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Abstract

We extend the recently introduced framework of metric distortion to multiwinner voting. In this

framework, n agents andm alternatives are located in an underlying metric space. �e exact distances

between agents and alternatives are unknown. Instead, each agent provides a ranking of the alterna-

tives, ordered from the closest to the farthest. Typically, the goal is to select a single alternative that

approximately minimizes the total distance from the agents, and the worst-case approximation ratio is

termed distortion. In the case of multiwinner voting, the goal is to select a commi�ee of k alternatives

that (approximately) minimizes the total cost to all agents. We consider the scenario where the cost of

an agent for a commi�ee is her distance from the q-th closest alternative in the commi�ee. We reveal a

surprising trichotomy on the distortion of multiwinner voting rules in terms of k and q: �e distortion

is unbounded when q 6 k/3, asymptotically linear in the number of agents when k/3 < q 6 k/2, and

constant when q > k/2.

1 Introduction

�e most canonical problem in voting theory is to aggregate ranked preferences of n individual agents

over a set of m alternatives to reach a collective decision. Examples of such decisions include selecting a

single alternative (single-winner voting), selecting k out of m alternatives for a �xed k > 1 (multiwinner

voting), and selecting a set of costly alternatives subject to a budget constraint (participatory budgeting). In

centuries of research on voting, perhaps the most prominent approach to designing voting rules has been

the axiomatic approach, in which one �xes several qualitative axioms and seeks voting rules satisfying

them. Unfortunately, this approach has o�en led to impossibility results [Gibbard, 1973; Sa�erthwaite,

1975].

Procaccia and Rosenschein [2006] proposed the (utilitarian) distortion framework for analyzing, com-

paring, and designing single-winner voting rules. Under this framework, the ordinal preferences expressed

by agents are viewed as proxies for their underlying cardinal utilities, and the goal of a voting rule is to op-

timize the worst-case approximation ratio (distortion) of the social welfare (the total utility of the agents).

Under minimal assumptions, this framework o�ers a quantitative comparison of voting rules. It has been

used successfully to analyze the distortion of well-known methods [Caragiannis and Procaccia, 2011] and

to identify voting rules with optimal distortion [Boutilier et al., 2015]. �e framework has also been ex-

tended to multiwinner voting [Caragiannis et al., 2017] and participatory budgeting [Benadè et al., 2021],

∗
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under the assumption that the utility of an agent for a set of alternatives is the maximum and the sum of

her utilities for the alternatives in the set, respectively.

Anshelevich et al. [2015] built on this idea to propose the metric distortion framework, in which agents

and alternatives are embedded in an underlying metric space, and the cost of an agent for an alternative

is the distance between them. An agent still ranks the alternatives, but now in a non-decreasing order of

their distance from her. Instead of maximizing the social welfare, the goal is now to minimize the social

cost (the total cost of the agents). Like in the utilitarian case, scholars have analyzed the metric distortion

of prominent voting rules [Skowron and Elkind, 2017; Goel et al., 2017; Munagala and Wang, 2019; Kempe,

2020b] and have identi�ed rules with optimal metric distortion [Gkatzelis et al., 2020]. For a detailed

overview, we refer the reader to the survey by Anshelevich et al. [2021].

�e goal of our work is to extend the metric distortion framework to multiwinner voting, where the

objective is to select a subset of k alternatives (commi�ee) for a given k > 1. To the best of our knowledge,

the only prior works to address multiwinner voting with general metric costs are those of Goel et al. [2018]

and Chen et al. [2020]. Both focus on a model in which an agent’s cost for a commi�ee is the sum of her

distances to the alternatives in the commi�ee. In a sense, this assumes that an agent cares equally about

all the alternatives chosen in the commi�ee.

However, in many applications, an agent may care only about a few alternatives in the commi�ee,

typically the ones she prefers more. For example, when parliament members are chosen in a political

election, each voter may associate with just one (or a few) of the elected candidates as her representative(s).

Similarly, if a city builds parks at multiple locations, each resident may only be able to access a few parks

closest to her. Motivated by these applications, we consider the case where an agent’s cost for a commi�ee

of k alternatives is her distance to the q-th closest alternative in the commi�ee, for a given q 6 k. Note

that for q = 1, this is the distance to the closest alternative in the commi�ee, whereas for q = k, it is

the distance to the farthest one. �e application under consideration may inform a natural choice of q.

For example, when electing parliament members who would subsequently vote on issues using majority

voting, a voter may naturally wish to have a majority of the parliament members close to her, which

corresponds to q = bk/2c+ 1. Similarly, supermajority voting can correspond to other values of q > k/2.

We remark that our results are the most positive (constant distortion) when q > k/2. Our main research

question is:

What is the optimal distortion for selecting a commi�ee of k alternatives under this cost model?
How does it depend on the relation between q and k? Can the optimal distortion be achieved via
computationally e�cient voting rules?

Before proceeding further, note that another reason why it may not be desirable to model an agent’s

cost for a commi�ee as the sum of her distances to the alternatives in the commi�ee is that the optimal

commi�ee can su�er from the tyranny of the majority; that is, it may consist entirely of the alternatives

liked by the majority and include none liked by a minority. �is is somewhat re�ected by the fact that

repeatedly applying a single-winner voting rule is known to work well in this model [Goel et al., 2018].

Due to this, prior work on multiwinner voting, both in the distortion literature [Caragiannis et al., 2017]

and elsewhere [Chamberlin and Courant, 1983; Monroe, 1995; Procaccia et al., 2008; Lu and Boutilier, 2011],

aims to ensure that there is at least one alternative in the commi�ee that every agent likes well (which

corresponds to q = 1 in our model). An interesting byproduct of our cost model is that an agent’s submi�ed

ranking of individual alternatives can be used to determine her ordinal preferences over commi�ees; we

use this fact to derive some of our results.
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Deterministic Randomized

q 6 k/3 +∞ +∞

q ∈ (k/3, k/2] Θ(n) Θ(n)

q > k/2
3 (exp time, general n)

[2.1126, 3)3 (poly time, constant n)

6 9 (poly time, general n)

Table 1: An overview of our distortion bounds.

1.1 Our Contributions

Recall thatn is the number of agents andm is the number of alternatives. We reveal a surprising trichotomy

on the best possible distortion for multiwinner voting.

When q 6 k/3, the distortion is unbounded. �is holds even for randomized voting rules, and even

when n and m are only linear in k. When q ∈ (k/3, k/2], the best possible distortion is Θ(n). Here,

the upper bound is obtained via a novel voting rule that is deterministic and (computationally) e�cient,

while the lower bound holds even for randomized voting rules and when m is linear in k or q. Finally,

when q > k/2, the best possible distortion is 3 for deterministic rules, and between 2.1126 and 3 − 2/n
for randomized rules. For this case, we show that the costs of agents for commi�ees satisfy the triangle

inequality. Hence, we can reduce multiwinner voting to single-winner voting by treating each commi�ee

as a separate alternative and applying any single-winner voting rule, allowing us to borrow known best

possible distortion bounds from the single-winner case to the multiwinner one. �is is where we use the

fact that under our cost model, we can deduce an agent’s ordinal preferences over commi�ees from her

provided ranking of individual alternatives.

