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Abstract

We consider the problem of selecting a subset
of alternatives given noisy evaluations of the
relative strength of different alternatives. We
wish to select a k-subset (for a given k) that
provides a maximum likelihood estimate for
one of several objectives, e.g., containing the
strongest alternative. Although this problem
is NP-hard, we show that when the noise
level is sufficiently high, intuitive methods
provide the optimal solution. We thus gener-
alize classical results about singling out one
alternative and identifying the hidden rank-
ing of alternatives by strength. Extensive
experiments show that our methods perform
well in practical settings.

1 Introduction

The initial motivation for this paper stemmed
from discussions with the inventors of EteRNA
(http://eterna.cmu.edu). Similarly to Foldit [9],
EteRNA is a scientific discovery game where the goal
is to design RNA molecules that fold into stable struc-
tures. Thousands of human players propose RNA de-
signs weekly, but only a relatively small number k of
them can be synthesized in a laboratory to discover
whether they actually fold well. To choose k designs to
synthesize, players vote over the proposed designs us-
ing a voting rule known as k-approval : each player re-
ports up to k favorite designs, each of which is awarded
one point. The k designs that receive the most points
are synthesized, and the best design is identified.

The aggregation of opinions via k-approval has sev-
eral shortcomings. For example, players typically do
not consider all proposed designs, and in particular de-
signs that receive votes early in the voting process gain
visibility and therefore usually accumulate more votes,
leading to a snowball effect. One alternative is to elicit

players’ opinions about pairs of designs, making sure
that each proposed design is compared with at least
several others. Regardless of how players’ opinions are
elicited, one would need to answer the question: what
is our objective in aggregating opinions? For EteRNA,
the answer is simple; since biochemists are seeking a
stable design for a specific molecule, but will only use
a single proposed design, we would like to select a set
of k designs that includes at least one great design.
Including one great design is sufficient, as it will be
singled out when the k selected designs are synthe-
sized.

Of course, this setup is not confined to the realm of hu-
man computation; it also arises naturally, for example,
in the process of new product development (NPD). A
product can have many different potential designs. A
k-subset of these designs is selected based on a market
survey, and (possibly costly) prototypes are manufac-
tured for the selected designs. The prototypes are then
evaluated by a focus group that definitively singles out
the best design. Again, the goal is to include at least
one great design among the prototypes that are eval-
uated.

A natural approach views elicited opinions over alter-
natives (designs, in the examples) as noisy estimates
of a true, hidden ranking of the alternatives in terms
of quality. Given such a noise model, the examples
presented above call for the selection of the subset of
alternatives that is most likely to contain the top alter-
native of the true ranking, that is, the truly strongest
alternative. However, other settings may require the
selection of a subset of alternatives that is most likely
to possess a different property. In this paper we study
this maximum likelihood estimation (MLE) framework
under several objectives and noise models.

1.1 Our model and results

Our model consists of two components: the noise
model and the objective function. We are interested



in two basic noise models (see, e.g, [4]) that govern
how the dataset is obtained given a hidden true rank-
ing. The first model—the noisy comparisons model—
corresponds to independent evaluations of pairs of al-
ternatives, where each evaluation is consistent with
the true ranking with a fixed probability p ∈ (1/2, 1).
For the second model—the noisy orders model (also
known as the Mallows model [14])—we imagine vot-
ers submitting complete rankings over the alternatives.
The probability of observing a ranking is exponentially
small in its Kendall Tau distance to the true ranking,
i.e., the number of pairs of alternatives on which the
two rankings disagree. The second model is consistent
with EteRNA’s current voting method, where in the-
ory players are expected to consider all designs, but it
is much more natural when the number of alternatives
(e.g., product designs) is small. Our positive results
hold with respect to a general noise model—the noisy
choice model—that includes both basic models as spe-
cial cases.

For the second component, we focus on three objective
functions. Objective 1 is the one discussed above: se-
lect a subset that maximizes the probability of includ-
ing the top alternative of the true ranking. Objective 2
aims to select a k-subset of alternatives that coincides
with the top k alternatives of the true ranking; this ob-
jective is natural, for example, when choosing a team
of workers to carry out a task that requires multiple
workers with identical skills (here the alternatives are
the workers). Objective 3 seeks to select an ordered
tuple of alternatives of length k that maximizes the
probability of coinciding with the k-prefix of the true
ranking. In other words, we are trying to single out
the k top alternatives as before, but in the correct or-
der; this objective is closely aligned with web search
applications. Note that the three objectives coincide
when k = 1. We consider Objective 1 to be the most
natural and important among the three, and indeed
our exposition concentrates on this objective.

We prove that computing the optimal solution under
all three objectives isNP-hard for any nontrivial value
of k (for Objectives 1 and 2, the case of k = m, where
m is the number of alternatives, is trivial). However,
our analytical results indicate that the optimal so-
lutions for special cases correspond to intuitive (and
sometimes tractable) methods. In particular, our an-
alytical results focus on the case where the level of
noise is very high. There are two compelling reasons
for considering such noisy settings. First, if the level
of noise is not very high, any reasonable method would
be able to single out the true ranking with relatively
little data and high confidence, and therefore maxi-
mizing our objectives becomes a nonissue. Second, as
we discuss below, our experiments clearly indicate that

methods that perform well in theory with respect to a
very high noise level also perform well in practice.

For Objective 1, we introduce the extended scoring
method to single out a k-subset of alternatives. We
prove that under the noisy choice model, when the
noise level is sufficiently high, any optimal solution is
in the solution space provided by the extended scor-
ing method.1 Interestingly, under noisy orders the ex-
tended scoring method reduces to a well-known vot-
ing rule (which maps a vector of rankings submitted
by voters to a selected alternative) called Borda count,
and its special case for noisy comparisons also provides
a highly intuitive and tractable method. To our sur-
prise, it turns out that the extended scoring method
also yields the optimal solution for Objective 2 when
the noise level is sufficiently high.

For Objective 3 we present the scored tuples method,
and prove that it gives the optimal solution when the
noise level is high. Interestingly, under the noisy orders
model, this method coincides with Borda count when
k = 1, and with another famous rule known as the
Kemeny rule when k = m. Intermediate values of k
give a sequence of optimal voting rules that connects
Borda count with Kemeny; we believe that this insight
is of independent interest to social choice theory.

Finally, we conduct extensive experiments that com-
pare the extended scoring method (for Objectives 1
and 2) and the scored tuples method (for Objective 3)
with other methods. Our experiments indicate that
the proposed methods, which are theoretically opti-
mal under high noise, also outperform other methods
under practical noise levels. Moreover, in cases where
we are able to compute the MLE (i.e., the optimal
solution), its performance and that of the proposed
methods are almost indistinguishable.

