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The maximum Nash welfare (MNW) solution — which selects an allocation that maximizes the product of
utilities — is known to provide outstanding fairness guarantees when allocating divisible goods. And while
it seems to lose its luster when applied to indivisible goods, we show that, in fact, the MNW solution is
unexpectedly, strikingly fair even in that setting. In particular, we prove that it selects allocations that are
envy free up to one good — a compelling notion that is quite elusive when coupled with economic efficiency.
We also establish that the MNW solution provides a good approximation to another popular (yet possibly
infeasible) fairness property, the maximin share guarantee, in theory and — even more so — in practice.
While finding the MNW solution is computationally hard, we develop a nontrivial implementation, and
demonstrate that it scales well on real data. These results lead us to believe that MNW is the ultimate
solution for allocating indivisible goods, and underlie its deployment on a popular fair division website.
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1. INTRODUCTION
We are interested in the problem of fairly allocating indivisible goods, such as jewelry
or artworks. But to better understand the context for our work, let us start with an
easier problem: fairly allocating divisible goods. Specifically, let there be m homoge-
neous divisible goods, and n players with linear valuations over these goods, that is, if
player i receives an xig fraction of good g, her value is vi(xi) =

∑
g xigvi(g), where vi(g)

is her non-negative value for the (entire) good g alone.
The question, of course, is what fraction of each good to allocate to each player;

and it has an elegant answer, given more than four decades ago by Varian [1974].
Under his competitive equilibrium from equal incomes (CEEI) solution, all players are
endowed with an equal budget, say $1 each. The equilibrium is an allocation coupled
with (virtual) prices for the goods, such that each player buys her favorite bundle of
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goods for the given prices, and the market clears (all goods are sold). One formal way to
argue that this solution is fair is through the compelling notion of envy freeness [Foley
1967]: Each player weakly prefers her own bundle to the bundle of any other player.
This property is obviously satisfied by CEEI, as each player can afford the bundle of
any other player, but instead chose to buy her own bundle.

While the CEEI solution may seem technically unwieldy at first glance, it always
exists, and, in fact, has a very simple structure in the foregoing setting: the CEEI allo-
cations (which are what we care about, as the prices are virtual) exactly coincide with
allocations x that maximize the Nash social welfare

∏
i vi(xi) [Arrow and Intriliga-

tor 1982, Volume 2, Chapter 14]. Consequently, a CEEI allocation can be computed in
polynomial time via the convex program of Eisenberg and Gale [1959].

Let us now revisit our original problem — that of allocating indivisible goods, under
additive valuations: the utility of a player for her bundle of goods is simply the sum of
her values for the individual goods she receives. This is an inhospitable world where
central fairness notions like envy freeness cannot be guaranteed (just think of a single
indivisible good and two players). Needless to say, the existence of a CEEI allocation
is no longer assured.

Nevertheless, the idea of maximizing the Nash social welfare (that is, the prod-
uct of utilities) seems natural in and of itself [Ramezani and Endriss 2010; Cole and
Gkatzelis 2015]. Informally, it hits a sweet spot between Bentham’s utilitarian no-
tion of social welfare — maximize the sum of utilities — and the egalitarian notion of
Rawls — maximize the minimum utility. Moreover, this solution is scale-free, in the
sense that scaling a player’s valuation function would not change the outcome [Moulin
2003]. But, when the maximum Nash welfare solution is wrenched from the world of
divisible goods, it seems to lose its potency. Or does it?

Our goal in this paper is to demonstrate the “unreasonable effectiveness” [Wigner
1960] — or unreasonable fairness, if you will — of the maximum Nash welfare (MNW)
solution, even when the goods are indivisible. We wish to convince the reader that

... the MNW solution exhibits an elusive combination of fairness and efficiency properties,
and can be easily computed in practice. It provides the most practicable approach to date
— arguably, the ultimate solution — for the division of indivisible goods under additive
valuations.

1.1. Real-World Connections and Implications
Our quest for fairer algorithms is part of the growing body of work on practical applica-
tions of computational fair division [Budish 2011; Ghodsi et al. 2011; Aleksandrov et al.
2015; Procaccia and Wang 2014; Kurokawa et al. 2015]. We are especially excited about
making a real-world impact through Spliddit (www.spliddit.org), a not-for-profit fair
division website [Goldman and Procaccia 2014]. Since its launch in November 2014,
the website has attracted more than 60,000 users. The motto of Spliddit is provably fair
solutions, meaning that the solutions obtained from each of the website’s five applica-
tions satisfy guaranteed fairness properties. These properties are carefully explained
to users, thereby helping users understand why the solutions are fair and increasing
the likelihood that they would be adopted (in contrast, trying to explain the algorithms
themselves would be much trickier).

One of Spliddit’s five applications is allocating goods. In our view it is the hard-
est problem Spliddit attempts to solve, and the current solution leaves something
to be desired; here is how it works. First, to express their preferences, users simply
need to divide 1000 points between the goods. This simple elicitation process relies
on the additivity assumption, and is the reason why, in our view, it is indispensable
in practical applications. Given these inputs, the algorithm considers three levels of
fairness: envy freeness (explained above), proportionality (each player receives 1/n of



her value for all the goods) , and maximin share guarantee (each player i receives a
bundle worth at least maxX1,...,Xn

minj vi(Xj), where X1, . . . , Xn is a partition of the
goods into n bundles). The algorithm finds the highest feasible level of fairness, and
subject to that, maximizes utilitarian social welfare. Importantly, a maximin share al-
location (which gives each player her maximin share guarantee) may not exist, but a
(2/3)-approximation thereof is always feasible, that is, each player can receive at least
2/3 of her maximin share guarantee [Procaccia and Wang 2014]. This allows Spliddit
to provide a provable fairness guarantee for indivisible goods. That said, a (full) max-
imin share allocation can always be found in practice [Bouveret and Lemaı̂tre 2016;
Kurokawa et al. 2016].

While the algorithm generally provides good solutions, it is highly discontinuous,
and its direct reliance on the maximin share alone — when envy freeness and propor-
tionality cannot be obtained — sometimes leads to nonintuitive outcomes. For example,
consider this excerpt from an email from sent by a Spliddit user on January 7, 2016:

“Hi! Great app :) We’re 4 brothers that need to divide an inheritance of 30+ furniture items.
This will save us a fist fight ;) I played around with the demo app and it seems there are
non-optimal results for at least two cases where everyone distributes the same amount of
value onto the same goods. ... Try 3 people, 5 goods, with everyone placing 200 on every
good. ... [This] case gives 3 to one person and 1 to each of the others. Why is that?”

The answer to the user’s question is that envy freeness and proportionality are in-
feasible in the example, so the algorithm seeks a maximin share allocation. In every
partition of the five goods into three bundles there is a bundle with at most one good
(worth 200 points), hence the maximin share guarantee of each player is 200 points.
Therefore, giving three goods to one player and one good to each of the others indeed
maximizes utilitarian social welfare subject to giving each player her maximin share
guarantee. Note that the MNW solution produces the intuitively fair allocation in this
example (two players receive two goods each, one player receives one good).