However, this reduction is not computationally e�cient as we need to apply the single-winner voting

rule on an instance with

(
m
k

)
alternatives. To that end, we also provide an e�cient reduction. We show

that there exists an agent such that the commi�ee consisting of the k alternatives she prefers the most

has social cost no worse than 3 times the optimal. �us, we can apply any single-winner voting rule with

distortion ρ on a reduced instance with only n commi�ees (one commi�ee per agent) as alternatives and

obtain a multiwinner rule with distortion at most 3ρ. In particular, by applying the PluralityMatching

rule of Gkatzelis et al. [2020], which is known to achieve the best possible distortion of 3 in the single-

winner case, we obtain distortion at most 9 in polynomial time. We also show that an e�cient reduction

of this type cannot be used to achieve distortion be�er than 5.207. An overview of our results is given in

Table 1.

1.2 Related Work

�e works of Goel et al. [2018] and Chen et al. [2020] are the most closely related to ours as they consider

metric distortion for multiwinner voting. As mentioned before, both focus on a se�ing where the cost of

an agent for a commi�ee is the sum of her distances to the alternatives in the commi�ee.
1

Goel et al. [2018]

show that selecting a commi�ee by repeatedly applying any single-winner voting rule with distortion δ
yields a distortion of at most δ. Since the best possible single-winner distortion is known to be 3 [Gkatzelis

et al., 2020], this implies that a distortion of 3 can be achieved for any k in this model. Chen et al. [2020]

1

Chen et al. [2020] focus only on the case of k = m− 1, but also consider another cost model.
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directly present a voting rule achieving distortion 3 for the case of k = m − 1 and prove this to be best

possible.

Jaworski and Skowron [2020] consider a model where voters (agents) and candidates (alternatives)

have preferences over a set of binary issues, which induce the preferences of the voters over the candidates;

speci�cally, voters rank candidates based on the number of issues they agree on. �e elected commi�ee

uses majority voting to decide on each issue, and the cost of a voter is the number of issues for which the

decision di�ers from her preferred outcome. �is can be viewed as a metric distortion model, but with the

speci�c Hamming distance metric. Also, the cost of a voter for a commi�ee depends on the locations of

the candidates in the commi�ee, and not just on their distances to her. Meir et al. [2021] consider a similar

model where voters are also candidates, and show that sortition — picking k of the voters uniformly at

random — leads to low distortion.

�e distortion of randomized rules has also received signi�cant a�ention. For single-winner voting, the

best possible distortion under the utilitarian model is known to be Θ(
√
m) [Boutilier et al., 2015; Ebadian

et al., 2022], while that under the metric model is between 2.1126 and 3− 2/min{n,m} and still remains

a challenging open question [Anshelevich and Postl, 2017; Kempe, 2020a; Charikar and Ramakrishnan,

2022]. Caragiannis et al. [2017] provide bounds on the best possible distortion of randomized multiwinner

voting rules under the utilitarian model, and our work does so under the metric model.

More broadly, there is a huge literature on multiwinner voting that focuses on desiderata other than

distortion, such as proportional representation [Aziz et al., 2017; Peters and Skowron, 2020], commi�ee

diversity [Bredereck et al., 2018], monotonicity or consistency axioms [Elkind et al., 2017], explainabil-

ity [Peters et al., 2021], etc. We refer the interested reader to the book chapter by Faliszewski et al. [2017]

for an overview.

2 Preliminaries

For p ∈ N, de�ne [p] = {1, . . . , p}. An instance of our problem is given by the tuple I = (N,A, d, k, q),

where:

• N is a set of n > 2 agents.

• A is a set of m > 2 alternatives.

• d is a pseudometric over N ∪ A with d(x, y) denoting the distance between x, y ∈ N ∪ A. Being

a pseudometric, d satis�es, for all x, y, z ∈ N ∪ A, d(x, x) = 0, d(x, y) = d(y, x), and the triangle
inequality d(x, y) 6 d(x, z) + d(z, y). Since our framework only uses distances between agents

and alternatives (and not between two agents or between two alternatives), we use the following

equivalent formulation of the triangle inequality [Goel et al., 2017]: d(i, x) 6 d(i, y) + d(j, y) +
d(j, x) for all agents i, j ∈ N and alternatives x, y ∈ A.

2

• k and q are positive integers such that 1 6 q 6 k < m.

Every agent i ∈ N ranks the alternatives based on her distances from them, from smallest (most

preferable) to largest (least preferable), breaking ties arbitrarily; that is, the pseudometric d induces the

ordinal preferences of agent i given by a ranking�i over the alternatives such that x �i y implies d(i, x) 6
d(i, y). We refer to �d= (�i)i∈N as the preference pro�le.

2

When proving lower bounds, we will o�en design a worst-case pseudometric d by embedding agents and alternatives in the

1D Euclidean space and taking the Euclidean distance between them.
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For any S ⊆ A with |S| > q, we denote by topi,q(S) the set of q most preferred alternatives of

agent i in S. A commi�ee C ⊆ A is a set of alternatives of size exactly equal to k. We de�ne the q-
cost of agent i for C , denoted ci,q(C|d), to be the distance of i from her q-th closest alternative in C :

ci,q(C|d) = maxx∈topi,q(C) d(i, x). �e q-social cost of commi�ee C , denoted SCq(C|d), is then de�ned as

the total q-cost of the agents for C : SCq(C|d) =
∑

i∈N ci,q(C|d).

A (randomized) multiwinner voting rule f takes as input a preference pro�le �d and outputs a distri-

bution over commi�ees; we say that f is deterministic if the distribution it returns has singleton support.

Given k ∈ N and q ∈ [k], the (k, q)-distortion of f is the worst-case ratio, over all possible instances with

these parameters, between the (expected) q-social cost of the commi�ee chosen by f and the minimum

possible q-social cost of any commi�ee, i.e.,

sup
I=(N,A,d,k,q):|A|=m>k

E[SCq(f(�d)|d)]

minC⊆A:|C|=k SCq(C|d)
.

Our goal is to design multiwinner rules with as low (k, q)-distortion as possible.

To simplify notation, we drop q and d whenever they are clear from the context. In particular, we

will use ci(C) instead of ci,q(C|d), SC(C) instead of SCq(C|d), and topi(S) instead of topi,q(S). We also

denote by Ti = topi(A) the set of q alternatives ranked highest by agent i.

3 Unbounded Distortion With q 6 k/3

We begin with a strong impossibility result for the case where q 6 k/3. In particular, we show that every

multiwinner voting rule has unbounded distortion, even if it is allowed to use randomization.

�eorem 1. For q 6 k/3, the (k, q)-distortion of every (even randomized) multiwinner voting rule is un-
bounded.