1.2 Related work

Young [18] studied maximum likelihood estimators
under (a variation of) the noisy orders model and
two objectives: identifying the top alternative of the
true ranking (which coincides with our objectives for
k = 1), and identifying the MLE ranking. In fact,
Young’s paper is based on work done by the marquis
de Condorcet roughly two centuries earlier [10]. Young
found that when the noise level is sufficiently high, the
winner according to Borda count is the MLE for the
top alternative, and regardless of the noise level the
Kemeny rule is an MLE for the true ranking. Our
main results for Objectives 1 and 2 generalize Young’s
results for Borda count by extending them to a more
powerful noise model and (more importantly) to dif-

1Subtleties with respect to tie breaking are discussed in
detail in Section 3.



ferent values of k. Our result for Objective 3 con-
nects Young’s results for Borda (k = 1) and Kemeny
(k = m) via a sequence of optimal voting rules for
intermediate values of k, while again generalizing the
noise model.

A series of relatively recent AI papers deal with voting
rules as MLEs (see, e.g., [6, 8, 17, 16]). In particular, in
a UAI 2005 paper, Conitzer and Sandholm [6] reverse
Young’s question by asking for which common voting
rules there exist (constrained) noise models such that
the voting rules are MLEs for the top alternative or
the true ranking. One section of the paper of Xia and
Conitzer [16] studies a setting where a set of alterna-
tives must be selected, under a noise model that is
different from ours, where there is a set of winners of
size k but no underlying ranking. They provide a sin-
gle result for this setting: an evaluation problem that
is related to identifying the set of winners is NP-hard.

Under standard noise models such as noisy orders and
noisy comparisons, computing the MLE true ranking
is alsoNP-hard [3, 5], but there is a significant amount
of work on this problem (see, e.g., [1, 2, 7, 12, 4]). For
example, Braverman and Mossel [4] provide polyno-
mial time algorithms that compute the MLE ranking
with high probability. However, we see below that se-
lecting the top k elements of the MLE ranking is not
the optimal solution to our objectives (with the obvi-
ous exception of Objective 3 for k = m) and moreover
our experiments show that this method provides poor
performance with respect to our objectives in practice.

2 The Model

We denote [k] = {1, . . . , k}. In addition, let
argmaxks∈S H(s) be the set of k-subsets of S (let
|S| = t) with largest values under the given function
H . In other words, for each order (s1, . . . , st) of the ele-
ments of S such that H(si) ≥ H(si+1) for all i ∈ [t−1],
argmaxks∈S H(s) includes the set {s1, . . . , sk}.

We consider a set of alternatives A; denote |A| = m.
We will use small letters to denote specific alterna-
tives. Let L(A) be the set of permutations (which
we think of as linear orders or rankings) on A, where
each permutation is a bijection σ : A → {1, 2, . . . ,m}.
Hence, σ(a) denotes the position of alternative a in
σ, and σ−1(i) denotes the alternative at the ith posi-
tion, i.e., the ith most preferred alternative when σ is
viewed as a ranking over the alternatives. In particu-
lar, σ(a) < σ(b) denotes that a is preferred to b under
σ. We let σ−1([k]) = (σ−1(1), . . . , σ−1(k)) denote the
ordered tuple consisting of the k-prefix of σ.

We assume that there exists a true hidden order σ∗ ∈
L(A) over the alternatives, which reflects their true

strengths. We also make the standard assumption that
σ∗ is selected using a uniform prior over L(A). Let
a∗ = (σ∗)−1(1) denote the best alternative under σ∗.

Our objective is to find a “good” set of alternatives
given noisy observations. We consider two standard
noise models (see, e.g., [4]).

2.1 Noisy comparisons and tournaments

In the noisy comparisons model, a pairwise preference
a ≻ b denotes that alternative a is preferred to alter-
native b. We imagine that each pair of alternatives is
presented to n voters (with possibly different sets of
voters for each pair). The preferences returned by the
voters are independently consistent with the true rank-
ing σ∗ with a fixed probability 1/2 < p < 1. Hence,
the datasetD is a set of comparisons where each pair of
alternatives appears exactly n times, for a fixed value
of n. Note that the case of n = 1 with relatively high
value of p can also represent the aggregate opinion of
many voters.

We think of the dataset D as corresponding to a
slightly nonstandard weighted tournament. Denote by
nab the number of a ≻ b votes. The tournament TD

is a directed graph where the vertex set is the set of
alternatives, there are edges between each pair of al-
ternatives in both directions, and the weight of the
edge e = (a, b) is we = nab.

2

2.2 Noisy orders and ranked voting

In our second model, a fixed set of n voters provide
rankings over all alternatives. In this noisy orders
model (also known as the Condorcet noise model [10]),
each ranking is generated independently by drawing
pairwise preferences similarly to the noisy compar-
isons model, except that the process is restarted if the
generated vote has a cycle (e.g. a ≻ b ≻ c ≻ a).
Concisely, the probability of drawing each ranking
σi given the true order σ∗ = σ is proportional to

p(
m
2 )−dK(σi,σ) · (1− p)dK(σi,σ). The distance dK(·, ·) is

the Kendall tau distance between two rankings, which
counts their number of disagreements on pairs of alter-
natives. Probabilities are normalized using a normal-
ization constant which can be shown to be independent
of the true ranking σ∗ (see, e.g., [13]). Note that this
model is equivalent to the Mallows model [14], which
is widely used in machine learning and statistics.

A voting rule (also known as a social choice function)
is a function f : L(A)n → A that accepts n rankings
(σ1, σ2, · · · , σn) ∈ L(A)n as input and outputs a se-
lected alternative. We will informally use the same

2Typically tournaments have exactly one directed edge
between each pair of vertices.



term to refer to functions that output a ranking of the
alternative, i.e., an element of L(A); such functions are
also known as social welfare functions.

Below we consider a number of well-known voting
rules; we begin with two that will play a special role.
Under Borda count each voter i awards m − σi(a)
points to each alternative a ∈ A, and an alterna-
tive with most points overall is selected. The Ke-
meny rule selects a ranking π ∈ L(A) that minimizes
∑n

i=1 dK(π, σi). Informally, the Kemeny ranking min-
imizes the number of disagreements with voters over
pairs of alternatives.

In Section 6 we consider some additional voting rules
as benchmarks. Under Maximin, the score of an alter-
native a is mina′∈A\{a} |{i ∈ [n] : σi(a) < σi(a

′)}|.
Under plurality, each voter i awards one point to
σ−1
i (1), and under k-approval, one point to each of

σ−1
i (1), . . . , σ−1

i (k).

2.3 A generalization: The noisy choice model

We next present the noisy choice model, a general
framework that unifies both models; to the best of
our knowledge this model is novel. The model is char-
acterized by two properties. First, a notion of nab for
all alternatives a ∈ A and b ∈ A \ {b} that denotes the
degree to which a is preferred over b in the input. For
a fixed n and all a ∈ A and b ∈ A\ {a}, nab+nba = n.

Second, a likelihood of a dataset D given that the true
order is σ∗ = σ,

Pr[D|σ∗ = σ] =
γd(σ,D)

Zγ

, (1)

where the normalizing constant Zγ is independent of
σ (although it might depend on the parameters of
the model), and the distance function is defined as
d(σ,D) =

∑

a,b∈A:σ(a)<σ(b) nba. The distance intu-
itively measures the amount of disagreement between
the ranking and the dataset on pairs of alternatives.
Crucially, the likelihood of the dataset diminishes ex-
ponentially as its distance from the true order in-
creases.

