be formally addressed is that the definitions of prominent voting rules (see Section 2)
typically do not address how ties are broken. For example, the plurality rule ranks the alternatives
by their number of voters who rank them first; but what should we do in case of a tie? A common
practice is to adopt uniformly random tie-breaking; this is almost always used in political elections
(e.g., by throwing dice or drawing cards in small municipal elections where ties are not unlikely to
occur). From a theoretical point of view, randomized tie-breaking is necessary in order to achieve
neutrality with respect to the alternatives (Moulin, 1983).

We show that prominent voting rules are GSRs with no holes under a wide family of randomized
tie-breaking schemes, which we call inclusive tie-breaking.

Definition 3 (Inclusive tie-breaking). A tie-breaking scheme is called inclusive if it assigns a posi-
tive probability to each of the tied decisions at every stage.

Such tied decisions could vary for different rules. For rules that assign scores to alternatives and
order them according to their scores, the decisions correspond to choosing the order of alternatives
with identical scores. For rules that assign scores to rankings and choose the ranking with the highest
score, the decisions correspond to breaking ties among rankings with identical highest scores. While
most voting rules use tie-breaking only once (either initially or in the end), multi-stage protocols
such as single transferable vote (STV) use tie-breaking in each stage.

We note that uniformly random tie-breaking, which assigns equal probability to every decision,
is a special case of inclusive tie-breaking. Admittedly, inclusive tie-breaking does not capture deter-
ministic tie-breaking schemes (such as lexicographic tie-breaking). However, we strongly believe
that prominent voting rules other than the modal ranking rule are not monotone-robust with respect
to all distance metrics even if a deterministic tie-breaking scheme were used.

Before we demonstrate that prominent voting rules are GSRs with no holes, we show that the no
holes condition is implied by a property well-known in the social choice literature as consistency.
This yields a way of leveraging known results from the literature to easily establish that all posi-
tional scoring rules, the Kemeny rule, and single transferable vote (STV) are GSRs with no holes.
Intuitively, consistency means that if the output of a rule is identical on two profiles, then taking
their union should not change the output. For deterministic SWFs, consistency was first studied by
Young and Levenglick (1978), who observed that it is incomparable to, but usually much weaker
than, consistency of winning alternative in the case of SCFs. Later, Conitzer and Sandholm (2005)
showed that consistency (whether in rankings or in winning alternatives) is a necessary condition
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for a voting rule to be a maximum likelihood estimator under i.i.d. votes. We formalize a related,
but weaker notion of consistency for randomized SWFs.

Definition 4 (Weak consistency for rankings). A randomized SWF r is said to satisfy weak consis-
tency for rankings if Pr[r(π1) = σ] = 1 and Pr[r(π2) = σ] = 1 implies Pr[r(π1 ∪ π2) = σ] = 1
for all profiles π1 and π2, and all rankings σ ∈ L(A). Here, π1∪π2 denotes the profile representing
the union of π1 and π2.

For hyperplane rules (generalized scoring rules), weak consistency for rankings is equivalent to
convexity of the region where the rule outputs σ with probability 1, for every σ ∈ L(A). Now, we
are ready to prove the following implication.

Lemma 2. Any generalized scoring rule satisfying weak consistency for rankings has no holes.

Proof. Take a GSR r that satisfies weak consistency for rankings. Suppose for contradiction that r
has a hole at xπ for some profile π. Let r output σ with probability 1 in all interior regions adjacent
to xπ, but not on π. Let k be the number of distinct rankings that appear in π. Hence, S(xπ) is a
k-dimensional subspace of ∆m!.

If k = 1, then π has only one distinct ranking σ. Thus, xπσ = 1 and xπσ′ = 0 for all σ′ 6= σ.
By the definition of S(xπ), for every y ∈ S(xπ) we have yσ′ = 0 for all σ′ 6= σ. Thus, yσ = 1,
implying that S(xπ) = {xπ}. Hence, trivially, xπ cannot be a hole.

Let k > 1. Define

V =
{
v ∈ {−1, 0, 1}m!

∣∣∣ ∀σ ∈ L(A), vσ = 0⇔ xπσ = 0

∧ ∃σ ∈ L(A), vσ = 1 ∧ ∃σ ∈ L(A), vσ = −1
}
.

Now, for every v ∈ V , define the orthant

Ov =
{
y ∈ S(xπ)

∣∣∣ ∀σ ∈ L(A), (vσ = 1⇒ yσ > xπσ) ∧ (vσ = −1⇒ yσ < xπσ)
}
.

Note that we do not consider the orthants where all the k coordinates are higher (respectively,
lower) than those of xπ because such orthants do not have any points in S(xπ) as the sum of those
k coordinates must be equal to 1. The rest 3k − 2 orthants have non-empty intersection with S(xπ).
Further, since the interior regions adjacent to xπ surround it in the space S(xπ) and so do the 3k−2
orthants, each orthant Ov must have a point xv in some interior region adjacent to xπ, where the
output is σ. Now, a convexity lemma (Lemma 6 in the appendix) shows that we can get xπ as
a convex combination of points in {xv|v ∈ V },4 on all of which r outputs σ with probability 1.
Hence, due to weak consistency for rankings, r must also output σ with probability 1 on xπ, a
contradiction. Hence, r has no holes. � (Proof of Lemma 2)

Finally, we are ready to prove that prominent voting rules are GSRs with no holes under all
inclusive tie-breaking schemes (which contain uniformly random tie-breaking).