Based on the results described below, we firmly believe that the MNW solution is
superior to the incumbent algorithm for allocating goods (and to every other approach
we know of, as we discuss below). It has been deployed on Spliddit on May 24, 2016.

1.2. Our Results
In order to circumvent the possible nonexistence of envy-free allocations, we consider a
slightly relaxed version, envy freeness up to one good (EF1). In an allocation satisfying
this property, player i may envy player j, but the envy can be eliminated by removing
a single good from the bundle of player j. We show that the MNW solution always
outputs an allocation that is envy free up to one good, as well as Pareto optimal — a
well-known notion of economic efficiency. And while envy freeness up to one good is
straightforward to obtain in isolation, achieving it together with Pareto optimality is
challenging; the fact that the MNW solution does so is a strong argument in its favor.
In particular, as discussed in Section 1.1, on Spliddit it is crucial to be able to explain
to users what the guarantees of each method are; in our view, these two properties are
especially compelling and easy to understand.

As another measure for the fairness of the MNW solution, we study the maximin
share property. As mentioned earlier, the algorithm currently deployed on Spliddit
relies on the existence of an approximate version of this property [Procaccia and Wang
2014]. With this in mind, we show that the MNW solution always guarantees each
of the n players a πn-fraction of her maximin share guarantee, where πn = 2/(1 +√

4n− 3). Strikingly, this ratio is completely tight. Furthermore, we introduce a novel
and equally attractive variant, pairwise maximin share, which is incomparable to the
original property. Using the previous result, we prove that under the MNW solution,



each player receives at least a Φ-fraction of her pairwise maximin share guarantee,
where Φ = (

√
5 − 1)/2 ≈ 0.618 is the golden ratio conjugate, and that this ratio is also

tight. Experiments provide further evidence in favor of the MNW solution: it gives an
excellent approximation to both MMS and pairwise MMS in practice. Among the 1281
real-world fair division instances from Spliddit, it achieves full MMS and pairwise
MMS on more than 95% and 90% of the instances, respectively, and never worse than
a 3/4-approximation on any instance.

The problem of computing an MNW allocation is known to be strongly NP-
hard [Nguyen et al. 2013]. One of our main contributions is the algorithm we devised
for computing an MNW allocation for the form of valuations elicited on Spliddit, in
which a player is required to divide 1000 points among the available goods. Our algo-
rithm scales very well, solving relatively large instances with 50 players and 150 goods
in less than 30 seconds, while other candidate algorithms we describe fail to solve even
small instances with 5 players and 15 goods in twice as much time.

1.3. Related Work
The concept of envy freeness up to one good originates in the work of Lipton et al.
[2004]. They deal with general combinatorial valuations, and give a polynomial-time
algorithm that guarantees that the maximum envy is bounded by the maximum
marginal value of any player for any good; this guarantee reduces to EF1 in the case
of additive valuations. However, in the additive case, EF1 alone can be achieved by
simply allocating the goods to players in a round-robin fashion, as we discuss below.
The algorithm of Lipton et al. [2004] does not guarantee additional properties.

Budish [2011] introduces the concept of approximate CEEI, which is an adaptation
of CEEI to the setting of indivisible goods (among other contributions in this beautiful
paper, he also introduces the notion of maximin share guarantee). He shows that an
approximate CEEI exists and (approximately) guarantees certain properties. The ap-
proximation error goes to zero when the number of goods is fixed, whereas the number
of players, as well as the number of copies of each good, go to infinity. His approach
is practicable in the MBA course allocation setting, which motivates his work — there
are many students, many seats in each course, and relatively few courses. But it does
not give useful guarantees for the type of instances we encounter on Spliddit, where
the number of players is small, and there is typically one copy of each good.

From an algorithmic perspective, Ramezani and Endriss [2010] show that maxi-
mizing Nash welfare is NP-hard under certain combinatorial bidding languages (in-
cluding, under additive valuations). Cole and Gkatzelis [2015] give a constant-factor,
polynomial-time approximation under additive valuations (to be precise, their objec-
tive function is the geometric mean of the utilities).1 Lee [2015] shows that the problem
is APX-hard, that is, a constant-factor approximation is the best one can hope for.

When there are only two players, compelling approaches for allocating goods are
available. In fact, Spliddit currently handles this case separately, via the Adjusted
Winner algorithm [Brams and Taylor 1996]. The shortcoming of Adjusted Winner is
that it usually has to split one of the goods between the two players. Adjusted Winner
can be interpreted as a special case of the Egalitarian Equivalent rule of Pazner and
Schmeidler [1978], which is defined for any number of players. For n > 2 players, it
may need to split all the goods, that is, it is impractical to apply it to indivisible goods.

Let us briefly mention two additional models for the division of indivisible goods.
First, some papers assume that the players express ordinal preferences (i.e., a rank-
ing) over the goods [Brams et al. 2015; Aziz et al. 2015]. This assumption (arguably)

1However, a constant-factor approximation need not satisfy any of the theoretical guarantees we establish
in this paper for the MNW solution.



does not lead to crisp fairness guarantees — the goal is typically to design algorithms
that compute fair allocations if they exist. Second, it is possible to allow randomized
allocations [Bogomolnaia and Moulin 2001, 2004; Budish et al. 2013]; this is hardly
appropriate for the cases we find on Spliddit in which the outcome is used only once.

Finally, it is worth noting that the idea of maximizing the product of utilities was
studied by Nash [1950], in the context of his classic bargaining problem. This is why
this notion of social welfare is named after him. In the networking community, the
same solution goes by the name of proportional fairness, due to another property that it
satisfies when goods are divisible [Kelly 1997]: when switching to any other allocation,
the total percentage gains for players whose utilities increased sum to at most the total
percentage losses for players whose utilities decreased; thus, in some sense, no such
switch would be socially preferable.

2. MODEL
Let [k] , {1, . . . , k}. LetN = [n] denote the set of players, andM denote the set of goods
with m = |M|. Throughout the paper, we assume the goods to be indivisible (i.e., each
good must be entirely allocated to a single player), but our method and its guarantees
extend seamlessly to the case where some of the goods are divisible (see Section 6).

Each player i is endowed with a valuation function vi : 2M → R>0 such that vi(∅) = 0.
With the exception of Section 3.1, throughout the paper we assume that players’ valu-
ations are additive: ∀S ⊆M, vi(S) =

∑
g∈S vi({g}). To simplify notation, we write vi(g)

instead of vi({g}) for a good g ∈ M. The assumption of additive valuations is com-
mon in the literature on the fair allocation of indivisible goods [Bouveret and Lemaı̂tre
2016; Procaccia and Wang 2014]. Furthermore, eliciting more general combinatorial
preferences is often difficult in practice, which is why, to our knowledge, all of the
deployed implementations of fair division methods for indivisible goods — including
Adjusted Winner [Brams and Taylor 1996] and the algorithm implemented on Splid-
dit (see Section 1.1) — also rely on additive valuations. That said, our main result
(Theorem 3.2) generalizes to more expressive submodular valuations (see Section 3.1).