The noisy comparisons model and noisy orders model
both fall under this more general framework. Indeed,
the notion of nab is clear in both models: it is simply
the number of votes that prefer a to b. It is also easy
to verify that γ = (1 − p)/p for both models.

In addition to noisy comparisons and noisy orders, the
noisy choice model can capture other practical mod-
els of inputs. For example, consider the model where
inputs are noisy partial orders of a fixed length l gen-
erated as follows. For each voter, l alternatives are
chosen uniformly at random from the set of all alter-

natives. Then a partial order is generated according to
the Mallows Model over the chosen l alternatives. Al-
ternatively, we can consider a model where each voter
reports an unweighted tournament over the alterna-
tives, i.e., individual preferences may be “irrational”.

Note that γ is a measure of the level of noise; γ ≈ 0
induces a distribution that is highly centered around
the true order and γ ≈ 1 induces a distribution that
is close to the uniform distribution. We also remark
that the distance function d(·, ·) under the noisy orders
model is just the sum of Kendall tau distances of a
particular ranking from the input orders.

3 Including the Top Alternative

We first consider the case where we want to select a
k-subset of alternatives that is most likely to contain
a∗, the top alternative of the true ranking σ∗.

Objective 1 Given k, find a k-subset of alternatives
that maximizes the probability of containing the best
alternative, i.e., a subset in

argmax
S⊆A, |S|=k

Pr[a∗ ∈ S|D].

A crucial observation regarding Objective 1 is that

Pr[a∗ ∈ S|D] =
∑

a∈S

Pr[a∗ = a|D] ∝
∑

a∈S

Pr[D|a∗ = a],

where the last step follows from Bayes’ rule and the
assumption of uniform prior over rankings. The fol-
lowing observation is immediately implied.

Observation 3.1 The optimal solution to Objective 1
under the noisy choice model is any subset in

argmaxka∈A Pr[a∗ = a|D].

In words, we choose the k most likely alternatives ac-
cording to their probabilities of coinciding with the
top alternative of the true ranking. Equivalently, one
could select any subset in argmaxka∈A Pr[D|a∗ = a]
since we have assumed a uniform prior over rankings.
Despite Observation 3.1, finding an optimal solution
to Objective 1 is computationally hard.

Theorem 3.2 For any k ∈ [m−1], computing an op-
timal solution to Objective 1 is NP-hard under noisy
orders and noisy comparisons.

The theorem’s proof appears in Appendix A. Note
that the theorem also proves NP-hardness under the
noisy choice model because noisy orders and noisy
comparisons are just special cases. The intuition be-
hind the proof is as follows. Young [18] demonstrated



(via an example) that when p close to 1, under a spe-
cific noise model that is very similar to the noisy com-
parisons model, the optimal solution with respect to
Objective 1 with k = 1 coincides with the first element
of an MLE of the true ranking σ∗. We show that this
result holds under both noisy comparisons and noisy
orders and also prove that computing the first element
of an MLE ranking is NP-hard by utilizing the NP-
hardness of computing the MLE ranking itself. Here,
an MLE ranking is a minimum feedback ranking un-
der noisy comparisons (see, e.g., [4]), and a Kemeny
ranking under noisy orders [18], which are both NP-
hard to compute [5, 3]. Finally, we leverage the case
of k = 1 to extend the NP-hardness to other values of
k.

Because of these computational connections, it is nat-
ural to wonder whether the optimal solution to Ob-
jective 1 is given by taking the top k elements of the
MLE ranking for any k and any value of p. However,
Young [18] also showed that this is not the case when
p is close to 1/2 even for k = 1 (in fact he did not con-
sider the case of k > 1). Indeed, he showed that when
p is close to 1/2, in his example the MLE ranking σ
is the only ranking that puts the alternative σ(1) first
and has significant probability, whereas a different al-
ternative (the winner under Borda count) appears first
in rankings that individually have smaller probability
than the MLE ranking, but combined have a larger
overall probability. Below we extend this result by
showing that when p is sufficiently close to 1/2, the
problem is indeed tractable for any value of k under
our general noisy choice model, and in fact the solu-
tion coincides with intuitive methods. Although the
theoretical guarantees are for the case where p is close
to 1/2 (i.e., very noisy settings, γ ≈ 1 in Equation (1)),
the experiments in Section 6 show that the methods
developed here also work well when the noise level is
lower.

Our general method, which we refer to as the extended
scoring method,3 is well defined for input data gen-
erated according to the noisy choice model. For an
alternative a ∈ A, let the score of a be

sc(a) =
∑

b∈A\{a}

nab. (2)

We choose the top k alternatives according to their
score, i.e., we return a set in argmaxka sc(a).

Theorem 3.3 For every n and m there exists γ′ <
1 such that for all γ ≥ γ′, the optimal solutions
to Objective 1 under the noisy choice model are in
argmaxka sc(a).

3We use the term “extended” to avoid confusion with
generalized scoring rules [15].

The theorem’s formulation leaves open the possibility
that some sets in argmaxka sc(a) are far from being
optimal. However, the theorem’s proof in fact shows
that for any δ > 0 there is sufficiently large γ such
that every S ∈ argmaxka sc(a) is optimal up to δ, i.e.,
for any S′ ⊆ A such that |S′| = k,

Pr[a∗ ∈ S|D] ≥ Pr[a∗ ∈ S′|D]− δ.

Proof of Theorem 3.3 Let γ = 1 − ǫ, ǫ > 0. By
Observation 3.1, we know that the optimal solution is
given by argmaxka Pr[D|a∗ = a]. In our model

Pr[D|a∗ = a] =
∑

σ∈L(A),σ−1(1)=a

Pr[D|σ∗ = σ]

=
∑

σ∈L(A),σ−1(1)=a

γd(σ,D)

Zγ

.

Let La(A) = {σ ∈ L(A)|σ−1(1) = a}. Thus |La(A)| =
(m − 1)!. Define an objective function f(a) = Zγ ·
Pr[D|a∗ = a]. Since Zγ is a constant, the optimal
solution is also given by argmaxka f(a). Using γ = 1−ǫ
and the fact that (1 − ǫ)t ≥ 1 − t · ǫ for any t ∈ N,
we obtain the following lower bound on our objective
function f :

f(a) ≥ f̂(a) =
∑

σ∈La(A)

(1 − ǫ · d(σ,D)). (3)

In addition, the gap between f and f̂ can be upper
bounded using

|(1 − ǫ)t − (1− t · ǫ)| ≤
t
∑

i=2

(

t

i

)

· ǫi ≤ 2t · ǫ2

for ǫ < 1. It follows that for every a ∈ A,

f(a)− f̂(a) ≤
∑

σ∈La(A)

2d(σ,D) · ǫ2

≤ ǫ2 · (m− 1)! · 2n·(
m
2 ). (4)

The theorem will now follow by proving two
statements: argmaxka f(a) ⊆ argmaxka f̂(a), and

argmaxka f̂(a) = argmaxka sc(a). We use the follow-
ing claim.