Theorem 2. Under any inclusive tie-breaking scheme, all positional scoring rules, the Kemeny
rule, STV, Copeland’s method, Bucklin’s rule, the maximin rule, Slater’s rule, and the ranked pairs
method are generalized scoring rules with no holes.

4. In Lemma 6, take FIX = {σ ∈ L(A)|xπσ = 0}.
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Proof. It can easily be checked that the f functions of the GSR constructions given by Xia and
Conitzer (2008) and the hyperplanes for the hyperplane rule constructions given by Mossel et
al. (2013) encode enough information (including all the ties) in their input to the g functions such
that it is possible to change the output of g from a winning alternative (for deterministic SCFs) to
any desired distribution over rankings (for randomized SWFs) for the rules mentioned in the state-
ment of the theorem. In particular, these rules can be implemented with any inclusive tie-breaking
scheme as GSRs.

It is well-known and easy to check that all positional scoring rules are consistent for rankings
(see Conitzer & Sandholm, 2005; Conitzer et al., 2009). Young and Levenglick (1978) showed that
the Kemeny rule is also consistent for rankings. Conitzer and Sandholm (2005) showed that STV is
consistent for rankings; later it was shown that STV is consistent for rankings only in the absence of
tie-breaking (Conitzer et al., 2009). It can be checked that under inclusive tie-breaking, STV returns
a single ranking with probability 1 if and only if there are no ties. Hence, consistency in the absence
of tie-breaking implies weak consistency for rankings. Thus, we have the following.

Lemma 3. Under any inclusive tie-breaking scheme, all positional scoring rules, the Kemeny rule,
and single transferable vote (STV) satisfy weak consistency for rankings.

Hence, the no holes property of all positional scoring rules, the Kemeny rule, and single trans-
ferable vote (STV) follows by Lemmas 2 and 3. Conitzer and Sandholm (2005) showed that other
rules such as Bucklin’s rule, Copeland’s method, the maximin rule, and the ranked pairs method
are not consistent for rankings even in the absence of ties. Hence, these rules do not satisfy weak
consistency for rankings. Still, we will show that they satisfy the no holes property as well, albeit
using a different (and significantly more involved) approach.

Take a hyperplane rule r. We want to show that r does not have a hole at a profile π. Let
k = |{σ ∈ L(A)|xπσ > 0}| be the number of distinct rankings in π. If k = 1, then as shown in the
proof of Lemma 2, S(xπ) = {xπ}, and there cannot be a hole at π. Assume k ≥ 2. For a set of
profiles P , let xP = {xπ′ |π′ ∈ P}.

Let dim(·) denote the Hausdorff dimension of a given subset of Rm!. For any set C ⊆ ∆m!, let
C denote its closure in Rm!. Hence, we have that dim(S(xπ)) = k − 1, because S(xπ) has k − 1
free variables.

Lemma 4. Let T denote the set of points in S(xπ) that lie on at least one of the hyperplanes of r.
Then, dim(T ) ≤ k − 2.

Proof. Take a hyperplane
∑

σ∈L(A)wσxσ = 0 of r. Consider its intersection with S(xπ). First,
we notice that all but k of the xσ’s must be set to zero. Among the remaining k, if we substitute
values for k − 2 of the variables, we get two equations in two variables, which can be seen to be
independent since the one obtained from the hyperplane has the RHS zero, while the one obtained
from S(xπ) has the RHS one. Hence, there is at most one solution of the pair of equations.

That is, every combination of values of k − 2 free variables lead to at most one solution for
the remaining variables. Thus, the dimension of the intersection of the hyperplane with S(xπ) is at
most k−2. Taking union over finitely many hyperplanes does not increase the Hausdorff dimension.
Hence, we have dim(T ) ≤ k − 2. � (Proof of Lemma 4)

Next, we describe an outline that we follow in order to prove that the no holes property is satis-
fied by many prominent voting rules. We consider rules that assign a score to every alternative, and
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then order them in a non-increasing or non-decreasing order of their scores, breaking ties among
alternatives with identical scores. This applies to Copeland’s method, the maximin rule, and Buck-
lin’s rule.5 Such rules return a single ranking with probability 1 if and only if the scores of the
alternatives are strictly ordered according to that ranking. Let us denote the score of alternative c in
profile π by SCπ(c).

1. For the sake of contradiction, we assume that the rule under consideration, say r, has a hole at
a profile π. Hence, r outputs a ranking τ with probability 1 in every interior region adjacent
to xπ, but there exists a ranking τ ′ 6= τ such that Pr[r(π) = τ ′] > 0.