Proof. Fix k and q such that q 6 k/3, and a multiwinner voting rule f . LetL = bk/qc+1 > 4. We consider

an instance with n = L agents, partitioned into two sets: V = {v1, . . . , vbL/2c} andU = {u1, . . . , udL/2e}.
�ere are m = Lq alternatives, partitioned into L sets X1, . . . , XbL/2c, Y1, . . . , YdL/2e of size q each.

3
Let

X =
⋃bL/2c

`=1 X` and Y =
⋃dL/2e

`=1 Y`.
Consider any preference pro�le such that:

• Every agent in V ranks the alternatives in X higher than those in Y .

• Every agent in U ranks the alternatives in Y higher than those in X .

• For ` ∈ [bL/2c], every agent ranks the alternatives in X` as well as those in Y` arbitrarily.

• For ` ∈ [bL/2c], agent v` ∈ V ranks the alternatives in Xi higher than those in Xj whenever

|`− i| < |`− j|, for i, j ∈ [bL/2c]; otherwise, agent v` ranks the alternatives inXi lower than those

in Xj . Also, agent v` ranks the sets of Y in the order Y1, . . . , YdL/2e from lowest to highest.

• For ` ∈ [dL/2e], agent u` ∈ U ranks the alternatives in Yi higher than those in Yj whenever

|`− i| < |`− j|, for i, j ∈ [dL/2e]; otherwise, agent u` ∈ U ranks the alternatives in Yi lower than

those in Yj . Also, agent u` ranks the sets of X in the order XbL/2c, . . . , X1 from highest to lowest.

3

We use an instance with n 6 m. Note, however, that the lower bound continues to hold even if one assumes n > m. We

can simply create t copies of each agent, for an appropriately large t ∈ N.
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agent ranking

v1 X1 � X2 � Y1 � Y2 � Y3
v2 X2 � X1 � Y1 � Y2 � Y3
u1 Y1 � Y2 � Y3 � X2 � X1

u2 Y2 � Y1 � Y3 � X2 � X1

u3 Y3 � Y2 � Y1 � X2 � X1

Table 2: An example of the preference pro�le used in the proof of �eorem 1, when k = 8 and q = 2.

Here, we have L = b8/2c + 1 = 5, n = L = 5, and m = Lq = 10. �e alternatives are partitioned into

5 sets X1, X2, Y1, Y2, Y3 of size 2 each. We also have that X = {X1, X2} and Y = {Y1, Y2, Y3}. As an

example, u2 ranks the alternatives of Y higher than those of X , i.e., {Y1, Y2, Y3} � {X1, X2}. Within Y ,

the sets therein are ranked based on their index distance from 2, e.g., Y2 � Y1 � Y3. Within X , the order

is �xed so that X2 � X1. �e two alternatives in every subset are ranked arbitrarily.

{v1, X1}
{v2, X2}

0

{u1, Y1}

4

{u2, Y2}

5

{u3, Y3}

6

(a) �e metric space in Case 1.

{v1, X1}

−4

{v2, X2}

−3

{u1, Y1}
{u2, Y2}
{u3, Y3}

0

(b) �e metric space in Case 2.

Figure 1: �e two metrics used in the proof of �eorem 1 when k = 8 and q = 2. Both are consistent with

the ordinal preferences presented in Table 2. If the 6 alternatives of Y = Y1∪Y2∪Y3 are not all included in

the commi�ee with positive probability, the expected q-cost of some agent of U = {u1, u2, u3} is positive

in the �rst metric, thus leading to unbounded distortion, as the commi�ee that includes the 6 alternatives

of Y and 2 alternatives of X = X1 ∪X2 has q-social cost 0. If, on the other hand, all the alternatives of

Y are included in the commi�ee, not all 4 alternatives of X can be included in the commi�ee, and thus

some agent in V = {v1, v2} has q-cost at least 1 in the second metric in any possible scenario; this again

leads to unbounded distortion as the commi�ee that includes the 4 alternatives of X and 4 alternatives of

Y has q-social cost 0.

Table 2 presents an example preference pro�le for k = 8 and q = 2; Figure 1 depicts the possible underlying

metric spaces used in the two cases below for this example instance.

Because m = Lq = (bk/qc + 1) · q > k, not all alternatives can be included in the commi�ee. We

distinguish between the following two cases.

Case 1: Some alternative in Y is not included in the committee with a positive probability.
Suppose that an alternative in Y`∗ is not included in the commi�ee with a positive probability, for some

`∗ ∈ [dL/2e]. Consider the following one-dimensional Euclidean metric, which is consistent with the

ordinal preferences of the agents de�ned above:

• All agents in V and all alternatives in X are located at 0.

• For every ` ∈ [dL/2e], agent u` ∈ U and the alternatives in Y` are located at dL/2e+ `.

Since some alternative in Y`∗ is not included in the commi�ee with a positive probability, the expected

q-cost of agent u`∗ is positive, and thus the expected q-social cost under f is also positive. However, it is
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possible to achieve q-social cost 0 by including in the commi�ee all the alternatives of Y and an arbitrary

subset of k − dL/2eq > q alternatives from X ; here, the inequality follows because q 6 k/3. So, the

distortion of f is unbounded in this case.

Case 2: Every alternative in Y is included in the committee with probability 1.
Consider the following metric, which is consistent with the ordinal preferences of the agents de�ned above:

• For ` ∈ [bL/2c], agent v` and the alternative in X` are located at −L+ `.

• All agents of U and all alternatives in Y are located at 0.

Since f chooses a commi�ee that includes all ofY with probability 1, it never includes all alternatives of

X . Whenever an alternative inX` is excluded, note that agent v` has q-cost at least 1. Hence, the expected

q-social cost is at least 1. However, it is possible to achieve q-social cost 0 by choosing the commi�ee

containing all the alternatives of X and an arbitrary subset of k − bL/2cq > q alternatives from Y . So,

the distortion of f is unbounded in this case as well.

4 Linear Distortion With k/3 < q 6 k/2

We now turn our a�ention to the case of q ∈ (k/3, k/2]. In this case, the best possible distortion turns out

to be bounded, but linear in the number of agents, which could be very large.

We propose a novel deterministic multiwinner voting rule, called PolarOpposites (see Algorithm 1),

which runs in polynomial time and achieves a distortion ofO(n). Recall that, for a �xed value of q, topi(S)
is the set of the q most favorite alternatives of agent i in S, Ti = topi(A), and also that we drop q and

k from notation as they are clear from context. PolarOpposites is relatively straightforward: we choose

an agent i arbitrarily, and another agent j whose Tj has the highest cost
4

for agent i; then we output

any commi�ee that includes Ti ∪ Tj . However, the analysis of the distortion upper bound of our rule is

intricate.

Algorithm 1: PolarOpposites
1 Choose an arbitrary agent i ∈ N ;

2 Choose an agent j ∈ arg max`∈N\{i} ci(T`);

3 Output an arbitrary commi�ee W ⊇ Ti ∪ Tj ;

Before we proceed with bounding the distortion of our rule, we present a structural lemma, which

holds for all possible values of k and q, and will be extremely useful in the proof of the bound.