Claim 3.4 For every a ∈ A,

f̂(a) = Cǫ + ǫ · (m− 1)! · sc(a)

where Cǫ depends only on ǫ (and not on a).



Proof First, we simplify f̂ by summing the individual
terms in Equation (3).

f̂(a) = (m− 1)!− ǫ ·
∑

σ∈La(A)

d(σ,D). (5)

Furthermore, note that
∑

σ∈La(A) d(σ,D) equals

∑

σ∈La(A)

∑

x∈A,y∈A\{x}

nyx · 1[σ(x) < σ(y)]

=
∑

σ∈La(A)

∑

x∈A,y∈A\{x}

(n− nxy) · 1[σ(x) < σ(y)]

= n ·
∑

σ∈La(A)

∑

x∈A,y∈A\{x}

1[σ(x) < σ(y)]

−
∑

x∈A,y∈A\{x}

nxy ·
∑

σ∈La(A)

1[σ(x) < σ(y)]

The symbol 1 represents the indicator function. For
the first term it holds that

n ·
∑

σ∈La(A)

∑

x∈A,y∈A\{x}

1[σ(x) < σ(y)]

= n ·
∑

σ∈La(A)

(

m

2

)

= n · (m− 1)! ·

(

m

2

)

.

To analyze the second term we consider three cases
separately: (i) x = a, y ∈ A \ {a}, (ii) x ∈ A \ {a},
y = a, and (iii) x ∈ A \ {a}, y ∈ A \ {a, x}. If x = a,
then for every y ∈ A\{a} and every σ ∈ La(A) it holds
that a ≻ y, and hence nay is multiplied by (m − 1)!.
Similarly, if y = a, then for every x ∈ A \ {a}, nxa is
multiplied by 0. If x ∈ A \ {a} and y ∈ A \ {a, x},
then nxy is multiplied by (m− 1)!/2 because x ≻ y in
exactly half of the rankings in the summation. Thus
the second terms equals

(m− 1)! ·





∑

y∈A\{a}

nay +
1

2
·

∑

x∈A\{a},y∈A\{a,x}

nxy





= (m− 1)! · sc(a) +
(m− 1)!

2
· n ·

(

m− 1

2

)

,

since nxy + nyx = n for every x 6= y. Combining both
terms and substituting back,

∑

σ∈La(A)

d(σ,D)

= n · (m− 1)! ·

(

m

2

)

−
(m− 1)!

2
· n ·

(

m− 1

2

)

− (m− 1)! · sc(a)

= C′
ǫ − (m− 1)! · sc(a),

for some constant C′
ǫ independent of a. Plugging this

into Equation (5) we get

f̂(a) = Cǫ + ǫ · (m− 1)! · sc(a)

as required. �(Claim 3.4)

Claim 3.4 directly implies that argmaxka f̂(a) =
argmaxka sc(a). It therefore remains to prove that

argmaxka f(a) ⊆ argmaxka f̂(a). For this purpose it is

sufficient to show that for every a, a′ ∈ A, f̂(a) > f̂(a′)
implies f(a) > f(a′).

Note that f̂(a) > f̂(a′) implies sc(a) ≥ sc(a′)+1 (since
scores are integers) and using Claim 3.4 this implies

f̂(a) ≥ f̂(a′) + ǫ · (m− 1)!. Therefore

f(a) ≥ f̂(a) ≥ f̂(a′) + ǫ · (m− 1)!

≥ f(a′)− ǫ2 · (m− 1)! · 2n·(
m
2 ) + ǫ · (m− 1)!.

The third transition follows from Equation (4). Set-

ting ǫ < 2−n·(m2 ), i.e., γ > γ′ = 1 − 2−n·(m2 ), we have
that f(a) > f(a′) as required. �

The notion of score underlying the extended scoring
method (Equation (2)) provides an intuitive reflection
of the quality of an alternative. In the special case of
the noisy comparisons model, sc(a) =

∑

x∈A\{a} nax

is just the sum of weights of the outgoing edges from
a in the weighted tournament defined in Section 2.
Hence, the extended scoring method reduces to picking
k alternatives with highest weighted outdegrees.

In the special case of the noisy orders model,

sc(a) =
∑

x∈A\{a}

nax =
∑

x∈A\{a}

n
∑

i=1

1[σi(a) < σi(x)]

=

n
∑

i=1

∑

x∈A\{a}

1[σi(a) < σi(x)] =

n
∑

i=1

(m− σi(a)),

which is exactly the Borda score of alternative a.
Hence, the extended scoring method reduces to pick-
ing k alternatives with maximum Borda scores. The-
orem 3.3 thus extends Young’s result for Borda
count [18] from the noisy orders model to the noisy
choice model and from k = 1 to any value of k under
Objective 1.

4 Identifying the Top Subset

Under Objective 1 we choose k alternatives, each of
which is likely to be the top alternative a∗. However,
in principle it may be the case that each of these alter-
natives is either the top-ranked alternative or among
the bottom-ranked alternatives. In this section we seek



to identify the set of top k alternatives, but we will see
that the solution in fact coincides with the solution to
Objective 1.

Objective 2 Given k, find the k-subset of alterna-
tives that maximizes the probability of coinciding with
the top k alternatives of the true hidden order, i.e., a
subset in

argmax
S⊆A,|S|=k

Pr[S = {(σ∗)−1(i)}i∈[k]|D].

It is easy to see that this objective coincides with Ob-
jective 1 for k = 1, and hence it is NP-hard for k = 1
under noisy orders and noisy comparisons. As before,
we can extend this observation to any k ∈ [m− 1] for
all three models (the proof appears in Appendix A).

Next, we show that the extended scoring method is
again optimal when γ ≈ 1.

Theorem 4.1 For every n and m there exists γ′ <
1 such that for all γ ≥ γ′, the optimal solutions
to Objective 2 under the noisy choice model are in
argmaxka sc(a).

Theorem 4.1 (whose proof is given in Appendix C)
suggests that the alternatives selected by the extended
scoring method are not only good candidates for the
best alternative individually, but as a whole they also
make a good “team”, i.e, when put together they are
the most likely to coincide with the top k alternatives.
Theorems 4.1 and 3.3 together provide an argument in
favor of the extended scoring method and, in particu-
lar, they strongly advocate Borda count when inputs
are noisy orders.

5 Identifying the Top Tuple

In this section we study an objective that is even more
ambitious than Objective 2: not only do we want to
correctly identify the top k alternatives of σ∗, we seek
to identify them in the correct order.

Objective 3 Given k, find the ordered k-tuple that
maximizes the probability of coinciding with the k-
prefix of the true hidden order, i.e., a tuple in

argmax
(a1,a2,...,ak)∈Ak

Pr[(σ∗)−1([k]) = (a1, a2, . . . , ak)|D].

Objective 3 coincides with its predecessors when k = 1,
and reduces to finding an MLE for the true ranking
when k = m. In fact we are able to prove that com-
puting the optimal solution to Objective 3 is NP-hard
for any k ∈ [m] under noisy orders and noisy compar-
isons (the proof appears in Appendix A).