2. Since τ ′ 6= τ , there must exist alternatives a and b such that a �τ b, but b �τ ′ a. Due to the
inclusive tie-breaking scheme, we must have that

• SCπ(b) ≥ SCπ(a), and

• SC(a) > SC(b) in every interior region adjacent to xπ.

3. Finally, we find a neighborhood of π where we also have SC(b) ≥ SC(a). Formally, we find
a set of profiles P such that

• for every profile π′ ∈ P , SCπ
′
(b) ≥ SCπ

′
(a), and xπ

′
either lies in an interior region

adjacent to xπ or on one of the hyperplanes of r, and

• dim(xP ) = k − 1.

Given this, we argue that a contradiction can be reached. Recall that T is the intersection of the
hyperplanes of r with S(xπ). Suppose that xP ⊆ T . Then, xP ⊆ T , which is impossible because
dim(xP ) > dim(T ) (Lemma 4). Hence, there must exist a profile π′ such that xπ

′ ∈ xP \ T lies in
an interior region adjacent to xπ. However SCπ

′
(b) ≥ SCπ′(a), which is the desired contradiction.

Note that the first two steps are common to all voting rules. All we need to do is to find a set of
profiles P satisfying the stated conditions. For many of the voting rules, P is obtained by increasing
xπσ∗ for some σ∗ ∈ π, and decreasing xπσ for all σ 6= σ∗ that appear in π. Formally,

P =

{
π′

∣∣∣∣∣ ∀σ ∈ L(A),

xπ
′
σ =


0, if xπσ = 0,

xπσ∗ + δ, if σ = σ∗,

xπσ − δσ, otherwise,

where 0 < δ ≤ δmax ∧
∑

σ 6=σ∗,xπσ>0

δσ = δ

}
,

By the construction, for every profile π′ ∈ P , the weights of the edges of the weighted PM
graph of π increase in the direction of σ∗, and decrease in the direction opposite to σ∗ (except the
edges with weights 1 and 0 do not change). If δmax is chosen to be small enough, this change does
not alter the direction of any existing edge in the unweighted PM graph, but breaks all existing
ties between pairs of alternatives in one direction or the other. Clearly, dim(xP ) = k − 1 since
decreasing the fractions of all rankings σ 6= σ∗ with xπσ > 0 so that the decrements sum up to δ

5. We will see that Slater’s rule, which assigns a score to every ranking, can also be handled in this outline.
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gives k − 2 degrees of freedom choosing δ gives another degree of freedom. This observation is
very crucial to the proofs for many of the voting rules.

Below, we describe appropriate choices of σ∗ and δmax for various prominent voting rules,
namely for Copeland’s method, Bucklin’s rule, the maximin rule, and Slater’s rule. We also provide
a proof for the ranked pairs method in which we use completely different arguments.

(a) Copeland’s method.
Recall that for Copeland’s method, SCπ(c) is the number of outgoing edges from c in the

unweighted PM graph of π. If there are no ties in the unweighted PM graph of π, then choosing
any σ∗ ∈ π and a small enough δmax ensures that the set P obtained fits the requirements of step 3
of the outline and preserves all the edges in the unweighted PM graph. Hence, SC(b) ≥ SC(a) is
preserved, as required.

In case of ties, let TIEπ(c) be the set of alternatives with which c is tied in the unweighted PM
graph of π.6 For σ ∈ L(A), let

s(σ) =
∑

c∈TIEπ(b)

I[b �σ c]−
∑

c∈TIEπ(b)

I[c �σ b]−
∑

c∈TIEπ(a)

I[a �σ c] +
∑

c∈TIEπ(a)

I[c �σ a].

Let nπx�y denote the number of rankings that prefer alternative x to alternative y in π. Summing
over all rankings in π and changing the order of the summation in each term, we get

n∑
i=1

s(σi) =
∑

c∈TIEπ(b)

(
nπb�c − nπc�b

)
−

∑
c∈TIEπ(a)

(
nπa�c − nπc�a

)
= 0,

where the last equality holds due to the definitions of TIEπ(b) and TIEπ(a). Also, note that the
sum evaluates to zero even if either TIEπ(b) or TIEπ(a) or both are empty sets.

Hence, there exists a ranking σ∗ ∈ π such that s(σ∗) ≥ 0. There exists a δmax > 0 such that
increasing xπσ∗ by at most δmax and decreasing the fractions of other rankings that appear in π would
not change the non-tied edges of the PM graph, and among the ties, b would defeat at least as many
previously tied alternatives as a does. Hence, such a change preserves SC(b) ≥ SC(a). Further,
δmax is chosen to be small enough so that for the new profile π′, xπ

′
does not fall in an interior

region that is not adjacent to xπ, i.e., it either lies in an interior region adjacent to xπ or on one
of the hyperplanes of Copeland’s method. Thus, the set of profiles P obtained in this way fits the
requirements of step 3 of the outline.