Lemma 1. Consider any instance I = (N,A, d, k, q) and let O ∈ arg minC:|C|=k SC(C) be an optimal
commi�ee. �ere exists a subset of agents S with |S| 6 bk/qc such that for every agent i ∈ N there exists
an agent j ∈ S with topi(O) ∩ topj(O) 6= ∅ and cj(O) 6 ci(O). In addition, for every agent i ∈ N and
commi�ee C ⊇

⋃
j∈S Tj , we have ci(C) 6 3 · ci(O).

Proof. We construct the set S using Algorithm 2. Note that because we are only interested in arguing the

existence of S, we can assume access to the underlying costs in order to construct S.

4

Here, we use the fact that in our model, we can compare two sets of alternatives in terms of their cost to agent i using only

agent i’s preference ranking over individual alternatives.
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Algorithm 2: Construction of S in Lemma 1

1 Sort the agents in N = [n] in non-decreasing order of their cost for O such that ci(O) 6 cj(O)
for all i < j ;

2 S ← ∅;

3 for i = 1, . . . , n do
4 if topi(O) ∩ topj(O) = ∅ for all j ∈ S then
5 S ← S ∪ {i};
6 end
7 end

By construction, S is such that for every agent i ∈ N either i ∈ S (in which case the condition in

the statement of the lemma holds for j = i), or there exists j ∈ N \ {i} that is considered before i in

Algorithm 2 (i.e., cj(O) 6 ci(O)) and topi(O)∩ topj(O) 6= ∅. Observe at any point during the algorithm,

we maintain the invariant topi(O)∩ topj(O) = ∅ for all distinct i, j ∈ S. Since |O| = k and topi(O) for

each i ∈ S consists of q unique alternatives from O, we always have |S| 6 bk/qc.
For the second claim, consider any commi�ee C ⊇

⋃
i∈S Ti. Clearly, ci(C) 6 ci(O) for every i ∈ S.

By the property of S established above, for any agent i ∈ N \ S, there exist j ∈ S and x ∈ C such that

cj(O) 6 ci(O) and x ∈ topi(O)∩ topj(O). Let y ∈ C be the q-th favorite alternative of i in Tj . We make

the following simple observations:

• Since x ∈ topi(O), d(i, x) 6 ci(O).

• By the choice of j, and since x ∈ topj(O) and y ∈ Tj , d(j, x) 6 cj(O) 6 ci(O) and d(j, y) 6
cj(O) 6 ci(O).

By the triangle inequality and the above observations, we have

ci(C) 6 d(i, y) 6 d(i, x) + d(j, x) + d(j, y) 6 3 · ci(O).

�is completes the proof.

We are now ready to bound the distortion of the PolarOpposites rule.

�eorem 2. For any q ∈ (k/3, k/2], the (k, q)-distortion of PolarOpposites is O(n).

Proof. Let I = (N,A, d, k, q) be an instance with q ∈ (k/3, k/2]. Let i and j be the agents chosen by

PolarOpposites on I , W ⊇ Ti ∪ Tj be the commi�ee returned by it, and O ∈ arg minC:|C|=k SC(C) be

an optimal commi�ee for I . We will show that c`(W ) 6 c`(O) + 4 · SC(O) for every agent ` ∈ N . �en,

by summing over all agents, we will obtain that SC(W ) 6 (4n+1) ·SC(O), thus implying an upper bound

of 4n+ 1 on the distortion of PolarOpposites. We distinguish between the following two cases.

Case 1: topi(O)∩ topj(O) 6= ∅. Let x ∈ topi(O)∩ topj(O) be an alternative that both i and j consider

to be among their top q alternatives in the optimal commi�ee O. For any agent ` ∈ N , let

• y` = arg maxz∈T`
d(`, z) be the q-th overall favorite alternative of `, and

• y`j = arg maxz∈Tj d(`, z) be the q-th favorite alternative of ` among those in Tj .

8



Since Tj ⊆ W , by the de�nition of y`j , we have c`(W ) 6 c`(Tj) = d(`, y`j). Combining this with the

triangle inequality, we obtain

c`(W ) 6 d(`, y`j)

6 d(`, y`) + d(i, y`) + d(i, x) + d(j, x) + d(j, y`j).

For any agent v, note that cv(Tv) 6 cv(O), and for any agent u and alternative y ∈ Tv , we also have

d(u, y) 6 cu(Tv). Combining these with the de�nitions of j, y`, x, and y`j , we can now bound each of the

terms in the expression above as follows:

• d(`, y`) = c`(T`) 6 c`(O);

• d(i, y`) 6 ci(T`) 6 ci(Tj);

• d(i, x) 6 ci(O);

• d(j, x) 6 cj(O);

• d(j, y`j) 6 cj(Tj) 6 cj(O).

Substituting these, we get

c`(W ) 6 c`(O) + ci(Tj) + ci(O) + 2cj(O).

We can bound the term ci(Tj) using the de�nition of alternative yij , the triangle inequality, and some of

the above observations, as follows:

ci(Tj) = d(i, yij)

6 d(i, x) + d(j, x) + d(j, yij)

6 ci(O) + cj(O) + cj(Tj)

6 ci(O) + 2cj(O).

So, combining everything, and using the fact that SC(O) > ci(O) + cj(O), we have that

c`(W ) 6 c`(O) + 2ci(O) + 4cj(O)

6 c`(O) + 4 · SC(O),

as desired.

Case 2: topi(O) ∩ topj(O) = ∅. Consider the set S that is guaranteed to exist by Lemma 1. Since

q ∈ (k/3, k/2], we have that bk/qc = 2, and hence |S| 6 2.

If |S| = 1, then there exists a single agent v ∈ S and top`(O) ∩ topv(O) 6= ∅ for every agent ` ∈ N .

If |S| = 2, we claim that there is a function g : N → S such that for every agent ` ∈ N , it holds that

top`(O) ∩ topg(`)(O) 6= ∅ and S = {g(i), g(j)}. Lemma 1 already guarantees a function g meeting the

�rst condition. �e second condition follows since |O| = k < 3q and topi(O) ∩ topj(O) = ∅ imply that

there cannot exist v ∈ S such that topi(O) ∩ topv(O) = topj(O) ∩ topv(O) = ∅; otherwise topi(O),

topj(O), and topv(O) would be disjoint subsets of O of size q each.

Now, consider any agent ` ∈ N , and suppose that g(`) = g(j) = v ∈ S; the case g(`) = g(i)
if |S| = 2 is similar. By the properties of S, there exist alternatives x ∈ top`(O) ∩ topv(O) and z ∈

9



{V,X}
{U, Y }

0

{w,Z}

1

(a) �e metric space in Case 1.

{V,X}

0

{U, Y }

1

{w,Z}

2

(b) �e metric space in Case 2.