To tackle Objective 3 we propose a new method, which
we call the scored tuples method. Similarly to the ex-
tended scoring method, it maximizes a lower bound of
the stated objective function and provides optimality
guarantees when γ ≈ 1. We first extend the definition
of the noisy choice model’s distance function to com-
pute the distance between a k-tuple (a1, a2, . . . , ak)
and a dataset D; this distance is defined as

d((a1, a2, . . . , ak), D) =
∑

1≤i<j≤k

najai
.

Next, for a k-tuple (a1, a2, . . . , ak), define the score of
the tuple as

sc(a1, a2, . . . , ak) =
k
∑

i=1

sc(ai)− d((a1, a2, . . . , ak), D),

(6)
where sc(ai) is defined as in Equation (2). We select
a k-tuple in argmax(a1,a2,...,ak)∈Ak sc(a1, a2, . . . , ak).

It may seem that overloading the notation of sc(a) as
we have (via Equation (2) and Equation (6) with a tu-
ple of length 1) may create inconsistencies, but in fact
the k = 1 case of Equation (6) reduces to Equation (2).

It turns out that the above method provides guaran-
tees with respect to Objective 3 that are equivalent to
those that we were able to obtain for previous objec-
tives.

Theorem 5.1 For every n and m there exists γ′ <
1 such that for all γ ≥ γ′, the optimal solutions
to Objective 3 under the noisy choice model are in
argmax(a1,a2,...,ak)∈Ak sc(a1, a2, . . . , ak).

The proof of Theorem 5.1 is given in Appendix B; let
us consider its implications with respect to the noisy
orders model. Since maximizing sc(a1, a2, . . . , ak) is
optimal when γ ≈ 1, it must be the case (and indeed
it is easy to verify) that this solution reduces to finding
the Borda winner when k = 1 and reduces to finding
the Kemeny ranking when k = m. Thus the optimal
solution for k = 1, . . . ,m induces a range of voting
rules where Borda count lies on one extreme, and the
Kemeny rule lies on the other. We find it intriguing
(and of independent interest to social choice theory)
that Borda count and Kemeny are connected via a
sequence of “optimal” voting rules.

We remark that the Kemeny rule has been suggested
as a method of aggregating the search results given
by different search engines; in particular it can be for-
mally argued that spam websites will appear at the
bottom of the aggregate ranking [11]. However, since
users are usually only interested in the top 50 results or
so, our results suggest that the scored tuples method



with a relatively small k may outperform the Kemeny
rule (same method with k = m) in this context.

Finally, an important note is that although computing
argmax(a1,a2,...,ak)∈Ak sc(a1, a2, . . . , ak) is NP-hard in
general, it can be computed in polynomial time for
constant k. In some practical settings one would only
need to select a constant number of alternatives (con-
sider, e.g., the search engine example given above) and
the rule can therefore be easily applied.

6 Experiments

We performed simulations under the noisy compar-
isons model and the noisy orders model. We experi-
mented with various values of the accuracy parameter
p (recall that γ = (1−p)/p). Although the theoretical
guarantees hold only for p close to 1/2 (which corre-
sponds to γ close to 1), we observed that for various
values of p in the practical range the methods sug-
gested in this paper significantly outperform various
other known methods.

The graphs present results for particular values of p
for which the probabilities are visible; the probabili-
ties quickly go to 1 for higher values of p and go to
0 for lower values of p. The results are also verified
empirically for various values of m (number of alter-
natives) and n (number of voters) and p (accuracy pa-
rameter) under both models. Error bars correspond to
95% confidence intervals and thus verify that the sug-
gested methods show statistically significant improve-
ment over other methods. In all the graphs shown
below each point is computed by taking the average
over 10000 iterations.

We remark that the simulations are symmetric with re-
spect to the true order, i.e., it does not matter which
true order we begin with as long as the methods do
not use any information about it. If we perform simu-
lations on a fixed true order, it becomes necessary to
break ties uniformly at random, which is what we do.

For noisy orders we compared Borda count for Objec-
tives 1 and 2, and the scored tuples method for Ob-
jective 3, against the Kemeny rule (which is the MLE
ranking), k-approval, plurality, maximin, and maxi-
mizing unweighted outdegree in the tournament where
there is an edge from a to b if a majority of voters rank
a above b (a.k.a. Copeland). For noisy comparisons we
compared weighted outdegree for Objectives 1 and 2,
and the scored tuples method for Objective 3, against
the Minimum Feedback ranking (which is the MLE
ranking), unweighted outdegree, and Maximin.

For Objective 1, we were also able to estimate the ac-
tual optimal solution using Observation 3.1. For this
we needed to sample rankings according to Pr[σ∗ =

σ|D]. One obstacle is that it can be shown that even
computing Pr[σ∗ = σ|D] is NP-hard. We used the
fact that Pr[σ∗ = σ|D] ∝ Pr[D|σ∗ = σ] ∝ γd(σ,D)

and sampled rankings using the Metropolis-Hastings
algorithm. Note though that for larger values of the
parameters the optimal solution is very difficult to es-
timate, whereas finding a Borda winner is a trivial
computational task.
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Fig. 1: Objective 1, Noisy Orders, m=10, n=10, p=0.55.
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Fig. 2: Objective 1, Noisy Orders, m=20, n=100, p=0.505.
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Fig. 3: Objective 1, Noisy Orders, m=10, n=10, p=0.6.

Figure 1 shows simulations for 10 alternatives, 10 vot-
ers and p = 0.55 under noisy orders. Clearly Borda
count outperforms other methods by a large margin,
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p=0.55.
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Fig. 5: Objective 2, Noisy Orders, m=10, n=10, p=0.55.

and in fact it is almost indistinguishable from the ac-
tual optimal solution. Extensive simulations show that
similar results hold for a large number of alternatives
and/or a large number of voters as well. An example
with 20 alternatives, 100 voters and p = 0.505 under
noisy orders is shown in Figure 2.

As mentioned above, the value of p is chosen such
that the graphs span the probability spectrum (prob-
abilities are not constantly 1 or 0) but similar results
hold for other values of p as well. For example, Fig-
ure 4 shows that Borda count dominates other meth-
ods when p = 0.6. However, the margin is smaller. In-
deed, for this relatively high value of p, most methods
under consideration achieve excellent accuracy with
only ten voters.

We also performed detailed simulations under the
noisy comparisons model and observed similar results.
Figure 4 shows a sample simulation for 10 alternatives,
10 voters and p = 0.55. In this case weighted outde-
gree (which is the special case of the extended scoring
method) outperforms other methods by a statistically
significant margin.

Under Objective 2, the extended scoring method again
outperforms other methods as shown in Figure 5 (with
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Fig. 6: Objective 3, Noisy Orders, m=10, n=10, p=0.55.