Given the valuations of the players, we are interested in finding a feasible allocation.
For a set of goods S ⊆ M and k ∈ N, let Πk(S) denote the set of ordered partitions of
S into k bundles. A feasible allocation A = (A1, . . . , An) ∈ Πn(M) is a partition of the
goods that assigns a subset Ai of goods to each player i. Under this allocation, the
utility to player i is vi(Ai) (her value for the set of goods she receives).

Our goal is to find a fair allocation. The fair division literature often takes an ax-
iomatic approach to defining fairness; the most compelling definition is envy freeness.

Definition 2.1 (EF: Envy-Freeness). An allocation A ∈ Πn(M) is called envy free if
for all players i, j ∈ N , we have vi(Ai) > vi(Aj). That is, each player values her own
bundle at least as much as she values any other player’s bundle.

Envy freeness cannot be guaranteed in general; for example, allocating a single indi-
visible good among two players who value it positively would inevitably result in envy.
In fact, it is computationally hard to determine whether an EF allocation exists [Bou-
veret and Lang 2008]. To guarantee existence, a somewhat weaker definition is called
for; the following definition is a rather minimal relaxation.

Definition 2.2 (EF1: Envy-Freeness up to One Good). An allocation A ∈ Πn(M) is
called envy free up to one good (EF1) if2

∀i, j ∈ N, ∃g ∈ Aj , vi(Ai) > vi(Aj \ {g}).

2To be perfectly accurate, this is not satisfied if Aj is empty, but, clearly, in this case i does not envy j.



In words, i may envy j, but the envy can be eliminated by removing a single good
from the bundle of j. More generally, one can define envy freeness up to k goods for
every k ∈ N, but as we show in this paper, EF1 can always be guaranteed along with
other desirable properties, eliminating the need to relax the requirement further.

Another relaxation of envy freeness is known as the maximin share guarantee [Bud-
ish 2011]. It is a natural extension of the 2-player cut-and-choose idea to the case of
n players. Informally, the maximin share guarantee of a player is the value she can
secure if she were allowed to divide the set of goods into n bundles, but then chose a
bundle last (thus possibly ending up with her least valued bundle).

Definition 2.3 (MMS: Maximin Share). The maximin share (MMS) guarantee of
player i is given by

MMSi = max
A∈Πn(M)

min
k∈[n]

vi(Ak).

We say that A is an α-MMS allocation if vi(Ai) > α · MMSi for all players i ∈ N .

Note that, in principle, MMSi depends on vi and n; these parameters are not part of
the notation as they will always be clear from the context. While it is impossible to
guarantee all players their full maximin share [Procaccia and Wang 2014; Kurokawa
et al. 2016], a (2/3+O(1/n))-MMS allocation always exists [Procaccia and Wang 2014],
and can be computed in polynomial time [Amanatidis et al. 2015]. We use both EF1
and an approximation of the MMS guarantee as measures of fairness.

Additionally, we also want our solution to be economically efficient.3 To this end, we
use the rather unrestrictive notion of Pareto optimality.

Definition 2.4 (PO: Pareto Optimality). An allocation A ∈ Πn(M) is called Pareto
optimal if no alternative allocation A′ ∈ Πn(M) can make some players strictly better
off without making any player strictly worse off. Formally, we require that

∀A′ ∈ Πn(M),
(
∃i ∈ N , vi(A′i) > vi(Ai)

)
=⇒

(
∃j ∈ N , vj(A′j) < vj(Aj)

)
.

3. MAXIMUM NASH WELFARE IS EF1 AND PO
The gold standard of fairness — envy freeness (EF) — cannot be guaranteed in the con-
text of indivisible goods. In contrast, envy freeness up to one good (EF1) is surprisingly
easy to achieve under additive valuations.

Indeed, under the draft mechanism, the goods are allocated in a round-robin fashion:
each of the players 1, . . . , n selects her most preferred good in that order, and we repeat
this process until all the goods have been selected. To see why this allocation is EF1,
consider some player i ∈ N . We can partition the sequence of choices 1, . . . , i − 1, i, i +
1, . . . , n, 1, . . . , i − 1, . . . into phases i, . . . , i − 1, each starting when player i makes a
choice, and ending just before she makes the next choice. In each phase, i receives a
good that she (weakly) prefers to each of the n−1 goods selected by subsequent players.
The only potential source of envy is the goods selected by players 1, . . . , i− 1 before the
beginning of the first phase (that is, before i ever chose a good); but there is at most one
such good per player j ∈ [i−1], and removing that good from the bundle of j eliminates
any envy that i might have had towards j.

However, it is clear that the allocation returned by the draft mechanism is not guar-
anteed to be Pareto optimal. One intuitive way to see this is that the draft outcome is
highly constrained, in that all players receive almost the same number of goods; and
mutually beneficial swaps of one good in return for multiple goods are possible.

3In the absence of this requirement, even envy freeness can be achieved by simply not allocating any goods.



Is there a different approach for generating allocations that are EF1 and PO? Sur-
prisingly, several natural candidates fail. For example, maximizing the utilitarian wel-
fare (the sum of utilities to the players) or the egalitarian welfare (the minimum utility
to any player) is not EF1 (example presented in the full version of the paper4). Inter-
estingly, maximizing these objectives subject to the constraint that the allocation is
EF1 violates PO (example presented in the full version).

An especially promising idea — which was our starting point for the research re-
ported herein — is to compute a CEEI allocation assuming the goods are divisible, and
then to come up with an intelligent rounding scheme to allocate each good to one of
the players who received some fraction of it. The hope was that, because the CEEI
allocation is known to be EF for divisible goods [Varian 1974], some rounding scheme,
while inevitably violating EF, will only create envy up to one good, i.e., will still satisfy
EF1. But we found a counterexample in which every rounding of the “divisible CEEI”
allocation violates EF1; this is presented as an example in the full version.

As mentioned earlier, for divisible goods a CEEI allocation maximizes the Nash wel-
fare. And, although a CEEI allocation may not exist for indivisible goods, one can still
maximize the Nash welfare over all feasible allocations. Strikingly, this solution, which
we refer to as the maximum Nash welfare (MNW) solution, achieves both EF1 and PO.

Definition 3.1 (The MNW solution). The Nash welfare of allocation A ∈ Πn(M) is
defined as NW(A) =

∏
i∈N vi(Ai). Given valuations {vi}i∈N , the MNW solution selects

an allocation AMNW maximizing the Nash welfare among all feasible allocations, i.e.,

AMNW ∈ arg maxA∈Πn(M) NW(A).