Figure 2: �e metric spaces used in the proof of �eorem 3. Each of the sets X,Y, Z has size q. Both

metrics are consistent with the ordinal pro�le according to which the preference of the λ agents in V
is X � Y � Z , the preference of all λ agents in U is Y � X � Z , and the preference of agent w is

Z � Y � X . If the q alternatives ofZ are not all included in the commi�ee with positive probability (Case

1), then agent w has positive expected q-cost in the �rst metric space, leading to unbounded distortion as

the commi�ee that includes Z and q alternatives fromX ∪Y has q-social cost 0. If all alternatives of Z are

included in the commi�ee (Case 2), then the λ agents of V (in case not all alternatives ofX are included in

the commi�ee) or the λ agents in U (in case not all alternatives of Y are included in the commi�ee) have

q-cost 1 in the second metric space, leading to a distortion of λ = Ω(n) as the commi�ee that includes all

the alternatives of X ∪ Y and some alternatives of Z has q-social cost 1. In either case, the distortion of

the voting rule is Ω(n).

topj(O)∩topv(O). As in case 1, let y`j ∈ Tj be the q-th favorite alternative of ` inTj ; so, c`(Tj) = d(`, y`j).

By the fact that Tj ⊆W , and using the triangle inequality, we obtain

c`(W ) 6 c`(Tj) = d(`, y`j)

6 d(`, x) + d(v, x) + d(v, z) + d(j, z) + d(j, y`j).

By the de�nitions of x, z and y`j , we have d(`, x) 6 c`(O), d(v, x) 6 cv(O), d(v, z) 6 cv(O), d(j, z) 6
cj(O), and d(j, y`j) 6 cj(Tj) 6 cj(O). Combined with the fact that SC(O) > cv(O) and SC(O) > cj(O),

we get

c`(W ) 6 c`(O) + 2cv(O) + 2cj(O)

6 c`(O) + 4 · SC(O),

as desired.

We conclude this section by showing a matching lower bound of Ω(n) on the distortion of any (even

randomized) multiwinner voting rule. Hence, when q ∈ (k/3, k/2], PolarOpposites is the asymptotically

best possible rule in terms of distortion, even among randomized rules.

�eorem 3. For q ∈ (k/3, k/2], the (k, q)-distortion of every (even randomized) multiwinner voting rule is
Ω(n).

Proof. Fix k and q ∈ (k/3, k/2], and let f be an arbitrary multiwinner voting rule. We consider instances

with n = 2λ+ 1 agents, partitioned into two sets V and U of size λ each and a singleton {w}. �ere are

m = 3q alternatives, partitioned into three sets X , Y , and Z consisting of q alternatives each.

Consider any preference pro�le subject to the following rules.

• Every agent ranks the alternatives that belong to the same set arbitrarily.

• Every agent in V has the ranking X � Y � Z .

10



• Every agent in U has the ranking Y � X � Z .

• Agent w has the ranking Z � Y � X .

Since m = 3q > k, the commi�ee returned by f cannot include every alternative with probability 1. We

distinguish between the following two cases. Figure 2 depicts the two metric spaces considered in these

cases.

Case 1: With a positive probability, the committee chosen by f does not include all q alternatives
of Z.
Consider the following metric, which is consistent (up to tie-breaking) with the preference pro�le de�ned

above:

• �e agents in V ∪ U and the alternatives in X ∪ Y are all located at 0.

• Agent w and the alternatives of Z are located at 1.

Since some alternative in Z is not included in the chosen commi�ee with a positive probability, the

expected q-cost of agentw, and thus the expected q-social cost under f , is positive. However, the commi�ee

that includes all of Z and any q alternatives from X ∪ Y has q-social cost 0. �erefore, the distortion of f
is unbounded.

Case 2: With probability 1, the committee chosen by f includes every alternative of Z.
Consider the following metric, which is again consistent (up to tie-breaking) with the preference pro�le

de�ned above:

• �e agents in V and the alternatives in X are at 0.

• �e agents in U and the alternatives in Y are at 1.

• Agent w and the alternatives in Z are at 2.

Recall that with probability 1, f chooses a commi�ee that includes all q alternatives of Z . Any such

commi�ee cannot contain all alternatives in X ∪ Y . If it does not include an alternative of X , the q-cost

of every agent in V is at least 1, and if it does not include an alternative of Y , the q-cost of every agent in

U is at least 1. Either way, we have that, with probability 1, f chooses a commi�ee with q-social cost at

least λ. Hence, the expected q-social cost under f is at least λ. However, the commi�ee that includes all

2q alternatives ofX ∪Y and k−2q arbitrary alternatives of Z has q-social cost 1; only agent w has q-cost

1. So, the distortion of f is at least λ = Ω(n) in this case.

5 Constant Distortion With q > k/2

We now turn our a�ention to the case q > k/2, where it is possible to achieve constant distortion. A

crucial observation, which we exploit in this section, is that the q-costs of the agents form a new metric

over the agents and all possible commi�ees of alternatives.

Lemma 2. For any instance I = (N,A, d, k, q) with q > k/2, the q-costs ci(C) of agents i ∈ N for k-sized
commi�ees of alternatives C ⊆ A form a pseudometric.
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Proof. To prove the statement, we need to show that the q-costs satisfy the triangle inequality, i.e., ci(X) 6
ci(Y ) + cj(Y ) + cj(X), for any two agents i, j ∈ N and two k-sized commi�ees X,Y .

For any q 6 k, there exists x ∈ topj(X) that is among the k−q+1 least favorite alternatives (ranked in

some position from q to k) of agent i inX ; thus, x is such that ci(X) 6 d(i, x) and cj(X) > d(j, x). Since

q > k/2, there also exists y ∈ topi(Y )∩topj(Y ), that is, y is such that ci(Y ) > d(i, y) and cj(Y ) > d(j, y).

Combining these with the triangle inequality for the distances between agents and alternatives, we have

that

ci(X) 6 d(i, x) 6 d(i, y) + d(j, y) + d(j, x)

6 ci(Y ) + cj(Y ) + cj(X),

as desired.

Since the q-costs form a pseudometric, we can transform the original pro�le in which the agents rank

the alternatives to one in which the agents rank all possible k-sized commi�ees. In particular, to decide

whether agent i prefers a commi�ee X over another commi�ee Y , it su�ces to compare her q-th favorite

alternatives in X and Y ; we can break ties arbitrarily. Given the rankings of the agents over the com-

mi�ees, we can then employ any single-winner rule to decide the �nal commi�ee. Speci�cally, using the

Plurality-Matching rule of Gkatzelis et al. [2020], we obtain a distortion bound of 3.
5

Corollary 1. For q > k/2, there exists a multiwinner voting rule with (k, q)-distortion at most 3.

Unfortunately, the above approach requires us to apply a single-winner voting rule to a pro�le consist-

ing of an exponential number of alternatives (the set of all k-sized commi�ees). �is is an inherent obstacle

in our a�empts to get constant distortion bounds by naı̈vely applying known deterministic single-winner

voting rules.

Interestingly, it is still easy to compute the commi�ee that includes the k most preferred alternatives

of an agent; we refer to this as the top-k commi�ee of the agent. Consequently, randomized dictatorship,

the single-winner voting rule which selects an agent uniformly at random and returns her most favorite

alternative, can be e�ciently implemented in our se�ing; in particular, it shooses an agent uniformly at

random and returns her top-k commi�ee. Using its distortion analysis by Anshelevich and Postl [2017],

we obtain the following.

Corollary 2. For any q > k/2, the (k, q)-distortion of randomized dictatorship, which can be implemented
e�ciently, is at most 3− 2/n.

Proof. Let I = (N,A, d, k, q) be an arbitrary instance with q > k/2, and denote by O an optimal k-sized

commi�ee. Let Xi be the top-k commi�ee of agent i ∈ N , and let R be the random commi�ee selected

by randomized dictatorship. �e expected q-social cost of R is

E[SC(R)] =
1

n

∑
i∈N

SC(Xi) =
1

n

∑
j∈N

∑
i∈N

ci(Xj) =
1

n

∑
j∈N

∑
i 6=j

ci(Xj) +
1

n

∑
j∈N

cj(Xj)

6
1

n

∑
j∈N

∑
i 6=j

(
ci(O) + cj(O) + cj(Xj)

)
+

1

n

∑
j∈N

cj(Xj)

5

Observe that the bound of 3 is best possible when k < 2q 6 m; to see this, consider an instance with n/2 agents that

report a1 � . . . � aq � b1 � . . . � bq (followed by any remaining alternatives) and n/2 agents that report b1 � . . . � bq �
a1 � . . . � aq (again followed by any remaining alternatives). However, it seems that we cannot de�ne such an instance when

m < 2q. It would thus be interesting to analyze the distortion as a function of q, k, and m in this regime.
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=

(
2− 2

n

)∑
j∈N

cj(O) +
∑
j∈N

cj(Xj) 6

(
3− 2

n

)
· SC(O).

�e �rst inequality follows by applying the triangle inequality, and the second one follows since cj(Xj) 6
cj(O) for every agent j ∈ N , and hence

∑
j∈N cj(Xj) 6 SC(O).

In the following, we restrict our a�ention to deterministic polynomial-time multiwinner voting rules.

Our main result provides such a rule with distortion at most 9 by exploiting the following lemma.

Lemma 3. Consider any instance I = (N,A, d, k, q) with q > k/2, and let O be an optimal commi�ee for
I . �ere exists a commi�ee C that is top-k for some agent, and such that SC(C) 6 3 · SC(O).

Proof. By Lemma 2, the q-costs of the agents form a metric space. Let j be the closest agent to the optimal

commi�ee O according to her q-cost, i.e., cj(O) 6 ci(O) for every i ∈ N . Let C be the top-k commi�ee

of j, and thus cj(C) 6 cj(O). Combining the above with the triangle inequality for the q-cost metric, for

any agent i ∈ N , we have

ci(C) 6 ci(O) + cj(O) + cj(C)

6 ci(O) + 2cj(O) 6 3ci(O),

�e lemma follows by summing over all agents.

Essentially, Lemma 3 suggests that the best top-k commi�ee must 3-approximate the optimal commit-

tee in terms of social cost. So, by considering the n top-k commi�ees (one per agent) as alternatives, we

can deploy the single-winner rule of Gkatzelis et al. [2020] to obtain in polynomial time a commi�ee that

is within a factor of 3 from the best top-k commi�ee in terms of social cost, and thus has a (k, q)-distortion

of at most 9.

Corollary 3. For any q > k/2, there is a polynomial-time multiwinner voting rule with (k, q)-distortion at
most 9.

Actually, the approach used to obtain Corollary 3 can be used as a template that could potentially

lead to even lower distortion bounds by deterministic polynomial-time voting rules. All we need is an

algorithm that takes as input the ranking pro�le and decides — in polynomial time — on a set P of k-sized

commi�ees, which, for every distance metric consistent with the ranking pro�le, contains a commi�ee

that approximates the optimal social cost within a factor of ρ (e.g., Lemma 3 suggests that this is possible

for ρ = 3). �en, applying the voting rule of Gkatzelis et al. [2020] on the reduced ranking pro�le with

only the commi�ees in P as alternatives, we obtain a deterministic polynomial-time multiwinner voting

rule with (k, q)-distortion at most 3ρ.

We present two results related to this template. �e �rst one is positive and shows that a guarantee

of ρ = 1 is possible when the number of agents is constant, making the optimal distortion bound of 3
achievable in polynomial time.

�eorem 4. For any q > k/2 and constant number of agents, there is a deterministic polynomial-time
multiwinner voting rule with (k, q)-distortion at most 3.

Proof. We prove the theorem by de�ning a voting rule that follows our template with ρ = 1. In particular,

given a ranking pro�le, our rule �rst identi�es a setP of at mostmn
commi�ees such that one of minimum

social cost is always included, no ma�er which distance function d, consistent with the preference pro�le,
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is used in the de�nition of the social cost. �en, by invoking the single-winner rule of Gkatzelis et al. [2020]

using the commi�ees inP as alternatives, we get the desired multiwinner voting rule with (k, q)-distortion

of at most 3.

To identify the commi�ees in P , we enumerate over all possibilities for the alternatives in a k-sized

commi�ee that the agents can have as their q-th closest ones. In particular, for each of the mn
possible

vectors of alternatives ` = 〈`1, `2, ..., `n〉, we include in P a commi�ee C ⊆ A with |C| = k,

⋃n
i=1 {`i} ⊆

C , such that `i is the alternative inC that is the q-th closest to agent i, for i ∈ [n], if such a commi�ee exists.

We refer to each commi�ee having these properties as a (k, q)-completion of the vector of alternatives `.

Notice that including in P just one (k, q)-completion for each vector of alternatives is enough for our

purposes since any two commi�ees C , C ′ that are (k, q)-completions for the same vector ` of alternatives

have the same social cost for a given distance function d: SCq(C|d) = SCq(C
′|d) =

∑n
i=1 d(i, `i). Clearly,

since n is a constant, P has polynomial size. To prove that its whole construction takes polynomial time,

it su�ces to show how a (k, q)-completion C for a given vector of alternatives ` can be identi�ed (if it

exists) in polynomial time. Essentially, we need to decide which alternatives in addition to the ones in `
form a k-sized commi�ee and ensure that alternative `i is the q-th closest to agent i among those in C . To

do so, we de�ne the following classi�cation of the alternatives into types from the set

T = {〈t1, t2, ..., tn〉 : ti ∈ {+1, 0,−1}, i ∈ N}.

An alternative a ∈ A belongs to type t ∈ T if and only if

• a �i `i for each i ∈ N with ti = +1,

• a = `i for each i ∈ N with ti = 0, and

• `i �i a for each i ∈ N with ti = −1.

Notice that the classi�cation is such that replacing an alternative in a (k, q)-completion by another alter-

native from the same class results in another (k, q)-completion. Hence, to identify a (k, q)-completion C
for a given vector of alternatives `, we need to identify the number of alternatives from each type of T
that C should have.