(b) Bucklin’s rule.
Let SCπ(a) = k. We know that SCπ(b) ≤ SCπ(a) = k.7 Let T π(j, c) denote the fraction of

rankings where c is ranked in the first j positions. Then, by the definition of the Bucklin score,

T π(k, b) > 1/2 and T π(k − 1, a) ≤ 1/2. (2)

If we find σ∗ such that the set P defined in the outline preserves the two inequalities in Equa-
tion (2), then we will have SC(a) ≥ k and SC(b) ≤ k, i.e., SC(b) ≤ SC(a) will be preserved.

Let T π(k, b) = 1/2 +γ. Then, it is easy to check that if the fractions of all the rankings in π are
altered by less than γ/m!, then we would still have T (k, b) > 1/2. Now, we simply observe that

6. We add zero to the Copeland score of an alternative for its tied edges; this is also known as Copeland0.
7. Recall that the Bucklin score is to be minimized.
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since T π(k − 1, a) ≤ 1/2, more than half of the rankings in π, in particular, at least one ranking
ranks a not in the first k−1 positions. Choosing this as σ∗ and taking δmax < γ/m! (and also small
enough so that the new profile does not lie in an interior region not adjacent to xπ) would preserve
both inequalities in Equation (2).

(c) The maximin rule.
Here, SCπ(c) is the minimum of the weights of the outgoing edges from c in the weighted PM

graph of π. Let MINW π(c) denote the set of alternatives to which c has an outgoing edge with the
minimum weight in the weighted PM graph of π. Now, take an alternative c ∈MINW π(a). Let w
be the weight of the edge from a to c. First, we note that w 6= 1, because w = 1 would imply that a
has an outgoing edge with weight 1 to every other alternative, i.e., a is ranked first in all votes in π.
This would contradict SCπ(b) ≥ SCπ(a). Next, if w = 0, then c beats a in every vote in π. Now,
all profiles in S(xπ) have the same set of rankings as π, and hence have zero maximin score of a.
Thus, SC(b) ≥ SC(a) is trivially satisfied in any point of S(xπ) and, subsequently, we can define
P so that xP is the union of the interior regions adjacent to xπ.

Let us assume w ∈ (0, 1). Let Rc�a(π) be the set of rankings in π where c � a, and define
Ra�c to be the set of rankings in π where a � c. Since w ∈ (0, 1), Ra�c 6= ∅ and Rc�a 6= ∅.
To obtain P , we do not choose one σ∗ ∈ π, increase its fraction and decrease the fractions of the
rest of the rankings in π. Rather, we increase the fractions of all rankings in Rc�a by a total of
δ, and decrease the fractions of all rankings in Ra�c by a total of δ, where 0 < δ ≤ δmax. Once
again, we choose δmax > 0 small enough so that xP does not intersect with interior regions not
adjacent to xπ. Increasing the fractions of all rankingsRc�a so that the increments add up to δ gives
|Rc�a| − 1 degrees of freedom. Similarly, decreasing the fractions of all rankings in Ra�c so that
the decrements add up to δ gives another |Ra�c| − 1 degrees of freedom. Finally, choosing δ itself
gives one degree of freedom. Hence, the set of profiles P obtained satisfy dim(xP ) = k − 1.

Further, note that by construction, the weight of the edge from a to c drops by δ. Hence, the
maximin score of a also drops by at least (in fact, by exactly) δ. To show that the rest of the proof
follows from the outline, we need to show that the maximin score of b drops by at most δ. For each
d ∈ A \ {b}, the weight of the edge from b to d is the sum of fractions of a subset Rd of rankings
in π. Now, the collective weight of rankings in Rd ∩ Ra�c drops by at most δ, and the collective
weight of rankings in Rd ∩Rc�a can only increase. Hence, the weight of each outgoing edge from
b drops by at most δ, which means that the maximin score of b also drops by at most δ, as required.

(d) Slater’s rule.
Recall that Slater’s rule associates a score to every ranking, and then chooses the ranking with

the lowest Slater score,8 breaking ties to choose among all rankings with the lowest Slater score.
Even though Slater’s rule does not associate scores to alternatives, we show that it fits our framework
with a little modification. First, if there are no ties in the unweighted PM graph of a profile π, then
similarly to Bucklin’s rule, its unweighted PM graph and therefore the Slater scores of all rankings
can be preserved in a small enough neighborhood of π, eliminating the possibility of π being a hole.
In the general case, we slightly abuse the notation, and use SCπ(σ) to denote the Slater score of
ranking σ in profile π.

As in the step 1 of the outline, assume that π is a hole for Slater’s rule; the rule returns τ
with probability 1 in all interior regions adjacent to xπ, but returns a different ranking τ ′ with a
positive probability on π. Then, due to all-inclusivity of the tie-breaking scheme, we must have

8. Recall that Slater’s score is the disagreement of a ranking from a profile, which must be minimized.
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SCπ(τ ′) ≤ SCπ(τ).9 We again need to find a σ∗ and its associated set of profiles P . P must
satisfy all the conditions in the third step of the outline, except we replace the inequality in the
scores of alternatives by the inequality in the scores of rankings, namely SC(τ ′) ≤ SC(τ).