If it is possible to achieve positive Nash welfare (i.e., provide positive utility to ev-
ery player simultaneously), any Nash-welfare-maximizing allocation can be selected.
In the special case that every feasible allocation has zero Nash welfare (i.e., it is im-
possible to provide positive utility to every player simultaneously), we find a largest
set of players to which we can simultaneously provide positive utility, and select an
allocation to these players maximizing their product of utilities. While this edge case
is highly unlikely to appear in practice, it must be handled carefully to retain the
solution’s attractive fairness and efficiency properties. We say that an allocation is a
maximum Nash welfare (MNW) allocation if it can be selected by the MNW solution.
A formal specification of the MNW solution is presented in the full version.

We are now ready to state our first result, which is relatively simple yet, we believe,
especially compelling.

THEOREM 3.2. Every MNW allocation is envy free up to one good (EF1) and Pareto
optimal (PO) for additive valuations over indivisible goods.

PROOF. Let A denote an MNW allocation. First, let us assume NW(A) > 0. Pareto
optimality of A holds trivially because an alternative allocation that increases the
utility to some players without decreasing the utility to any player would increase the
Nash welfare, contradicting the optimality of the Nash welfare under A. Suppose, for
contradiction, that A is not EF1, and that player i envies player j even after removing
any single good from player j’s bundle.

Let g∗ = arg ming∈Aj ,vi(g)>0 vj(g)/vi(g). Note that g∗ is well-defined because player
i envying player j implies that player i has a positive value for at least one good in
Aj . Let A′ denote the allocation obtained by moving g∗ from player j to player i in A.
We now show that NW(A′) > NW(A), which gives the desired contradiction as the Nash

4Available at: http://www.cs.cmu.edu/∼arielpro/papers.html



welfare is optimal under A. Specifically, we show that NW(A′)/NW(A) > 1. The ratio is
well-defined because we assumed NW(A) > 0.

Note that vk(A′k) = vk(Ak) for all k ∈ N \ {i, j}, vi(A′i) = vi(Ai) + vi(g
∗), and vj(A′j) =

vj(Aj)− vj(g∗). Hence,

NW(A′)

NW(A)
> 1⇔

[
1− vj(g

∗)

vj(Aj)

]
·
[
1 +

vi(g
∗)

vi(Ai)

]
> 1⇔ vj(g

∗)

vi(g∗)
·
[
vi(Ai) + vi(g

∗)
]
< vj(Aj), (1)

where the last transition follows using simple algebra. Due to our choice of g∗, we have

vj(g
∗)

vi(g∗)
6

∑
g∈Aj

vj(g)∑
g∈Aj

vi(g)
=
vj(Aj)

vi(Aj)
. (2)

Because player i envies player j even after removing g∗ from player j’s bundle, we have

vi(Ai) + vi(g
∗) < vi(Aj). (3)

Multiplying Equations (2) and (3) gives us the desired Equation (1).
Let us now address the special case where NW(A) = 0. Let S denote the set of players

to which the solution gives positive utility. Then, by the definition of the MNW solution,
S is a largest set of players to which one can provide positive utility. Pareto optimality
of A now follows easily. An alternative allocation that does not reduce the utility to any
player (and thus gives positive utility to each player in S) cannot give positive utility
to any player in N \ S. It also cannot increase the utility to a player in S because that
would increase the product of utilities to the players in S, which A already maximizes.

From the proof of the case of NW(A) > 0, we already know that there is no envy up to
one good among players in S because A is an MNW allocation over these players, and
under A the product of utilities to the players in S is positive. Further, because players
in N \ S do not receive any goods, we only need to show that player i ∈ N \ S does not
envy player j ∈ S up to one good. Suppose for contradiction that she does. Choose
gj ∈ Aj such that vj(gj) > 0. Such a good exists because we know vj(Aj) > 0. Because
player i envies player j up to one good, we have vi(Aj \ {gj}) > vi(Ai) = 0. Hence,
there exists a good gi ∈ Aj \ {gj} such that vi(gi) > 0. However, in that case moving
good gi from player j to player i provides positive utility to player i while retaining
positive utility to player j (because player j still has good gj with vj(gj) > 0). This
contradicts the fact that S is a largest set of players to which one can provide positive
utility. Hence, the MNW allocation A is both EF1 and PO. �

3.1. General Valuations
Heretofore we have focused on the case of additive valuations. As we argued earlier,
this case is crucial in practice. But it is nevertheless of theoretical interest to under-
stand whether the guarantees extend to larger classes of combinatorial valuations.

Specifically, Theorem 3.2 states that MNW guarantees EF1 and PO. We ask whether
the same guarantees can be achieved for subadditive, superadditive, submodular (a
special case of subadditive), and supermodular (a special case of superadditive) valua-
tions. The definitions of these valuation classes as well as the proofs of all the results
in this section are provided in the full version. Unfortunately, we obtain a negative
result for three of the four valuation classes.

THEOREM 3.3. For the classes of subadditive and supermodular (and thus super-
additive) valuations over indivisible goods, there exist instances that do not admit allo-
cations that are envy free up to one good and Pareto optimal.

We were unable to settle this question for the class of submodular valuations. And
although there exist examples with submodular valuations (an example is presented



in the full version) in which no MNW allocation satisfies EF1, we can show that every
MNW allocation satisfies a relaxation of EF1 together with PO.

Definition 3.4 (MEF1: Marginal Envy Freeness Up To One Good). We say that an
allocation A ∈ Πn(M) satisfies MEF1 if

∀i, j ∈ N ,∃g ∈ Aj , vi(Ai) > vi(Ai ∪Aj \ {g})− vi(Ai).
Note that MEF1 is strictly weaker than EF1. However, for additive valuations MEF1

coincides with EF1. Hence, Theorem 3.2 follows directly from the next result (although
our direct proof of Theorem 3.2 is simpler).

THEOREM 3.5. Every MNW allocation satisfies marginal envy freeness up to one
good (MEF1) and Pareto optimality (PO) for submodular valuations over indivisible
goods.

4. MAXIMUM NASH WELFARE IS APPROXIMATELY MMS
In this section, we show that the fairness properties of the MNW solution extend to an
alternative relaxation of envy freeness — the maximin share guarantee, as well as a
variant thereof — in theory and practice.

4.1. Approximate MMS, in Theory
From a technical viewpoint, our most involved result is the following theorem.

THEOREM 4.1. Every MNW allocation is πn-maximin share (MMS) for additive val-
uations over indivisible goods, where

πn =
2

1 +
√

4n− 3
.

Further, the factor πn is tight, i.e., for every n ∈ N and ε > 0, there exists an instance
with n players having additive valuations in which no MNW allocation is (πn+ε)-MMS.