For each type t ∈ T , denote byH(t) the number of alternatives of type t. Also, set L(t) = 1 if t is the

type of some alternative in ` and L(t) = 0, otherwise. �e quantities L(t) and H(t) are lower and upper

bounds on the number h(t) of alternatives of type t that can be included in a (k, q)-completion of `. In

particular, notice that each alternative in ` is the unique alternative in its type t, i.e., H(t) = 1. Se�ing

L(t) = 1 for this type guarantees that this alternative will be included in the (k, q)-completion. Now, the

existence of a (k, q)-completion is equivalent to the feasibility of the following integer linear program:∑
t∈T

h(t) = k∑
t∈T :ti>0

h(t) = q,∀i ∈ N

L(t) 6 h(t) 6 H(t), ∀t ∈ T
h(t) ∈ N>0,∀t ∈ T

Notice that we can naively check the feasibility of the above ILP by enumerating all possible values for

the variables h(t). As there are 3n types, there are 3n such variables (i.e., constantly many since n is a
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constant), each taking at most m+ 1 values. Even this naive solution takes only polynomial time. Finally,

once we have a feasible solution for the above ILP, we can easily de�ne the (k, q)-completion by just

including h(t) alternatives of type t in it, for t ∈ T .

Our last result is negative and reveals a limitation of our template. It shows a lower bound of 1 + 2/e
on ρ (unless P = NP) and, consequently, a lower bound of approximately 5.207 on the distortion that can

be achieved via this template. In the appendix, we present a slightly weaker lower bound of 4.5 that is

purely information-theoretic and does not rely on any complexity assumption.

�eorem 5. Suppose there is an algorithmA which when given as input a ranking pro�le with n agents and
m alternatives, and integers k and q with 1 6 k/2 < q 6 k < m, runs in time polynomial inm and n and
returns a set P of (polynomially many) k-sized commi�ees of alternatives with the following property: For
every distance function d, there is a commi�ee C ∈ P such that SCq(C|d) < (1 + 2/e− ε) · SCq(O|d), where
O is a commi�ee of minimum social cost according to d, and ε is a positive constant. �en, P = NP.

Proof. We will prove the theorem using a reduction from the maximum K-cover problem. In maximum

K-cover, we are given a universe U of elements, a collection S of subsets of U , and an integer K . �e

objective is to �nd a subcollection ofK sets fromS (or, aK-collection), whose union contains the maximum

number of elements from U .

A well-known hardness result due to Feige [1998] states that, for every constant ε > 0, it is NP-hard

to distinguish between the next two cases for a maximum K-cover instance:

1. �e instance has a K-collection that covers all elements of U .

2. Any K-collection covers at most a (1− 1/e+ ε/2)-fraction of the elements of U .

Our reduction works as follows: Given an instance of maximum K-cover, we build a ranking pro�le

with n = |U | agents and m = q− 1 + |S| alternatives. Each agent corresponds to an element of U . �ere

are q − 1 special alternatives and, additionally, a distinct set-alternative for every set S ∈ S . For i ∈ U ,

agent i ranks the special alternatives �rst (in arbitrary order), followed by the set-alternatives that include

element i, and then the remaining set-alternatives. �e distance function d is such that agent i has distance

1 from the special alternatives and the set-alternatives which contain element i, and distance 3 from the

remaining set-alternatives. �e commi�ee size is k = q − 1 +K .

Let us call canonical a k-sized commi�ee that includes all special alternatives. Notice that a commi�ee

can be transformed to a canonical one by including the missing special alternatives and removing (arbi-

trarily) an equal number of set-alternatives. �is transformation guarantees that the social cost (according

to d) of the canonical commi�ee is not worse than that of the original one.

We now claim that if algorithm A satis�es the condition in the statement of �eorem 5, then we

can distinguish between the two cases above in polynomial time, contradicting the hardness statement

of Feige [1998]. Indeed, consider the algorithm which, given a ranking pro�le produced by our reduction

as input, runs algorithm A �rst to compute a set P of (polynomially many) k-sized commi�ees, then

transforms these commi�ees to canonical ones, and, among the K-collections corresponding to these

canonical commi�ees (each formed by the sets that correspond to the set-alternatives), returns the one

that covers the maximum number of elements.

We now argue that by comparing the number of elements covered by the outcome of the algorithm to

(1 − 1/e + ε/2)n, we can distinguish whether the original instance of maximum K-cover is of case 1 or

case 2 in polynomial time. If the maximum K-cover instance is of case 2, then any K-collection returned

by the algorithm clearly covers at most a (1 − 1/e + ε/2)-fraction of the elements. If it is of case 1, let
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Ô be a K-collection that covers all elements of U . �en, the canonical commi�ee O that contains the

special alternatives and the set-alternatives corresponding to the sets of Ô has a minimum possible social

cost of SCq(O|d) = n. Indeed, since some of the sets of Ô contain element i, agent i has her q-th favorite

alternative in O at distance 1; recall that she has the special alternatives in the top q − 1 positions of

her preference, so the q-th closest alternatives is her top set-alternative in O. Now, by the approximation

guarantee of algorithm A, we know that there is a canonical commi�ee among those obtained by the

commi�ees of P that has SCq(C|d) < (1 + 2/e− ε)n. �is means that the number of agents whose q-th

closest alternative in C is at distance 1 must be more than (1 − 1/e + ε/2)n; the rest are at distance 3).

Equivalently, by the de�nition of our reduction, the K-collection that corresponds to C covers more than

(1− 1/e+ ε/2)n elements of U .

6 Extensions and Open Problems

In this work, we extended the metric distortion framework to multiwinner voting. By modeling the cost of

an agent for a k-sized commi�ee as her distance from her q-th favorite alternative therein, we revealed a

quite surprising trichotomy on the distortion of multiwinner rules in terms of q and k, providing asymptot-

ically tight bounds. �e main question that our work leaves open is to identify the best possible distortion

that can be achieved by a computationally e�cient deterministic rule in the case q > k/2. To achieve

distortion at most 9 in this case, our voting rule applies the single-winner rule of Gkatzelis et al. [2020] on

the set of top-k commi�ees as alternatives. �is rule is just a member of a more general class of rules that

construct commi�ees by exploiting single-winner voting. For example, following the work of Goel et al.

[2018], one could consider another rule of this class which constructs a commi�ee iteratively by adding

each time the alternative returned by the rule of Gkatzelis et al. [2020] (or some other single-winner rule)

when given as input the rankings of the agents for the alternatives not yet included in the commi�ee. Is

there any value of q large enough (such as q = k) for which this rule achieves constant distortion be�er

than 9? It would be interesting to further explore the potential of such rules.

We exclusively focused on the social cost and did not consider other objectives, such as the maximum

agent cost. It is not hard to observe that our methods provide bounds in terms of this objective as well,

albeit not necessarily tight. When q 6 k/3, the distortion remains unbounded since, in the instances used

in the proof of �eorem 1, the optimal commi�ee guarantees cost 0 to all agents, whereas any voting rule

yields a positive cost to some agent. When q ∈ (k/3, k/2), by carefully inspecting the proof of the upper

bound of PolarOpposites in �eorem 2, we can show that it achieves constant distortion in terms of the

maximum cost. Finally, when q > k/2, since the q-costs form a metric space, known results from single-

winner voting extend to multiwinner voting. �at is, there exists a deterministic multiwinner rule with

distortion at most 3, which is based on the rule of Gkatzelis et al. [2020]; this rule is known to achieve a

fairness ratio of at most 3, which implies 3-approximation of the maximum cost as well. �e e�cient upper

bound of 9 via our template also extends to the maximum cost, as the bound of 3 in Lemma 3 actually holds

per agent. In the future, it would be interesting to go beyond objectives such as the social and maximum

costs, and consider others that make sense in multiwinner voting.

Another interesting direction for future work is to consider multiwinner voting se�ings with di�erent

individual cost de�nitions. While in this paper we focused on the case where the cost of an agent for a

commi�ee is determined by the distance from her q-th favorite alternative in the commi�ee, there are many

di�erent de�nitions that also make sense and capture di�erent behaviors. For example, the individual cost

can be de�ned as the total distance between an agent and her top-q alternatives in the commi�ee. Both

this and our q-cost de�nition are special cases of the broader family of ordered weighted average (OWA)
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costs, in which the cost to an agent is a weightwq multiplied by her distance to her q-th favorite alternative

in the commi�ee, summed over all q ∈ [k]. Studying the distortion under this family, for di�erent choices

of w = (w1, . . . , wk), deserves future investigation.
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Appendix

A Weaker Information-�eoretic Lower Bound

�eorem 6. Let ε > 0 be a constant, m > 2 an even integer, and q = k = m/2. �ere exist a set A of
m alternatives, a set N of m agent with a preference pro�le (�i)i∈N over the alternatives of A, a distance
function d that is consistent with the preference pro�le�, and a k-sized commi�ee O, such that for any set P
of fewer than exp(ε2m) k-sized commi�ees of alternatives, SCq(C) >

(
3
2 − ε

)
SCq(O) for every commi�ee

C ∈ P .

Proof. Let A = {a1, ..., am}, N = {1, 2, ...,m}, and consider the following preference pro�le (�i)i∈N :

For i = 1, 2, ...,m/2, both agents 2i−1 and 2i have alternatives a2i−1 and a2i at the two bo�om positions

of their rankings, while the remaining alternatives are ranked arbitrarily in the remainingm−2 positions.

Agent 2i − 1 has alternative a2i−1 last (i.e., a2i �2i−1 a2i−1) while agent 2i has alternative a2i last (i.e.,

a2i−1 �2i a2i).
Our proof uses the probabilistic method (e.g., see [Motwani and Raghavan, 1995]). We will de�ne a

random distance function d that is consistent with the pro�le above, as well as a random commi�ee O of

k = m/2 alternatives, so that by de�ning the social cost SCq using d, we have SCq(O) = m and, with

strictly positive probability, SCq(C) >
(
3
2 − ε

)
m for each commi�ee C ∈ P . �is probabilistic argument

guarantees that there exists a distance function such that SCq(C) >
(
3
2 − ε

)
SCq(O), for every commi�ee

C ∈ P .

Initially, commi�ee O is empty. For i = 1, 2, ...,m/2, toss a fair coin, independently for di�erent i’s:

• On heads, set d(2i−1, a2i−1) = 3, d(2i−1, aj) = 1 for j 6= 2i−1, and d(2i, aj) = 1 for j = 1, ...,m.

Include alternative a2i in O.
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• On tails, set d(2i, a2i) = 3, d(2i, aj) = 1 for j 6= 2i, and d(2i− 1, aj) = 1 for j = 1, ...,m. Include

alternative a2i−1 in O.s

Observe that for each agent, all alternatives are at distance 1, except (possibly) the alternative that is ranked

last, which is at distance 3. Hence, d is indeed a distance function that is consistent with the pro�le. In

addition, the alternative that is included in commi�ee O at step i is the q-th closest (recall that q = m/2)

to both agents 2i− 1 and 2i and, furthermore, it is at distance 1 from both of them. Hence, SCq(O) = m.

Now, consider a commi�ee C ∈ P . For i = 1, ...,m/2, let Xi be the random variable denoting the

sum cq(2i− 1, C) + cq(2i, C). Notice that

SCq(C) =

n∑
i=1

cq(i, C) =

m/2∑
i=1

Xi. (1)

Now consider each random variable Xi separately. We distinguish between four cases:

• IfC contains both alternatives a2i−1 and a2i, then cq(2i−1, C) = d(2i−1, a2i−1) and cq(2i, a2i) =
d(2i, a2i). Notice that, by the de�nition of the random process, among these two quantities, one is

equal to 1 and the other is equal to 3. Hence, Xi = 4.

• If C contains neither a2i−1 nor a2i, then both agents 2i − 1 and 2i are at distance 1 from all alter-

natives in C . Hence, Xi = 2.

• If C contains alternative a2i−1 but not alternative a2i, notice that a2i−1 is the alternative of C that

is the q-th closest to both agents 2i − 1 and 2i. Recall that d(2i, a2i−1) is always equal to 1 while

d(2i − 1, a2i−1) is equiprobably equal to either 3 (and, hence, Xi = 4) or 1 (and, hence, Xi = 2),

depending on whether the outcome of the i-th coin toss is heads or tails, respectively.

• �e case when C contains alternative a2i but not a2i−1 is completely symmetric. �en, Xi = 2
or Xi = 4 equiprobably, depending on whether the outcome of the i-th coin toss is heads or tails,

respectively.

We conclude that X1, ..., Xm/2 are independent random variables, taking their values in {2, 4}, with

E[Xi] = 2 + |C ∩ {a2i−1, a2i}|. (2)

Hence, we can use the well-known Hoe�ding bound to estimate the probability Pr[SCq(C) 6
(
3
2 − ε

)
m].

Lemma 4 (Hoe�ding 1963). Let Z1, Z2, …, Z` be independent random variables with Zi ∈ [ai, bi] and
Z =

∑`
i=1 Zi. �en, for every t > 0,

Pr[E[Z]− Z > t] 6 exp

(
− 2t2∑`

i=1 (bi − ai)2

)
.

By (1), (2), and using linearity of expectation, we have

E[SCq(C)] =

m/2∑
i=1

E[Xi] =

m/2∑
i=1

(2 + |C ∩ {a2i−1, a2i}|) = 3m/2.
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Using Lemma 4 with ` = m/2, Z = SCq(C), Zi = Xi, bi = 4, and ai = 2 for i = 1, ...,m/2, and t = εm,

we get

Pr

[
SCq(C) 6

(
3

2
− ε
)
m

]
= Pr[E[SCq(C)]− SCq(C) > εm] 6 exp

(
−ε2m

)
.

By applying the union bound, the probability that SCq(C) 6
(
3
2 − ε

)
m for some commi�ee C ∈ P , is

less than 1. We conclude that, with strictly positive probability, SCq(C) >
(
3
2 − ε

)
m for every commi�ee

C ∈ P , as desired.
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