Since SCπ(σ) counts the number of pairwise disagreements of σ with the unweighted PM graph
of π, and since small deviations in the fractions xπσ would not change the edges that are not tied, we
concentrate on the edges of the PM graph of π that are tied. Formally, let TIE(π) denote the set of
ordered pairs of alternatives that are tied in the PM graph of π. For σ ∈ L(A), define

s(σ) =
∑

(c,d)∈TIE(π)
s.t. c�τ ′d

I[c �σ d]−
∑

(c,d)∈TIE(π)
s.t. c�τd

I[c �σ d].

It is clear that taking σ∗ ∈ π such that s(σ) ≥ 0 would ensure that in every profile in P , at least
as much will be added to the Slater score of τ as to the Slater score of τ ′ compared to π, ensuring
SC(τ ′) ≤ SC(τ). To see why such a ranking exists, we sum s(σi) over all votes σi in π and, by
interchanging the order of summations, we get

n∑
i=1

s(σi) =
∑

(c,d)∈TIE(π)
s.t. c�τ ′d

nπc�d −
∑

(c,d)∈TIE(π)
s.t. c�τd

nπc�d

=
n

2
·
(∣∣{(c, d) ∈ TIE(π) s.t. c �τ ′ d}

∣∣− ∣∣{(c, d) ∈ TIE(π) s.t. c �τ d}
∣∣) (3)

= 0,

where the last step follows since both terms inside the brackets in Equation (3) are the number of
unordered pairs of alternatives that are tied in the PM graph of π. Hence, there exists a ranking
σ∗ ∈ π with s(σ∗) ≥ 0, as required. Finally, δmax is chosen so that the non-tied pairs in the PM
graph stay non-tied, and the new profile does not fall in an interior region that is not adjacent to xπ.

(e) The ranked pairs method.
This proof does not follow the general outline given above. For an ordered pair of alternatives

(c, d), letwπ(c, d) denote the weight of the edge from c to d in the weighted PM graph of π. Suppose
r outputs a ranking τ with probability 1 in every interior region adjacent to xπ, but does not output
τ with probability 1 on π.

Let L denote the list in the ranked pairs process in π where ordered pairs of alternatives are
sorted by their weight. Let ∆ denote the minimum positive difference between the weights of any
two pairs in L. Let (a, b) be the first pair in the list that is chosen with a positive probability and is
inconsistent with τ (such a pair exists because r does not output τ with probability 1 on π).

Lemma 5. Let PRE denote the set of pairs in L that have weight strictly greater than the weight of
(a, b). Then, each pair in PRE must be chosen with probability 1 or 0 in the ranked pairs process
on π, and the subset that is chosen with probability 1 must be consistent with τ .

Proof. Let Lp be the largest prefix of L such that such that every pair in Lp is chosen with proba-
bility 1 or 0 in the ranked pairs process under an inclusive tie-breaking scheme.10 Let Cp ⊆ Lp be
the set of pairs in Lp that are chosen with probability 1.

9. As with Bucklin’s rule, the sign of the inequality is reversed because the Slater ranking minimizes the Slater score.
10. Note that if Lp has a group of pairs with equal weight, they will all be chosen with probability 1 or all be chosen with

probability 0 irrespective of the tie-breaking.
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First, we argue that all pairs in Cp are consistent with τ . Let P denote the space of profiles
obtained by changing the fractions of all the rankings by at most ∆/(2m!). Note that this may only
break ties in L, but cannot invert the order of two pairs that were strictly ordered by their weight in
L. Similarly to the general outline, P has Hausdorff dimension k − 1, and hence contains a point
in an interior region adjacent to xπ. Further, since ties do not matter for pairs in P , all pairs in P
chosen with probability 1 in π would also be chosen with probability 1 in all profiles in P . Hence,
all pairs in Cp must be consistent with τ .

Since r does not output τ with probability 1 on π, Lp 6= L. Consider the group G of pairs with
equal weight that follows Lp. First, G cannot be consistent with Cp, otherwise it would have been
part of Lp. Therefore, there must exist a pair p ∈ G that is chosen with a probability strictly in (0, 1)
(i.e., not equal to 0 or 1). Thus, there must exist a feasible subset of G such that when it is chosen
in the ranked pairs process along with Cp to produce a partial order l, l is inconsistent with p. If l
is consistent with τ , then p must be inconsistent with τ . If l is inconsistent with τ , then since Cp is
consistent with τ , there must exist a pair in G that is inconsistent with τ .

In either case, all pairs in Cp are consistent with τ , and the group G of pairs with equal weight
that follows Cp has a pair that is inconsistent with τ . Thus, (a, b) ∈ G, and PRE = Lp. � (Proof
of Lemma 5)

Next, we argue that 0 < wπ(a, b) < 1. If wπ(a, b) = 0, then wπ(b, a) = 1. An ordered pair
with weight 1 is consistent with all rankings in the profile. Hence, the set of ordered pairs in π with
weight 1 do not contain a cycle. Thus, they are all selected with probability 1 in the ranked pairs
process, which is a contradiction as we assumed (a, b) is chosen with a positive probability on π.