Before we provide a proof, let us recall that the best known approximation of the
MMS guarantee — to date — is 2/3 + O(1/n) [Procaccia and Wang 2014], where the
bound for n = 3 is 3/4. But the only known way to achieve a good bound is to build
the algorithm around the MMS approximation goal [Procaccia and Wang 2014; Ama-
natidis et al. 2015]. In contrast, the MNW solution achieves its πn = Θ(1/

√
n) ratio

“organically”, as one of several attractive properties. Moreover, in almost all real-world
instances, the number of players n is fairly small. For example, on Spliddit, the average
number of players is very close to 3, for which our worst-case approximation guarantee
is π3 = 1/2 — qualitatively similar to 3/4. That said, the approximation ratio achieved
on real-world instances is significantly better (see Section 4.3).

PROOF OF THEOREM 4.1. We first prove that an MNW allocation is πn-MMS (lower
bound), and later prove tightness of the approximation ratio πn (upper bound).

Proof of the lower bound: Let A be an MNW allocation. As in the proof of Theorem 3.2,
we begin by assuming NW(A) > 0, and handle the case of NW(A) = 0 later. Fix a player
i ∈ N . For a player j ∈ N \ {i}, let g∗j = arg maxg∈Aj

vi(g) denote the good in player j’s
bundle that player i values the most. We need to establish an important lemma.

LEMMA 4.2. It holds that

vi(Aj \ {g∗j }) 6 min

{
vi(Ai),

(vi(Ai))
2

vi(g∗j )

}
,



where the RHS is defined to be vi(Ai) if vi(g∗j ) = 0.

PROOF. First, vi(Aj \{g∗j }) 6 vi(Ai) follows directly from the fact that A is an MNW
allocation, and is therefore EF1 (Theorem 3.2). If vi(g∗j ) = 0, then we are done. Assume
vi(g

∗
j ) > 0. By the definition of an MNW allocation, moving good g∗j from player j to

player i should not increase the Nash welfare. Thus,

vi(Ai ∪ {g∗j }) · vj(Aj \ {g∗j }) 6 vi(Ai) · vj(Aj) ⇒ vj(g
∗
j ) > vj(Aj)−

vi(Ai) · vj(Aj)
vi(Ai ∪ {g∗j })

. (4)

Note that the RHS in the above expression is positive because vi(g∗j ) > 0. Hence, we
also have vj(g∗j ) > 0. Similarly, moving all the goods in Aj except g∗j from player j to
player i should also not increase the Nash welfare. Hence,

vi(Ai ∪Aj \ {g∗j }) · vj(g∗j ) 6 vi(Ai) · vj(Aj).

We conclude that

vi(Aj \ {g∗j }) 6
vi(Ai) · vj(Aj)

vj(g∗j )
− vi(Ai) 6

vi(Ai) · vj(Aj)
vj(Aj)− vi(Ai)·vj(Aj)

vi(Ai∪{g∗j })

− vi(Ai)

= vi(Ai) ·

 1

1− vi(Ai)
vi(Ai∪{g∗j })

− 1

 = vi(Ai) ·

[
vi(Ai ∪ {g∗j })

vi(g∗j )
− 1

]
=

(vi(Ai))
2

vi(g∗j )
,

where the second transition follows from Equation (4). � (Proof of Lemma 4.2)

Now, let us find an upper bound on the MMS guarantee for player i. Recall that
MMSi is the maximum value player i can guarantee herself if she partitions the set of
goods into n bundles but receives her least valued bundle. The key intuition is that
indivisibility of the goods only restricts the player in terms of the partitions she can
create. That is, if some of the goods become divisible, it can only increase the MMS
guarantee of the player as she can still create all the bundles that she could with
indivisible goods.

Suppose all the goods except goods in T = {g∗j : j ∈ N \ {i}, vi(g∗j ) > MMSi} become
divisible. It is easy to see that in the following partition, player i’s value for each bundle
must be at least MMSi: put each good in T (entirely) in its own bundle, and divide the
rest of the goods into n − |T | bundles of equal value to player i. Because each of the
latter n− |T | bundles must have value at least MMSi for player i, we get

MMSi 6
vi(Ai) +

∑
j∈N\{i}

(
vi(g

∗
j ) · I

[
vi(g

∗
j ) 6 MMSi

]
+ vi(Aj \ {g∗j })

)
n−

∑
j∈N\{i}

[
vi(g∗j ) > MMSi

] , (5)

where I(·) denotes the indicator function.
Next, we use the upper bound on vi(Aj \ {g∗j }) from Lemma 4.2, and divide both

sides of Equation (5) by vi(Ai). For simplicity, let us denote xj = vi(g
∗
j )/vi(Ai), and

β = MMSi/vi(Ai). Note that β is the reciprocal of the bound on the MMS approximation
that we are interested in. Then, we get

β 6
1 +

∑
j∈N\{i}

(
xj · I [xj 6 β] + min

{
1, 1

xj

})
n−

∑
j∈N\{i} I [xj > β]

.

Let f(x;β) denote the RHS of the inequality above. Then, we can write β 6 f(x;β) 6
maxx f(x;β). Note that if β 6 1 then player i is already receiving her full maximin



share value, which gives a (stronger than) desired MMS approximation. Let us there-
fore assume that β > 1. To find the maximum value of f(x;β) over all x, let us take its
partial derivative with respect to xk for k ∈ N \ {i}. Note that the function is differen-
tiable at all points except xk = 1 and xk = β.

∂f

∂xk
=



1
n−

∑
j∈N\{i} I[xj>β] if 0 6 xk < 1,

1−(xk)−2

n−
∑

j∈N\{i} I[xj>β] if 1 < xk < β,

−(xk)−2

n−
∑

j∈N\{i} I[xj>β] if β < xk.

Note that ∂f/∂xk > 0 for x ∈ (0, 1) and x ∈ (1, β), and ∂f/∂xk < 0 for xk > β. Further
note that f is continuous at xk = 1. Hence, the maximum value of f is achieved either
at xk = β or in the limit as xk → β+ (i.e., when xk converges to β from above). Suppose
the maximum is achieved when t of the xk ’s are equal to β, and the other n − t − 1
approach β from above. Then, the value of f is

g(t;β) =
1 + t ·

(
β + 1

β

)
+ (n− t− 1) · 1

β

n− (n− t− 1)
.

We now have that β 6 maxt∈{0,...,n−1} g(t;β). Note that

∂g

∂t
=
β − 1− (n− 1) · 1

β

(t+ 1)2
.

If β = MMSi/vi(Ai) 6 1/πn, we already have the desired MMS approximation. Assume
β > 1/πn. It is easy to check that this implies ∂g/∂t > 0. Thus, the maximum value of g
is achieved at t = n− 1, which gives β 6 (1/n) · (1 + (n− 1) · (β+ 1/β)), which simplifies
to β 6 1/πn, which is a contradiction as we assumed β > 1/πn.