10 alternatives, 10 voters and p = 0.55 under noisy
orders). As expected, under Objective 3 the scored
tuples method outperforms other methods. Figure 6
shows simulations with 10 alternatives, 10 voters and
p = 0.55 under noisy orders. We do not provide ad-
ditional graphs for noisy comparisons due to lack of
space, but the results are similar: the methods that
are theoretically optimal for p close to 1/2 outperform
other methods for practical values of p.

7 Discussion

We began our exposition with the human computa-
tion angle, and we would like to revisit it now that
we have gained some new insights. Voting is a natu-
ral and almost ubiquitous tool in human computation
systems. However, the designers of these systems usu-
ally employ simplistic voting rules such as plurality
or k-approval (as EteRNA does). Our results suggest
that the choice of voting rule can significantly affect
performance. For example, given that we are indeed
interested in singling out one great design, switching
from k-approval to Borda count in EteRNA can pro-
vide significant benefits. Of course we cannot expect
players to rank all the proposed designs, but we can
work with partial rankings or pairwise comparisons (as
described in Section 2). We find it exciting that social
choice theory can help improve human computation
systems. Indeed, it is difficult to apply the principles
of social choice (e.g., voting rules as MLEs) to political
elections, because it is almost impossible to switch vot-
ing rules. In contrast, human computation provides a
perfect testbed for these principles.
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A Proofs of Complexity Results

For the purposes of this appendix, we refer to the prob-
lem of optimizing Objective 1 as k-Include Top, op-
timizing Objective 2 as k-Unordered Set, and op-
timizing Objective 3 as k-Ordered Tuple.

Theorem A.1 k-Ordered Tuple with m alterna-
tives and k ∈ [m] is NP-hard under noisy compar-
isons.

Proof We consider the problem of finding a minimum
feedback ranking of an unweighted tournament, where
the goal is to reverse as few edges as possible of a
given tournament to obtain an acyclic tournament,
which corresponds to a ranking. This problem has
been shown to be NP-hard by Charbit et. al. [5],
and we reduce it to k-Ordered Tuple. In partic-
ular, given k ∈ [m] and an algorithm A1 to solve
k-Ordered Tuple with m alternatives, we construct
an algorithm A2 to find a minimum feedback ranking
of a tournament with m vertices making only polyno-
mially many (in terms of m) calls to A1 as follows.

Given a tournament T , construct a dataset DT with
vertices of T as alternatives and edges of T as pairwise
comparisons where an edge from i to j is converted

to (i ≻ j), i.e. n = 1. Set p > (m−k)!
1+(m−k)! and ap-

ply A1 on DT . Let ρ1 be the k-tuple returned. Now
construct a tournament T ′ by removing all vertices of
ρ1 from T and adding k dummy vertices. Also, add
edges from every remaining (non-dummy) vertex in T ′

to all the dummy vertices and add edges among the
dummy vertices arbitrarily. Now construct DT ′ from
T ′ as before and apply A1 again (keeping p the same as
before). Repeat this procedure ⌈m

k
⌉ times and let ρi,

1 ≤ i ≤ ⌈m
k
⌉ be the k-tuples returned by A1. Return

the ranking obtained by taking first m vertices from
the concatenation of all tuples, i.e. ρ1ρ2 . . . ρ⌈m

k
⌉.

Note that A2 calls A1 ⌈m/k⌉, which is polynomial
in terms of m. If we prove that A2 indeed returns
a minimum feedback ranking, we can conclude that
k-Ordered Tuple is NP-hard since finding a mini-
mum feedback ranking is NP-hard. First we show the
following claim.

Claim A.2 For any tournament T , the k-tuple re-
turned by algorithm A1 applied on dataset DT is k-
prefix of some minimum feedback ranking of T .

Proof Let a[k] denote a k-tuple (a1, a2, . . . , ak).
Fix a tournament T and let â[k] =



argmaxa[k]∈Ak Pr[DT |(σ∗)−1([k]) = a[k]] be the
tuple returned by A1 on DT . We want to show
that it is k-prefix of some minimum feedback
ranking of T . Suppose for contradiction that it
is not the case. Let ã[k] be k-prefix of any min-
imum feedback ranking of T . We will show that
Pr[DT |(σ∗)−1([k]) = ã[k]] > Pr[DT |(σ∗)−1([k]) = â[k]]
contradicting the optimality of â[k].

In this case, the feedback of any ranking σ with respect
to the tournament T is exactly d(σ,DT ). Let l =

(

m
2

)

.
Hence for any k-tuple a[k],

Pr[DT |(σ
∗)−1([k]) = a[k]]

=
∑

σ∈L(A), σ−1([k])=a[k]

Pr[DT |σ
∗ = σ]

=
∑

σ∈L(A), σ−1([k])=a[k]

pl−d(σ,DT ) · (1 − p)d(σ,DT ).

Let f∗ be the size of the minimum feedback for T .
Therefore there exists a ranking with feedback f∗ that
has ã[k] as its prefix, and every ranking with â[k] as its
prefix has feedback at least f∗ + 1. It follows that

Pr[DT |(σ
∗)−1([k]) = ã[k]] ≥ pl−f∗

· (1− p)f
∗

,

and

Pr[DT |(σ
∗)−1([k]) = â[k]]

≤ (m− k)! · pl−f∗−1 · (1− p)f
∗+1.

Substituting the value of p, we get that
Pr[DT |(σ

∗)−1([k]) = ã[k]] > Pr[DT |(σ
∗)−1([k]) = â[k]]

as required. �(Claim A.2)

Any suffix of a minimum feedback ranking is a min-
imum feedback ranking of the tournament restricted
to the vertices of the suffix. This is because if that
is not the case, then we could replace the suffix by a
smaller feedback ranking of the restricted tournament
and decrease the feedback of the total ranking, which
is impossible since it already has minimum feedback.

It is now easy to check that, inductively, the first m−k
elements of ρ2ρ3 . . . ρ⌈m

k
⌉ form a minimum feedback

ranking of T \ {ρ1} and appending ρ1 gives us a min-
imum feedback ranking of T . An important point
to note is that the dummy vertices added are never
part of the minimum feedback ranking constructed
since other vertices are always preferred to any dummy
vertex. This completes the proof of NP-hardness of
k-Ordered Tuple for any k ∈ [m]. �(Theorem A.1)

Observing that k-Include Top, k-Unordered Set

and k-Ordered Tuple coincide for k = 1, we get the
following.

Corollary A.3 For m alternatives and k = 1, both
k-Include Top and k-Unordered Set are NP-
hard under noisy comparisons.

Now we extend the proof of NP-hardness from k = 1
to k ∈ [m− 1] for both these objectives. First, let us
look at k-Include Top.

Theorem A.4 k-Include Top with m alternatives
and k ∈ [m− 1] is NP-hard under noisy comparisons.

Proof The proof consists of two parts. First we prove
that the theorem holds for k ∈ [m/2] by giving a poly-
nomial time reduction from k = 1 using redundant
alternatives. Then we complete the proof by showing
the equivalence of k-Include Top with k = t and
k-Include Top with k = m − t for any t ∈ [m/2],
where m is the number of alternatives.

For the first step, fix t ∈ [m/2]. We want to prove
that k-Include Top with m alternatives and k = t is
NP-hard. We show a polynomial time reduction from
k-Include Top with m−t+1 alternatives and k = 1.