On the other hand, if wπ(a, b) = 1, then all rankings in π must prefer a to b. However, all
profiles in S(xπ) have the same set of rankings as π. Hence, the weight of (a, b) is 1 everywhere
in S(xπ). Due to the argument presented in the previous paragraph, this implies that in an interior
region K adjacent to xπ, a is preferred to b with probability 1. This is a contradiction because r
outputs τ with probability 1 in K that prefers b to a.

Hence, indeed 0 < wπ(a, b) < 1. Let Ra�b be the set of rankings in π that prefer a to b, and let
Rb�a be the set of rankings in π that prefer b to a. Since 0 < wπ(a, b) < 1, we have Ra�b 6= ∅ and
Rb�a 6= ∅.

Recall that ∆ is the minimum positive difference between the weights of any two pairs in L.
Choose δmax = ∆/2. Let P denote the set of profiles obtained by increasing the fractions of
rankings in Ra�b by a total of δ and decreasing the fractions of the rankings in Rb�a by a total of δ,
for 0 < δ < δmax. This increases the weight of (a, b) by exactly δ and changes the weight of every
other pair by at most δ. Due to the choice of δmax, it is clear that the set of pairs with weight greater
than that of (a, b) must be PRE for every profile in P .

Further, the changes in the fractions can only break ties among pairs in PRE, but cannot invert
the order of two pairs with different weight in π. Since ties do not matter for pairs in PRE,11 we
see that the same subset of pairs in PRE are chosen in every profile in P . This would imply that
under an inclusive tie-breaking scheme, (a, b) has a positive probability of being selected in each
profile in P . However, P has Hausdorff dimension k − 1, and therefore must contain a point in an
interior region K adjacent to xπ. This contradicts the fact that r outputs τ that prefers b to a with
probability 1 in K. Hence, π cannot be a hole. � (Proof of Theorem 2)

11. The pairs in P that were chosen with probability 1 and 0 in π would still be chosen with probability 1 and 0,
respectively.
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The comprehensive list of GSRs with no holes includes all prominent rules that are known to be
GSRs (Xia & Conitzer, 2008; Mossel et al., 2013) — suggesting that the no holes property does not
impose a significant restriction beyond the assumption that the rule is a GSR. One prominent rule
is conspicuously missing — the fascinating but peculiar Dodgson rule (Dodgson, 1876), which is
indeed not a GSR (Xia & Conitzer, 2008).

5. Impossibility for PM-c and PD-c Rules

Theorem 1 establishes the uniqueness of the modal ranking rule within a large family of voting rules
(GSRs with no holes). Next we further expand this result by showing that no PM-c or PD-c rule
is monotone-robust with respect to all distance metrics. Thus, the modal ranking rule is the unique
rule that is monotone-robust with respect to all distance metrics in the union of GSRs with no holes,
PM-c rules, and PD-c rules. Crucially, as shown in Figure 1, the families of PM-c and PD-c rules
are disjoint, and neither one is a strict subset of GSRs.

Theorem 3. For m ≥ 3 alternatives, no PM-c rule or PD-c rule is monotone-robust with respect
to all distance metrics.

Proof. In both parts of this proof (for PM-c rules and PD-c rules), we use an intuitive, but somewhat
technical lemma, which is given as Lemma 7 in the appendix. Let A = {a1, . . . , am} be the set
of alternatives. We use a4...m as shorthand for a4 � . . . � am. Fix τ = a1 � . . . � am, and
σ∗ = a2 � a1 � a3 � a4...m.

First, we prove that no PM-c rule is monotone-robust with respect to all distance metrics. In
particular, using Lemma 7, we will construct a distance metric d and a d-monotonic noise model G
such that no PM-c rule is accurate in the limit for G.

Consider the distribution D over L(A) defined as follows:

PrD[a2 � a1 � a3 � a4...m] = 4
9 ,

PrD[a1 � a2 � a3 � a4...m] = 3
9 ,

PrD[a1 � a3 � a2 � a4...m] = 2
9 ,

PrD[σ] = 0, for all σ not covered above.

By Lemma 7, we know that there exist a distance metric d and a d-monotonic noise model G such
that PrG[σ;σ∗] = PrD[σ] for every σ ∈ L(A).

Given infinite samples from G(σ∗), a 5/9 fraction — a majority — of the votes have a1 in the
top position. A 7/9 fraction of the votes prefer a2 to a3, while all votes prefer a2 and a3 to any
other alternative besides a1. Clearly, ai is preferred to ai+1 for i ≥ 4. Hence, in the PM graph, the
alternatives are ordered according to τ = a1 � a2 � a3 � a4...m. Thus, every PM-c rule outputs τ
in the limit, which is not the ground truth. Thus, no PM-c rule is accurate in the limit for G.