Recall that for the proof above, we assumed NW(A) > 0. Let us now handle the special
case where an MNW allocation A satisfies NW(A) = 0. Let S denote the set of players
that receive positive utility under A, where |S| < n. Due to the definition of an MNW
allocation, A is an MNW allocation over the players in S. Thus, from the proof of the
previous case, we know that each player in S in fact achieves at least a π|S|-fraction
of her |S|-player MMS guarantee, which is at least a πn-fraction of her n-player MMS
guarantee. Players in N \ S receive zero utility. We now show that their (n-player)
MMS guarantee is also 0, which yields the required result.

Suppose a player i ∈ N \ S has a positive value for at least n goods in M. Now,
because these goods are allocated to at most n − 1 players in S, at least one player
j ∈ S must have received at least two goods g1 and g2, both of which player i values
positively. Because player j receives positive utility under A (i.e., vj(Aj) > 0), it is easy
to check that there exists a good g ∈ {g1, g2} such that vj(Aj \ {g}) > 0. Thus, moving
good g to player i provides positive utility to player i while retaining positive utility
to player j, which violates the fact that S is a largest set of players to which one can
simultaneously provide positive utility. This shows that player i has positive utility for
at most n− 1 goods inM, which immediately implies MMSi = 0, as required.

Proof of the upper bound (tightness): We now show that for every n ∈ N and ε > 0,
there exists an instance with n players in which no MNW allocation is (πn + ε)-MMS.
For n = 1, this is trivial because π1 = 1. Hence, assume n > 2.

Let the set of players be N = {1, . . . , n}, and the set of goods be M = {x} ∪⋃
i∈{2,...,n}{hi, li}. Thus, we have m = 2n − 1 goods. We refer to hi’s as the “heavy”

goods and li’s as the “light” goods. Let the valuations of the players for the goods be



as follows. Choose a sufficiently small ε′ > 0 (an upper bound on ε′ will be determined
later in the proof).

Player 1: v1(x) = 1, and ∀j ∈ {2, . . . , n}, v1(hj) =
1

πn
− ε′ and v1(lj) = πn − ε′.

Player i, for i > 2: vi(hi) =
1

πn + 1
, vi(li) =

πn
πn + 1

, and ∀g ∈M \ {hi, li}, vi(g) = 0.

In particular, note that player 1 has a positive value for every good (for ε′ < πn), while
for i > 2, player i has a positive value for only two goods: hi and li. Consider the
allocation A∗ that assigns good x to player 1, and for every i ∈ N \ {1}, allocates
goods hi and li to player i. We claim that A∗ is the unique MNW allocation but is not
(πn + ε)-MMS.

First, note that an MNW allocation is Pareto optimal, and therefore it must allocate
good x to player 1 because no other player has a positive value for x. Further, NW(A∗) >
0, which implies that every MNW allocation must also have a positive Nash welfare.
This in turn implies that an MNW allocation must assign to each player in N \ {1} at
least one of hi and li. Subject to these constraints, consider a candidate allocation A.

Let p (resp. q) denote the number of players i ∈ N \ {1} that only receive good hi
(resp. li), and have utility 1/(πn + 1) (resp. πn/(πn + 1)). Hence, exactly n − 1 − p − q
players i ∈ N \ {1} receive both hi and li, and have utility 1. Player 1 receives good x,
q heavy goods, and p light goods, and has utility 1 + q · (1/πn − ε′) + p · (πn − ε′). Thus,
the Nash welfare of A is given by(

1 + q ·
(

1

πn
− ε′

)
+ p ·

(
πn − ε′

))( 1

πn + 1

)p(
πn

πn + 1

)q
=

1 + q ·
(

1
πn
− ε′

)
+ p · (πn − ε′)

(1 + πn)
p ·
(
1 + 1

πn

)q .

Using binomial expansion, it is easy to show that the denominator in the final expres-
sion above is at least 1 + p · πn + q/πn, which is never less than the numerator, and is
equal to the numerator if and only if p = q = 0. Note that p = q = 0 indeed gives our
desired allocation A∗. Hence, the maximum Nash welfare of 1 is uniquely achieved by
the allocation A∗.

Next, let us analyze the MMS guarantee for player 1. In particular, consider the
partition of the set of goods into n bundles B1, . . . , Bn such that B1 = {x, l2, . . . , ln} and
Bi = {hi} for all i ∈ {2, . . . , n}. Note that for all i ∈ {2, . . . , n}, v1(Bi) = 1/πn − ε′. Also,

v1(B1) = 1 + (n− 1) · (πn − ε′) = 1 + (n− 1) · πn − (n− 1) · ε′ =
1

πn
− (n− 1) · ε′,

where the final equality holds because πn is chosen precisely to satisfy the equation
1+(n−1) ·πn = 1/πn. As the MMS guarantee of player 1 is at least her minimum value
for any bundle in {B1, . . . , Bn}, we have MMS1 > 1/πn− (n−1) · ε′. In contrast, under the
MNW allocation A∗ we have v1(A1) = 1. Thus, the MMS approximation ratio on this
instance is at most 1/(1/πn − (n − 1) · ε′). It is easy to check that for driving this ratio
below πn + ε, it is sufficient to set

ε′ < min

{
πn,

ε

(n− 1) · πn · (πn + ε)

}
.

This completes the entire proof. � (Proof of Theorem 4.1)

A striking aspect of the proof of Theorem 4.1 is that, at first glance, the lower bound
of πn seems very loose. For example, key steps in the proof involve the derivation of an
upper bound on the MMS guarantee of player i by assuming that some of the goods



are divisible, and the maximization of the function f(·) over an unrestricted domain.
Yet the ratio πn turns out to be completely tight.

4.2. Approximate Pairwise MMS, in Theory
Adding to the conceptual arguments in favor of Theorem 4.1 (see the discussion just af-
ter the theorem statement), we note that it also has some rather striking implications.
Let us first define a novel fairness property:

Definition 4.3 (α-Pairwise Maximin Share Guarantee). We say that an allocation
A ∈ Πn(M) is an α-pairwise maximin share (MMS) allocation if

∀i, j ∈ N , vi(Ai) > α · max
B∈Π2(Ai∪Aj)

min{vi(B1), vi(B2)}.

We simply say that A is pairwise MMS if it is 1-pairwise MMS. Note that the pairwise
MMS guarantee is similar to the MMS guarantee, but instead of player i partitioning
the set of all items into n bundles, she partitions the combined bundle of herself and
another player into two bundles, and receives the one she values less. Although neither
the pairwise MMS guarantee nor the MMS guarantee imply the other, it can be shown
that a pairwise MMS allocation is (1/2)-MMS (refer to the full version for a proof).

We do not know whether a pairwise MMS allocation always exists (under the con-
straint that all goods must be allocated). In fact, there is an even more tantalizing and
elusive fairness notion that is strictly weaker than pairwise MMS, but strictly stronger
than EF1 (refer to the full version for a proof). This, in particular, implies that pairwise
MMS is stronger than EF1.

Definition 4.4 (EFX: Envy freeness up to the Least Valued Good). We say that an
allocation A ∈ Πn(M) is envy free up to the least (positively) valued good if

∀i, j ∈ N ,∀g ∈ Aj : vi(g) > 0, vi(Ai) > vi(Aj \ {g}).
While EF1 requires that player i not envy player j after the removal of player i’s

most valued good from player j’s bundle, EFX requires that this no-envy condition
would hold even after the removal of player i’s least positively valued good from player
j’s bundle. Despite significant effort, we were not able to settle the question of whether
an EFX allocation always exists (assuming all goods must be allocated), and leave it
as an enigmatic open question.

Given this motivation for the pairwise MMS notion, it is interesting that our next re-
sult directly translates the MMS approximation bound of Theorem 4.1 into a pairwise
MMS approximation. The proof of the result appears in the full version.

COROLLARY 4.5. Every MNW allocation is Φ-pairwise MMS, where Φ is the golden
ratio conjugate, i.e., Φ = (

√
5− 1)/2 ≈ 0.618. Further, the factor Φ is tight, i.e., for every

n ∈ N and ε > 0, there exists an instance with n players having additive valuations in
which no MNW allocation is (Φ + ε)-pairwise MMS.

4.3. Approximate MMS and Pairwise MMS, in Practice
Theorem 4.1 and Corollary 4.5 show that the MNW solution is guaranteed to be πn-
MMS and Φ-pairwise MMS. We now evaluate it on these benchmarks (which, we re-
iterate, it is not designed to optimize) using real-world data. Specifically, we use 1281
instances created so far through Spliddit’s “divide goods” application. The number of
players in these instances ranges from 2 to 10, and the number of goods ranges from
3 to 93. Figures 1(a) and 1(b) show the histograms of the MMS and pairwise MMS
approximation ratios, respectively, achieved by the MNW solution on these instances.

Most importantly, observe that the MNW solution provides every player her full
MMS (resp. pairwise MMS) guarantee, i.e., achieves the ideal 1-approximation, in
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Fig. 1. MMS and Pairwise MMS approximation of the MNW solution on real-world data from Spliddit.

more than 95% (resp. 90%) of the instances. Further, in contrast to the tight worst-
case ratios of πn = Θ(1/

√
n) and Φ ≈ 0.618, the MNW solution achieves a ratio of at

least 3/4 for both properties on all the real-world instances in our dataset.

5. IMPLEMENTATION
It is known that computing an exact MNW allocation is NP-hard even for 2 players
with identical additive valuations, due to a simple reduction from the NP-hard prob-
lem PARTITION [Nguyen et al. 2013; Ramezani and Endriss 2010]. Our goal in this sec-
tion is to develop a fast implementation of the MNW solution, despite this obstacle. An
existing approach to maximizing the Nash welfare [Nongaillard et al. 2009] iteratively
modifies an initial allocation to improve the Nash welfare at each step, but may return
a local maximum that does not provide any fairness or efficiency guarantees. Instead,
we use integer programming to find the global optimum in a scalable way. Note that
most real-world instances are relatively small, but response time can be crucial. For
example, Spliddit has a demo mode, where users expect almost instantaneous results.
Moreover, some instances are actually very large, as we discuss below.

Let us begin by recalling that the first step in computing an MNW allocation is to
find a largest set of players S that can be given positive utility simultaneously. In the
full version, we show that S can be computed easily by finding a maximum cardinality
matching in an appropriate bipartite graph. The problem then reduces to computing
an MNW allocation to the players in S. Hereinafter, we focus on this reduced problem.
Thus, without loss of generality we can assume that for the given set of players N , an
MNW allocation will achieve positive Nash welfare.

Figure 2 shows a simple mathematical program for computing an MNW allocation.
The binary variable xi,g denotes whether player i receives good g. Subject to feasibility
constraints, the program maximizes the sum of log of players’ utilities, or, equivalently,
the Nash welfare. Note that this is a discrete optimization program with a nonlinear
objective, which is typically very hard to solve.

Fortunately, we can leverage some additional properties of the problem that arise
in practice. Specifically, on Spliddit, users are required to submit integral additive
valuations by dividing 1000 points among the goods. This in turn ensures that the
utilities to the players will also be integral, and not more than 1000. In theory, this does
not help us: due to a known reduction from a strongly NP-complete problem — Exact
Cover by 3-Sets (X3C) — to the problem of computing an MNW allocation [Nguyen
et al. 2013], we cannot hope for a pseudopolynomial-time algorithm (i.e., a polynomial-
time algorithm for Spliddit-like valuations). In practice, however, this structure of the
valuations can be leveraged to convert the non-linear objective into a linear objective:



Maximize
∑
i∈N log

(∑
g∈M xi,g · vi(g)

)
subject to

∑
i∈N xi,g = 1,∀g ∈M

xi,g ∈ {0, 1}, ∀i ∈ N , g ∈M.

Fig. 2. Nonlinear discrete optimization program
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Maximize
∑
i∈N Wi

subject to Wi 6 log k +
[
log(k + 1)− log k

]
×
[∑

g∈M xi,g · vi(g)− k
]
,

∀i ∈ N , k ∈ {1, 3, . . . , 999}∑
g∈M xi,g · vi(g) > 1, ∀i ∈ N∑
i∈N xi,g = 1, ∀g ∈M

xi,g ∈ {0, 1}, ∀i ∈ N , g ∈M.

Fig. 4. MILP using segments on the log curve
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Fig. 5. Running time of our MNW implementation∑
i∈N

∑1000
t=2 (log t − log(t − 1)) · Ui,t, where Ui,t = I[

∑
g∈M xi,g · vi(g) > t] for player

i ∈ N and t ∈ [1000] is an additional variable that can be encoded using two linear
constraints. However, the introduction of 1000 · n additional binary variables makes
this approach impractical even for fairly small instances.

We therefore propose an alternative approach that introduces merely n continuous
variables and, crucially, no integral variables. The trick is to use a continuous variable
Wi denoting the log of the utility to player i, and bound it from above using a set
of linear constraints such that the tightest bound at every integral point k is exactly
log k. This essentially replaces the log by a piecewise linear approximation thereof that
has zero error at integral points. Figure 3 shows two such approximations of the log
function (the red line): one that uses the tangent to the log curve at the point (k, log k)
for each k ∈ [1000] (the blue lines), and one that uses segments connecting points
(k, log k) and (k+ 1, log(k+ 1)) for each k ∈ {1, 3, . . . , 999} (the green line). Each tangent
and each segment is guaranteed to be an upper bound on the log function at every
integral point due to the concavity of log.5 Importantly, note that the tightest upper
bound at each positive integral point k is log k. These transformations do not work at
k = 0, i.e., they do not ensure Wi = −∞ if player i gets zero utility. However, recall that
in our subproblem each player can achieve a positive utility. Hence, we eliminate this
concern by adding the constraints that each player must receive value at least 1. We
employ the transformation that uses segments as it requires half as many constraints
(and, incidentally, runs nearly twice as fast). Figure 4 shows the final mixed-integer
linear program (MILP) with only n continuous and n ·m binary variables, which is key
to the practicability of this approach.

To assess how scalable our implementation is, we measure its running time on uni-
formly random Spliddit-like valuations, that is, uniformly random integral valuations
that sum to 1000. We vary the number of players n from 5 to 50 in increments of 5, and
keep the number of goods at m = 3 · n to match data from Spliddit, in which m/n ≈ 3
on average. The experiments were performed on a 2.9 GHz quad-core computer with 32

5In fact, this transformation is useful in maximizing any concave function, or minimizing any convex func-
tion, and thus may be of independent interest.



GB RAM, using CPLEX to solve the MILPs. The indicator-variables-based approach
failed to run within our time limit (60 seconds) even for 5 players. Figure 5 shows the
running time (averaged over 100 simulations, with the 5th and 95th percentiles) of the
MILP formulation from Figure 4. Satisfyingly, we can solve instances with 50 players
in less than 30 seconds (whereas even the largest of the 1281 instances on Spliddit has
10 players). In fact, the algorithm solves every Spliddit instance in less than 3 seconds.

The largest real-world instance we have seen was actually reported offline by a
Spliddit user. He needed to split an inheritance of roughly 1400 goods with his 9 sib-
lings. Our implementation solves an instance of this size in roughly 15 seconds.

5.1. Precision Requirements
As our optimization program involves real-valued quantities (e.g., the logarithms), we
must carefully set the precision level such that the optimal allocation computed up
to the precision is guaranteed to be an MNW allocation. This is because an allocation
that only approximately maximizes the Nash welfare may fail to satisfy the theoretical
guarantees of an MNW allocation (Theorems 3.2 and 4.1, and Corollary 4.5).

Recall that our objective function is the log of the Nash welfare. Hence, the differ-
ence between the objective values of an (optimal) MNW allocation and any suboptimal
allocation is at least log(1000n)− log(1000n− 1) > 1/1000n− (1/2)/10002n, which can be
captured using O(n) bits of precision. This simple observation can be easily formalized
to show that there exists p ∈ O(n) such that if all the coefficients in the optimization
program are computed up to p bits, and if the program is solved with p bits of precision
(i.e., with an absolute error of at most 2−p in the objective function), then the solution
returned will indeed correspond to an MNW allocation. Crucially, p is independent of
the number of goods. We expect the number of players n to be fairly small in everyday
fair division problems. For example, as previously mentioned, on Spliddit more than
95% of the instances for allocating indivisible goods have n 6 3.

Nonetheless, if one’s goal is solely to find an allocation that is EF1 and PO, a con-
stant number of bits of precision would suffice. This is because capturing differences
in objective values that are at least log(10002)− log(10002− 1) — a constant — ensures
that the resulting allocation is EF1 and PO, as we show below.

(1) EF1: Suppose the allocation is not EF1, and player i envies player j even after
the removal of any single good from player j’s bundle. Then, our proof of Theo-
rem 3.2 shows that we can increase the Nash welfare by moving a specific good
from player j to player i. Because this operation does not alter the utilities to all
but two players, it must increase the logarithm of the Nash welfare by at least
log(10002)− log(10002 − 1), which is a contradiction because our sensitivity level is
sufficient to find this improvement.

(2) PO: Suppose the allocation is not PO. Then there exists an alternative allocation
that increases the utility to at least one player without decreasing the utility to any
player. This must increase the logarithm of the Nash welfare by at least log(1000)−
log(1000 − 1) > log(10002) − log(10002 − 1), which is again a contradiction because
our sensitivity level is sufficient to find this improvement.

6. DISCUSSION
The goal of this paper is to advocate the Maximum Nash Welfare (MNW) solution for
the fair allocation of goods. While it is justified by elegant fairness (EF1) and efficiency
(PO) properties, these properties are not “sufficient” in and of themselves — they may
allow undesirable outcomes (an example is presented in the full version). What makes
the MNW solution compelling is that it provides intuitively fair outcomes, yet organi-
cally satisfies these formal fairness properties. Moreover, the MNW solution provides



a Θ(1/
√
n)-approximation to the MMS guarantee (Theorem 4.1), whereas an arbitrary

EF1 and PO allocation only provides a 1/n-approximation (refer to the full version for
a proof).

Throughout the paper we assumed that the goods are indivisible, but our results
directly extend to the case where we have a mix of divisible and indivisible goods.
The MNW solution in this case can be seen as the limit of the MNW solution on the
instance where each divisible good is partitioned into k indivisible goods, as k goes to
infinity. Theorem 3.2 therefore implies that the MNW solution is envy free up to one
indivisible good, that is, player i would not envy player j (who may have both divisible
and indivisible goods) if one indivisible good is removed from the bundle of j. This
provides an alternative proof for envy-freeness of the MNW/CEEI solution when all
goods are divisible. The results of Section 4 also directly go through — in fact, the proof
of the MMS approximation result (Theorem 4.1) already “liquidates” some of the goods
as a technical tool. In the full version, we outline the modified and scalable version of
the implementation described in Section 5, which we have deployed on Spliddit, that
can allocate a mix of divisible and indivisible goods.

It is remarkable that when all goods are divisible, three seemingly distinct solution
concepts — the MNW solution, the CEEI solution, and proportional fairness (PF) —
coincide. This is certainly not the case for indivisible goods: while a CEEI solution
and a PF solution may not exist, the MNW solution always does. Nonetheless, our
investigation revealed that even for indivisible goods, the PF solution and the MNW
solution are closely related via a spectrum of solutions, which offers two advantages.
First, it allows us to view the MNW solution as the optimal solution among those that
lie on this spectrum and are guaranteed to exist. Second, it also gives a way to break
ties — possibly even choose a unique allocation — among all MNW allocations. See
the full version for a detailed analysis. This connection between MNW and PF raises
an interesting question: Is it possible to relate the MNW solution to the CEEI solution
when the goods are indivisible?

Finally, we have not addressed game-theoretic questions regarding the manipulabil-
ity of the MNW solution. The reason is twofold. First, there are strong impossibility re-
sults that rule out reasonable strategyproof solutions. For example, Schummer [1997]
shows that the only strategyproof and Pareto optimal solutions are dictatorial — which
means they are maximally unfair, if you will — even when there are only two players
with linear utilities over divisible goods; clearly a similar result holds for indivisible
goods (at least in an approximate sense).6 Second, we do not view manipulation as a
major issue on Spliddit, because users are not fully aware of each other’s preferences
(they submit their evaluations in private), and — presumably, in most cases — have a
very partial understanding of how the algorithm works.
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