Take any arbitrary instance T1 of k-Include Top

with k = 1 where the set of alternatives is A with
|A| = m− t+1. Introduce a set B of t−1 new alterna-
tives and construct an instance T2 of k-Include Top

with m alternatives and k = t as follows. The new set
of alternatives is now A′ = A ∪ B. Introducing new
alternatives also requires us to provide extra pairwise
comparisons. For any a ∈ A and b ∈ B, we add n
copies of the pairwise comparison (b ≻ a). For pair-
wise comparisons among alternatives in B, we add n
copies of an arbitrarily chosen comparison for each pair
of alternatives.

It is very easy to check that the optimal solution S to
T2, with |S| = t, consists of all the t − 1 alternatives
from B (since they are always preferred to any alter-
native from A) along with any optimal solution to T1

(k = 1). Thus S \B is an optimal solution to T1.

Note that since t ≤ m/2, we have m − t + 1 ≥
m/2. Thus the reduction from T1 to T2 is a poly-
nomial time reduction in terms of size of T1. Fur-
thermore, by Corollary A.3 we already know that
k-Include Top is NP-hard for k = 1. We conclude
that k-Include Top with m alternatives and k = t is
NP-hard when t ∈ [m/2].

Now we use Observation 3.1 to complete the proof.
Take any t ∈ [m/2]. Take any instance T1 of
k-Include Top with k = t and let A with |A| = m be
the set of alternatives. Let S be an optimal solution
to T1 (with |S| = t). Using Observation 3.1, we see
that S consists of the t alternatives having the largest
probabilities of coinciding with the best alternative.
Equivalently, A \ S is consists of the m − t alterna-



tives having the least probabilities of coinciding with
the best alternative. Now we obtain the instance T2

of k-Include Top with the same m alternatives and
k = m − t by flipping all input preferences. It is easy
to check that A \ S now becomes the optimal solu-
tion to T2. Similarly, we can also reduce an arbitrary
instance of k-Include Top with k = m− t to an in-
stance of k-Include Top with k = t and the proof
follows. �(Theorem A.4)

The NP-hardness of k-Unordered Set for k ∈ [m−
1] can be proved in a way similar to the proof of The-
orem A.4. In particular, the two important properties
that are used in the proof for k-Include Top are:
using redundant alternatives to extend the result from
k = 1 to k ∈ [m/2] and proving equivalence between
k-Include Top with k = t and k-Include Top with
k = m− t for all t ∈ [m/2].

For the first part, it is easy to verify that adding re-
dundant alternatives works for k-Unordered Set as
well. For the second part, note that if A is the set
of alternatives for any instance of k-Unordered Set

with k = t, then for any S ⊆ A with |S| = t we have

Pr[S = {(σ∗)−1(i)}i∈[k]|D]

= Pr[A \ S = {(σ∗)−1(i)}i∈[k+1,m]|D].

It can now be seen that reversing all input orders is
sufficient. Indeed, if S was the optimal solution for
k = t before flipping, then A \ S becomes the optimal
solution for k = m− t after flipping. Thus we get the
following theorem.

Theorem A.5 k-Unordered Set with m alterna-
tives and k ∈ [m−1] is NP-hard under noisy compar-
isons.

Under the noisy orders model we can employ an almost
identical chain of proofs, relying on the NP-hardness
of computing the Kemeny ranking instead of the min-
imum feedback arc set of a tournament. We therefore
obtain the following theorem.

Theorem A.6 k-Include Top and k-Unordered

Set with k ∈ [m − 1], and k-Ordered Tuple with
k ∈ [m], are NP-hard under noisy orders.

Note that Theorems A.1, A.4, A.5 and A.6 together
prove that all three objectives considered in the paper
areNP-hard for every nontrivial value of k under both
noisy comparisons and noisy orders (and hence under
the noisy choice model). In particular, they give a
proof of Theorem 3.2.

B Proof of Theorem 5.1

This proof is similar to the proof of Theorem 3.3 for
the extended scoring method. Let γ = 1 − ǫ, ǫ > 0.
Let A be the set of alternatives and let a[k] denote

the tuple (a1, a2, . . . , ak) ∈ Ak. Let A \ a[k] = {x ∈
A |x 6= ai, 1 ≤ i ≤ k}. We aim to find the tuple a[k]
maximizing Pr[D|(σ∗)−1([k]) = a[k]].

Pr[D|(σ∗)−1([k]) = a[k]]

=
∑

σ∈L(A),σ−1([k])=a[k]

Pr[D|σ∗ = σ]

=
∑

σ∈L(A),σ−1([k])=a[k]

γd(σ,D)

Zγ

.

Let La[k]
(A) = {σ ∈ L(A) |σ−1([k]) = a[k]} and thus

|La[k]
(A)| = (m − k)!. Define an objective function

f(a[k]) = Zγ · Pr[D|(σ∗)−1([k]) = a[k]]. Similarly to
the proof of Theorem 3.3, we obtain following lower
bound on the objective function.

f(a[k]) ≥ f̂(a[k]) =
∑

σ∈La[k]
(A)

(1− ǫ · d(σ,D)). (7)

We also obtain an upper bound on the gap between f
and f̂ . For every a[k] ∈ Ak,

f(a[k])− f̂(a[k]) ≤
∑

σ∈La[k]
(A)

ǫ2 · 2d(σ,D)

≤ ǫ2 · 2n·(
m

2 ) · (m− k)!. (8)

The theorem will now follow by proving
two statements: argmaxa[k]∈Ak f(a[k]) ⊆

argmaxa[k]∈Ak f̂(a[k]), and argmaxa[k]∈Ak f̂(a[k]) =

argmaxa[k]∈Ak sc(a[k]). We use the following claim.

Claim B.1 For every a[k] ∈ Ak,

f̂(a[k]) = Cǫ + ǫ · (m− k)! · sc(a[k])

where Cǫ depends only on ǫ (and not on a[k]).

Proof Simplifying f̂ as in the proof of Theorem 3.3,
it is equal to

(m− k)!− ǫ ·
∑

σ∈La[k]
(A)

d(σ,D)

We further simplify
∑

σ∈La[k]
(A) d(σ,D) and easily see

that it is equal to

n ·
∑

σ∈La[k]
(A)

∑

x∈A,y∈A\{x}

1[σ(x) < σ(y)]

−
∑

x∈A,y∈A\{x}

nxy ·
∑

σ∈La[k]
(A)

1[σ(x) < σ(y)].



The symbol 1 represents the indicator function. As
before, the first term is exactly n ·

(

m
2

)

· (m−k)!, which
is a constant (independent of a[k]).

In the second term, we break the summation into two
parts: (i) sum over x ∈ A \ a[k] and (ii) sum over
x ∈ a[k].