The construction for PD-c rules is more complex. Here, we will show that there is a noise model
such that, given infinite samples for a specific ground truth, the PD graph of the profile induces a
ranking that is different from the ground truth. The distribution D above is not sufficient for our
purposes since there are pairs of alternatives (e.g., a2 and a3) that have the same probability of
appearing in the first three positions of the outcome; hence, the PD graph of profiles with infinite
samples may not be complete. Instead, we will use a distribution D′ so that all probability values of
this kind are different.
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Let 0 = δ1 < δ2 < ... < δm so that
∑m

i=1 δi = 1. Define the probability distribution D′′ as
follows. Pick one out of the m alternatives so that alternative ai is picked with probability δi. Rank
alternative ai last and complete the ranking by a uniformly random permutation of the alternatives
in L(A) \ {ai}. Now, the distribution D′ is defined as follows: With probability 9/10 (resp., 1/10),
the output ranking is sampled from the distribution D (resp., D′′).

The important property of distribution D′′ is that for every k ∈ [m − 1], the probability that
alternative ai is ranked in the first k positions is exactly (1−δi)k

m−1 , i.e., strictly decreasing in i. On the
other hand, distributionD has the property that for every k ∈ [m−1], the probability that alternative
ai is ranked in the first k positions is non-increasing in i. Hence, their linear combination D′ has
the property that for every k ∈ [m − 1], the probability that alternative ai is ranked in the first k
positions is strictly decreasing in i. Additionally,

arg max
τ∈L(A)

PrD′ [τ ] = {σ∗}.

Hence, we can apply Lemma 7 to obtain a distance metric d′ and a d′-monotonic noise model G′ so
that an infinite number of samples from G′(σ∗) induce a complete PD graph corresponding to the
ranking τ = a1 � a2 � a3 � a4...m, which is different from the ground truth σ∗. Thus, no PD-c
rule is accurate in the limit for G′.

We conclude that no PM-c rule or PD-c rule is monotone-robust with respect to all distance
metrics. � (Proof of Theorem 3)

The restriction on the number of alternatives in Theorem 3 is indeed necessary. For two alterna-
tives, L(A) contains only two rankings, and all reasonable voting rules coincide with the majority
rule that outputs the more frequent of the two rankings. It can be shown that, in this case, the
majority rule is monotone-robust with respect to all distance metrics.

It is known that the union of PM-c and PD-c rules includes all positional scoring rules, Bucklin’s
rule, the Kemeny rule, ranked pairs, Copeland’s method, and Slater’s rule (Caragiannis et al., 2013).
Two prominent SWFs that are neither PM-c nor PD-c are the maximin rule and STV. In the example
given in the proof of Theorem 3, the maximin rule and STV would also rank the wrong alternative
(a1) in the first position with probability 1 in the limit. Thus, Theorem 3 gives another proof that
prominent voting rules are not monotone-robust with respect to all distance metrics.

6. Discussion

Perhaps our main conceptual contribution is the realization that the modal ranking rule — a nat-
ural voting rule that was previously disregarded — can be exceptionally useful in crowdsourcing
settings. Interestingly, from a classic social choice viewpoint the modal ranking rule would appear
to be a poor choice. It does satisfy some axiomatic properties, such as Pareto efficiency — if all
voters rank x above y, the output ranking places x above y (indeed, the rule always outputs one of
the input rankings). But the modal ranking rule fails to satisfy many other basic desiderata, such
as monotonicity — if a voter pushes an alternative upwards, and everything else stays the same,
that alternative’s position in the output should only improve. So our uniqueness result implies an
impossibility: a voting rule that is monotone-robust with respect to any distance metric d and is a
GSR with no holes, PD-c rule, or PM-c rule, cannot satisfy the monotonicity property. A similar
statement is true for any social choice axiom not satisfied by the modal ranking rule. That said,
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social choice axioms like monotonicity were designed with subjective opinions and notions of so-
cial justice in mind. These axioms are incompatible with the settings that motivate our work on a
conceptual level, and — as our results show — on a technical level.
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Appendix

Lemma 6 (Convexity Lemma). Consider a point x ∈ ∆m!. Let FIX ⊆ L(A), and V ARY =
L(A) \ FIX . Further, assume that {σ ∈ L(A)|xσ = 0} ⊆ FIX , and let k = |V ARY | ≥ 2.
Define

V =
{
v ∈ {−1, 0, 1}m!

∣∣∣ ∀σ ∈ L(A), vσ = 0⇔ σ ∈ FIX

∧ ∃σ ∈ L(A), vσ = 1 ∧ ∃σ ∈ L(A), vσ = −1
}
.

For every v ∈ V , define the orthant

Ov =
{
y ∈ ∆m!

∣∣∣ ∀σ ∈ L(A), (vσ = 0⇒ yσ = xσ) ∧ (vσ = 1⇒ yσ > xσ)

∧ (vσ = −1⇒ yσ < xσ)
}
.

Given points xv ∈ Ov for all v ∈ V , x ∈ co{xv|v ∈ V }, where co denotes the convex hull.

Proof. We prove this by induction on k.
For k = 2, let V ARY = {σ1, σ2}. Thus, Ov contains two orthants: one consisting of y’s

where yσ1 < xσ1 and yσ2 > xσ2 , and another consisting of y’s where yσ1 > xσ1 and yσ2 < xσ2 .
We are given a point x1 in the former orthant and a point x2 in the latter orthant. For both points,
the values of coordinates other than σ1 and σ2 match those for x. Hence, it is easy to check that
x = λx1+(1−λ)x2, where λ = (xσ1−x2σ1)/(x1σ1−x

2
σ1). It is further easy to check that 0 < λ < 1.

Hence, x ∈ co{x1, x2}.
Suppose that the theorem holds for all FIX, V ARY with k = |V ARY | = d − 1, for some

d ≤ m!. Let us consider FIX, V ARY with k = |V ARY | = d. Define V and Ov for every v ∈ V
from FIX . Take any τ ∈ V ARY , construct F̂ IX = FIX ∪ {τ}, and define V̂ and Ôv for every
v ∈ V̂ according to F̂ IX .

If we can find a point x̂v ∈ Ôv for each v ∈ V̂ which is also in co{xv|v ∈ V }, then by the
induction hypothesis, we have x ∈ co{x̂v|v ∈ V̂ } ⊆ co{xv|v ∈ V }. Take any v ∈ V̂ . We
construct v+1, v−1 ∈ V as follows: v+τ = +, v−τ = −, and v+σ v

−
σ = vσ for all σ 6= τ . We show

that we can find x̂v ∈ Ôv as a convex combination of xv
+

and xv
−

. It is easy to check that taking
x̂v = λxv

+
+ (1 − λ)xv

−
works, where λ = (xτ − xv

−
τ )/(xv

+

τ − xv
−
τ ). It is easy to check that

0 < λ < 1. Further, we have x̂vτ = xτ by construction, which is desired because τ ∈ F̂ IX . For
every σ 6= τ , v+σ v

−
σ = vσ. Hence,

vσ = +⇒
(
xv

+

σ > xσ ∧ xv
−
σ > xσ

)
⇒ x̂vσ > xσ,
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and
vσ = − ⇒

(
xv

+

σ < xσ ∧ xv
−
σ < xσ

)
⇒ x̂vσ < xσ.

For arbitrary v ∈ V̂ , we found x̂v ∈ Ôv, which is also in co{xv|v ∈ V } as desired. Thus,
x ∈ co{xv|v ∈ V }. � (Proof of Lemma 6)

Lemma 7. Given a specific ranking σ∗ ∈ L(A) and a probability distribution D over the rankings
in L(A) such that

arg max
τ∈L(A)

PrD[τ ] = {σ∗},

there exists a distance metric d over L(A) and a d-monotonic noise model G with PrG[σ;σ∗] =
PrD[σ] for every σ ∈ L(A).

Proof. First, let V = {PrD[σ]|σ ∈ L(A)} be the set of distinct probability values in D. Now, we
construct the distance metric d as follows. For all σ ∈ L(A), set d(σ, σ∗) = d(σ∗, σ) = |{v ∈
V |v > PrD[σ]}| for every σ ∈ L(A). For every pair of rankings σ, σ′ different than σ∗, we set
d(σ, σ′) = 0 if σ = σ′ and d(σ, σ′) = d(σ, σ∗) + d(σ′, σ∗).

We can easily show that the function d is indeed a distance metric. The first two properties are
preserved by definition. For the triangle inequality, we wish to prove that d(σ, σ′) + d(σ′, σ′′) ≥
d(σ, σ′′) for all σ, σ′, σ′′ ∈ L(A). The inequality clearly holds when any two of the three rankings
are identical. If all three rankings are distinct, we take two cases.

1. Suppose either σ = σ∗ or σ′′ = σ∗. Without loss of generality, let us assume σ = σ∗.
Then, the above inequality is obvious since, by the definition of d, d(σ′, σ′′) ≥ d(σ∗, σ′′) =
d(σ, σ′′).

2. Suppose that neither σ nor σ′′ is equal to σ∗. Then, again by the definition of d, the LHS of
the above inequality becomes

d(σ∗, σ) + 2d(σ∗, σ′) + d(σ∗, σ′′) ≥ d(σ∗, σ) + d(σ∗, σ′′) = d(σ, σ′′).

We now define the noise model G as PrG[σ;σ∗] = PrD[σ] for every σ ∈ L(A) and

PrG[σ;σ′] =
1/(1 + d(σ, σ′))∑

τ∈L(A) 1/(1 + d(τ, σ′))

for σ′ 6= σ∗. The property PrG[σ;σ′] ≥ Pr[σ′′;σ′] iff d(σ;σ′) ≤ d(σ′′, σ′) is obvious if σ′ 6= σ∗.
Otherwise, recall that PrG[σ;σ∗] = PrD[σ] and, clearly, PrG[σ;σ∗] ≥ PrG[σ′;σ∗] iff |{v ∈ V |v >
PrD[σ]}| ≤ |{v ∈ V |v > PrD[σ′]}|, i.e., d(σ, σ∗) ≤ d(σ′, σ∗). � (Proof of Lemma 7)
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