(i) For x ∈ A \ a[k], if y ∈ a[k] then (x ≻ y) never
appears in any ranking σ ∈ La[k]

(A). Hence, the re-
maining sum is

∑

x∈A\a[k]

∑

y∈A\a[k],y 6=x

nxy ·
∑

σ∈La[k]
(A)

1[σ(x) < σ(y)]

=
∑

x∈A\a[k]

∑

y∈A\a[k],y 6=x

nxy ·
(m− k)!

2

= n ·

(

m− k

2

)

·
(m− k)!

2
.

The first transition holds since every such (x ≻ y)
appears in exactly half of the rankings in La[k]

(A).
Note that this expression is constant (independent of
a[k]).

(ii) For x ∈ a[k], observe that if x = ai and y = aj
for j < i, then (x ≻ y) never appears in any of the
rankings in La[k]

(A). For other alternatives y, (x ≻ y)
appears in every ranking in La[k]

(A). Hence, the sum
over the second part is exactly

(m− k)! ·
k
∑

i=1





k
∑

j=i+1

nai aj
+

∑

y∈A\a[k]

nai y





= (m− k)! ·





k
∑

i=1

∑

y∈A\{ai}

nai y −
k
∑

i=1

i−1
∑

j=1

nai aj





= (m− k)! ·

(

k
∑

i=1

sc(ai)− d(a[k], D)

)

= (m− k)! · sc(a[k]).

Note that except for this term, all the previous terms
were independent of a[k]. Thus substituting all the

terms back, we conclude that f̂(a) = Cǫ+ ǫ · (m− k)! ·
sc(a[k]), as required. �(Claim B.1)

Claim B.1 directly implies that

argmax
a[k]∈Ak

f̂(a[k]) = argmax
a[k]∈Ak

sc(a[k]).

It remains to prove that argmaxa[k]∈Ak f(a[k]) ⊆

argmaxa[k]∈Ak f̂(a[k]). Again it is sufficient to show

that for every a[k], a
′
[k] ∈ Ak, f̂(a[k]) > f̂(a′[k]) implies

f(a[k]) > f(a′[k]).

Note that f̂(a[k]) > f̂(a′[k]) implies sc(a[k]) ≥ sc(a′[k])+

1 (since scores are integers) and using Lemma B.1 this

implies f̂(a[k]) ≥ f̂(a′[k]) + ǫ · (m− k)!. Therefore,

f(a[k]) ≥ f̂(a[k]) ≥ f̂(a′[k]) + ǫ · (m− k)!

≥ f(a′[k])− ǫ2 · (m− k)! · 2n·(
m
2 ) + ǫ · (m− k)!.

The third transition follows from Equation (8). Set-

ting ǫ < 2−n·(m2 ), i.e., γ > γ′ = 1 − 2−n·(m2 ), we have
that f(a[k]) > f(a′[k]) as required. �

C Proof of Theorem 4.1

This proof is similar to the proof of Theorem 5.1 for the
scored tuples method, and builds on it. Let γ = 1− ǫ,
ǫ > 0. Let A be the set of alternatives. In this case, the
likelihood of any S ⊆ A, |S| = k being “optimal” (set
of top k alternatives of the true order) is just the sum
of likelihoods of all σ ∈ L(S) being prefix of the true
ranking. Thus we add an additional summation over
all orders of S in the proof of Theorem 5.1. Formally,

Pr[D|S = {(σ∗)−1(i)}1≤i≤k]

=
∑

a[k]∈L(S)

Pr[D|(σ∗)−1([k]) = a[k]]

=
∑

a[k]∈L(S)

∑

σ∈La[k](A)

γd(σ,D)

Zγ

.

As before, define an objective function f(S) = Zγ ·
Pr[D|S = {(σ∗)−1(i)}1≤i≤k] and the lower bound is
obtained as

f(S) ≥ f̂(S) =
∑

a[k]∈L(S)

∑

σ∈La[k]
(A)

(1− ǫ ·d(σ,D)). (9)

We obtain an upper bound on the gap between f and
f̂ as follows. For every S ⊆ A with |S| = k,

f(S)− f̂(S) ≤
∑

a[k]∈L(S)

∑

σ∈La[k]
(A)

ǫ2 · 2d(σ,D)

≤ ǫ2 · 2n·(
m

2 ) · (m− k)! · k!. (10)

The theorem will now follow by proving
two statements: argmaxS⊆A,|S|=k f(S) ⊆

argmaxS⊆A,|S|=k f̂(S), and argmaxS⊆A,|S|=k f̂(S) =

argmaxka∈A sc(a). We use the following claim.

Claim C.1 For every S ⊆ A with |S| = k,

f̂(S) = Cǫ + ǫ · (m− k)! · k! ·
∑

a∈S

sc(a)

where Cǫ depends only on ǫ (and not on S).



Proof Note that for any S ⊆ A with |S| = k, f̂(S)

is just the summation over all a[k] ∈ L(S) of f̂(a[k])
defined in Theorem 5.1. Hence it is equal to

∑

a[k]∈L(S)

(

C′
ǫ + ǫ · (m− k)! · sc(a[k])

)

for some constant C′
ǫ independent of S, where

sc(a[k]) =
∑k

i=1 sc(ai) − d(a[k], D). Breaking the sum
over the individual terms, we can see that the sum over
the first term (C′

ǫ) is independent of S. Furthermore,
the sum over the d(a[k], D) part of sc(a[k]) is

−(m−k)! ·
∑

a[k]∈L(S)

d(a[k], D) = −(m−k)! ·
k!

2
·n ·

(

k

2

)

.

This follows since every (x ≻ y) ∈ D where x, y ∈ S
appears in exactly half of the k! orders in L(S). Hence
this part is also independent of S. The only part which
is dependent on S is then the sum over the

∑k
i=1 sc(ai)

part of sc(a[k]) which is (m− k)! · k! ·
∑

a∈S sc(a).

It follows that f̂(S) = Cǫ + ǫ · (m − k)! · k! ·
∑

a∈S sc(a) for some constant Cǫ independent of S,
as required. �(Claim C.1)

Claim C.1 implies that

argmax
S⊆A,|S|=k

f̂(S) = argmax
S⊆A,|S|=k

∑

a∈S

sc(a) = argmaxka∈A sc(a).

It remains to prove that argmaxS⊆A,|S|=k f(S) ⊆

argmaxS⊆A,|S|=k f̂(S). Again it is sufficient to show

that for every S, S′ ⊆ A with |S| = |S′| = k, f̂(S) >

f̂(S′) implies f(S) > f(S′).

Note that f̂(S) > f̂(S′) implies
∑

a∈S sc(a) ≥
∑

a∈S′ sc(a) + 1 (since scores are integers) and using

Lemma C.1 this implies f̂(S) ≥ f̂(S′)+ ǫ · (m−k)! ·k!.
Therefore

f(S) ≥ f̂(S) ≥ f̂(S′) + ǫ · (m− k)! · k!

≥ f(S′)− ǫ2 · (m− k)! · k! · 2n·(
m

2 ) + ǫ · (m− k)! · k!.

The third transition follows from Equation (10). Set-

ting ǫ < 2−n·(m2 ), i.e., γ > γ′ = 1 − 2−n·(m2 ), we have
that f(S) > f(S′) as required. �


