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Abstract

This paper is part of an emerging line of work at the intersection of machine learning and
mechanism design, which aims to avoid noise in training data by correctly aligning the incen-
tives of data sources. Specifically, we focus on the ubiquitous problem of linear regression,
where strategyproof mechanisms have previously been identified in two dimensions. In our set-
ting, agents have single-peaked preferences and can manipulate only their response variables.
Our main contribution is the discovery of a family of group strategyproof linear regression mech-
anisms in any number of dimensions, which we call generalized resistant hyperplane mechanisms.
The game-theoretic properties of these mechanisms — and, in fact, their very existence — are
established through a connection to a discrete version of the Ham Sandwich Theorem.

1 Introduction

Designing machine learning algorithms that are robust to noise in training data is a topic of intense
research. A large body of work addresses stochastic noise [29, 20]. On the other extreme, another
branch of the literature focuses on adversarial noise [25, 6, 12], that is, errors are introduced by an
adversary with the explicit purpose of sabotaging the algorithm. The latter approach is often too
pessimistic, and generally leads to negative results.

More recently, some researchers have taken a game-theoretic viewpoint; it suggests a model
of strategic noise that can be seen as occupying the middle ground of noise models. Specifically,
training data is provided by strategic sources — hereinafter agents — that may intentionally
introduce errors to maximize their own benefit. Compared to adversarial noise, the advantage of
this model (when its underlying assumptions hold true) is that, if we aligned the agents’ incentives
correctly, it would be possible to obtain uncontaminated data. From this viewpoint, the ideal is
the design of learning algorithms that in addition to being statistically efficient, are strategyproof,
i.e., where supplying pristine data is a dominant strategy for each agent.

We subscribe to this agenda, and advance it in the context of the ubiquitous problem of linear
regression, i.e., fitting a hyperplane through given data. We consider agents who can manipulate
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their dependent variables in order to minimize their vertical distance from the output hyperplane,
and design strategyproof regression mechanisms without payments.

When does this type of strategic regression problem arise? Dekel et al. [15] give the real-
world example of the global fashion chain Zara, whose distribution process relies on regression [9].
Specifically, the demand for each product at each store is predicted based on historical data, as
well as information provided by store managers. Since the supply of popular items is limited, store
managers may strategically manipulate requested quantities so that the output of the regression
process would better fit their needs, and, indeed, there is ample evidence that many of them have
done so [10]. More generally, as discussed in detail by Perote and Perote-Peña [36], this type of
setting is relevant whenever “data could come from surveys composed by agents interested in not
being perceived as real outliers if the estimation results could be used in the future to change the
economic situation of the agents that generate the sample.”

1.1 Our Model and Results

A bit more formally, we study a linear regression setting in which the task is to fit a hyperplane
through data points (xi, yi) for i ∈ {1, . . . , n}, where xi ∈ Rd are the independent variables and
yi ∈ R is the dependent variable. Following Dekel et al. [15] and Perote and Perote-Peña [36], we
assume that the independent variables are public information, but dependent variable yi is held
privately by agent i. A mechanism elicits the private information of the agents, and returns a
hyperplane represented by vector β = (β1, β0) ∈ Rd+1. Under this outcome, the residual for agent
i is ri = yi − βT1 xi − β0, and, loosely speaking, agents wish to minimize |ri| (see Section 2 for a
precise description of agent preferences).

Our starting point is the work of Dekel et al. [15], who show that empirical risk minimization
(ERM) with the L1 loss (in short, L1-ERM), coupled with a specific tie-breaking rule, is group
strategyproof, that is, no coalition of agents can be weakly better off by misreporting. We extend
this result and show that replacing the L1 loss by a weighted L1 loss and adding convex regu-
larization to the risk function preserves group strategyproofness. But this still gives a relatively
restricted family of strategyproof mechanisms, and we seek a broader understanding of what is
possible in our setting.

To that end, we look to the work of Perote and Perote-Peña [36], who focus on the two-
dimensional case (known as simple linear regression), i.e., fitting a line through points on a plane.
They propose a wide family of strategyproof mechanisms, which they call clockwise repeated me-
dian (CRM) mechanisms. These mechanisms are parametrized by two subsets of agents S and
S′. Perote and Perote-Peña [36] establish conditions on S and S′ under which they claim that
CRM mechanisms are strategyproof. We identify a mistake in this result, present counterexamples
showing violation of strategyproofness under their conditions, and identify three stricter conditions
under which we can recover strategyproofness — in fact, we prove group strategyproofness. Under
one of our conditions, CRM mechanisms coincide with a family of mechanisms from the statis-
tics literature known as resistant line mechanisms [24]. Our work therefore establishes the group
strategyproofness of these mechanisms.

Our main result is that we generalize the CRM family to higher dimensions, thereby justifying
the title of this paper. We introduce the family of generalized resistant hyperplane (GRH) mecha-
nisms, which, to the best of our knowledge, is the first extension of resistant line mechanisms beyond
the plane. In d + 1 dimensions, GRH mechanisms are parametrized by d + 1 subsets of agents.
Through a surprising connection to the literature on the Ham Sandwich Theorem, we find a con-
dition on the subsets under which GRH mechanisms are group strategyproof. Strikingly, our proof
of this general group strategyproofness result in any number of dimensions is much shorter than the
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(incorrect) proof of Perote and Perote-Peña [36] for the strategyproofness of CRM mechanisms in
two dimensions.

We also study a property called impartiality, which is stricter than strategyproofness. We
establish the existence of a wide family of impartial mechanisms, which, unlike our generalized
L1-ERM and generalized resistant hyperplane mechanisms, are strategyproof but not group strat-
egyproof (except for constant functions). Building upon the work of Moulin [33], we also provide
two non-constructive characterizations of strategyproof mechanisms for linear regression.

Strategyproofness is not the sole desideratum; constant functions (e.g., the flat hyperplane
y = 0) are strategyproof but not necessarily desirable. We would also like the mechanism to
have good statistical efficiency. For that, we compare (families of) strategyproof mechanisms in
terms of their approximation of the optimal squared loss, leveraging our characterization. Most
importantly, we establish a lower bound of 2 on the approximation ratio of any strategyproof
mechanism, which means that any mechanism that is even close to ordinary least squares regression
must be manipulable.

1.2 Related Work

As discussed above, our work is most closely related to that of Perote and Perote-Peña [36] and
Dekel et al. [15]. Here we try to give a broader picture of the state of research on machine learning
algorithms that are robust to strategic noise. This research can be categorized using three key
axes: (i) manipulable information, (ii) goal of the agents, and (iii) use of payments and incentive
guarantees.

On the first axis, like us, most papers assume that independent variables (or feature vectors in
the language of classification) are public information, and dependent variables (labels) are private,
manipulable information [15, 32, 35, 36], though some papers also design algorithms robust to
strategic feature vectors [21, 16]. Meir et al. [32] provide strong positive results for designing
strategyproof classifiers when there are either only two classifiers, or the agents are interested in a
shared set of input points. On the other hand, Hardt et al. [21] study the problem of constructing
classifiers that are robust to agents strategically misreporting their feature vector, in order to trick
the algorithm into misclassifying them. Their setting is modeled as a one-shot Stackelberg game.
The more recent work of Dong et al. [16] models the same problem in an online setting; they
provide guarantees that ensure that the problem is convex, and, therefore, they are able to derive
a computationally efficient learning algorithm that has diminishing Stackelberg regret.

On the second axis, one line of research focuses on agents motivated by privacy concerns, with
a tradeoff between accuracy and privacy [13, 7]; another focuses on agents who want the algorithm
to make accurate assessment on their own sample, even if this reduces the overall accuracy. This
form of strategic manipulation has been studied for estimation [8], classification [31, 30, 32], and
regression [36, 15] problems. Our problem falls squarely into the second category.

Finally, on the third axis, various papers differ on whether monetary payments to agents are
allowed [7], and on how strongly to guarantee truthful reporting: the stronger strategyproofness
requirement [35, 36, 32] versus the weaker Bayes-Nash incentive compatibility [23, 13]. Our work
falls into the literature of mechanism design without money; we study linear regression mechanisms
that enforce strategyproofness without paying the agents, or asking the agents to pay.

2 Model

Let [k] , {1, . . . , k} be the set of first k natural numbers, and R = R∪{−∞,∞} be the extended real
line. Given numbers t1, . . . , tk ∈ R, let min(t1, . . . , tk) denote the smallest value, and minj(t1, . . . , tk)
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denote the jth smallest value. Let med(t1, . . . , tk) denote their median: when k is odd, this is
equal to min(k+1)/2(t1, . . . , tk), but when k is even, this could be either mink/2(t1, . . . , tk) (the “left
median”) or mink/2+1(t1, . . . , tk) (the “right median”).1

Our work focuses on the problem of linear regression, i.e., fitting a hyperplane through given
data. Let N = [n]. We are given a collection of data points D = (xi, yi)i∈N , where xi ∈ Rd and
yi ∈ R are called the independent and dependent variables of point i, respectively. Let xi = (xi, 1).
Our goal is to find a vector β = (β1, β0) ∈ Rd+1 such that βTxi = βT1 xi+β0 is a good approximation
of yi for each i ∈ N . The quantity ri = yi − βTxi is called the residual of point i.

Strategic setting. We study a setting in which each data point pi = (xi, yi) is provided by
a strategic agent i. We also denote the set of agents by N . Following Perote and Perote-Peña
[36] and Dekel et al. [15], we assume that the independent variables x = (xi)i∈N constitute public
information, which the agents cannot manipulate. Each agent i holds the dependent variable yi
as private information, and may report a different value ỹi in order to receive a more preferred
outcome. Thus, the principal observes the reported data points D̃ = (xi, ỹi)i∈N . Let us denote
y = (yi)i∈N and ỹ = (ỹi)i∈N .

Mechanisms. Because the agents cannot change x, we can effectively treat it as fixed. A mech-
anism for linear regression Mx is therefore defined for given public information x, takes as input
reported private information ỹ, and returns a vector β. We omit x when it is clear from the
context.

Agent preferences. When a mechanism returns β, we say that the outcome for agent i is
ŷi(β) = βT xi. We omit β when it is clear from the context. The agent only cares about her own
outcome ŷi, and would like it to be as close to yi as possible. Formally, we assume that agent i has
single-peaked preferences [3, 33] over ŷi with peak at yi. We represent the weak preference relation
by <i and the strict preference relation by �i. Formally, for all a, b ∈ R, yi > a ≥ b or yi < a ≤ b
must imply yi �i a <i b.

Game-theoretic desiderata. Our goal is to prevent agents from misreporting their private
information. The game theory literature offers a strong desideratum under which agents have no
incentive to misreport even if they have know what the other agents would report.

Definition 1 (Strategyproofness). A mechanism Mx is called strategyproof (SP) if each agent
weakly prefers truthfully reporting her private information to misreporting it, regardless of the re-
ports of the other agents. Formally, for each i ∈ N , yi ∈ R, and ỹ ∈ Rn, we need ŷi(M

x(yi, ỹ−i)) <i
ŷi(M

x(ỹ)). Note that this must hold for any possible single-peaked preferences the agent may have.

While no individual agent can benefit from misreporting under a strategyproof mechanism, a
group of agents may still be able to collude, and benefit by simultaneously misreporting. This can
be prevented by imposing a stronger desideratum.

Definition 2 (Group Strategyproofness). A mechanism Mx is called group strategyproof (GSP)
if no coalition of agents can simultaneously misreport in a way that no agent in the coalition is
strictly worse off and some agent in the coalition is strictly better off, irrespective of the reports of
the other agents. Formally, for each S ⊆ N , yS = (yi)i∈S ∈ R|S|, and ỹ ∈ Rn, it should not be the

1This is different from the standard definition, which takes the average of the left and right medians, but necessary
to ensure incentive guarantees.
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case that ŷi(M
x(ỹ)) <i ŷi(Mx(yS , ỹN\S)) for every i ∈ S, and the preference is strict for at least

one i ∈ S.

The game theory literature also considers a weaker notion of group strategyproofness in which
not all the agents in a manipulating coalition should be strictly better off. We do not consider this
notion because our group strategyproof mechanisms are able to satisfy the stronger notion.

Note that we do not assume that the data points are generated by an underlying statistical
process. Our results are independent of how the data points were generated.

3 Families of Strategyproof Mechanisms

In this section, we analyze families of (group) strategyproof mechanisms for linear regression. Our
results generalize existing families of mechanisms, and propose novel families.

3.1 Empirical Risk Minimization with the L1 Loss

Consider a single dimensional setting, in which each agent i has a private value yi, reports a
possibly different value ỹi, and the mechanism returns a single value ŷ. Each agent i has single-
peaked preferences over ŷ with peak at yi. This corresponds to the special case of our setting in
which xi = xj for all i, j ∈ N , or alternatively, the dimension d = 0. In this setting, it has long
been known that choosing the median of the reported values achieves group strategyproofness [17].
It can be shown that the median minimizes the sum of absolute (L1) losses with respect to the
reports, i.e., given y, it chooses arg miny∈R

∑n
i=1 |y − yi|, with an appropriate tie-breaking when n

is even. In the machine learning terminology, the median is the empirical risk minimizer (ERM)
with the L1 loss.

Inspired by this, Dekel et al. [15] study ERM with the L1 loss in a more general regression setting,
and show that it remains group strategyproof. Specifically, they focus on finding a (potentially non-
linear) regression function f : Rd → R from a given convex set F . Given D = (xi, yi)i∈N , define the
empirical L1 risk of a regression function f ∈ F as R̂(f,D) =

∑
i∈N |yi − f(xi)|. Let ‖ · ‖ : F → R

be a strictly convex function. They show that minimizing the empirical L1 risk, and breaking ties
among the optimal solutions by minimizing ‖ ·‖ is group strategyproof. We refer to this mechanism
by L1-ERM 2. For linear regression, this approach is known by various names in the literature,
such as Least Absolute Deviations (LAD), Minimum Sum of Absolute Errors (MSAE), or Least
Absolute Value (LAV). The tie-breaking step is crucially required because the empirical L1 risk
may have multiple minimizers.

We present a generalization of their mechanism while retaining group strategyproofness. In
particular, we extend the objective function R̂ in two ways: i) we allow a weighted L1 loss, in which
the loss of each agent i is multiplied by a weight wxi , and ii) we allow adding a convex regularizer
h : F → R. Note that regularization is widely used in machine learning to prevent ERM from
overfitting. Our generalization, which we term generalized L1-ERM, is presented as Algorithm 1.
While we are only interested in linear regression, we note that generalized L1-ERM works for the
general regression setting of Dekel et al. [15].

Theorem 1. Generalized L1-ERM is a group strategyproof regression mechanism.

Our proof, presented in Appendix A for completeness, essentially mirrors the proof of Dekel
et al. [15]; we identify three steps in their proof where they use the structure of the risk function
R̂, and observe that these steps follow through with our more general risk function.

2For a formal description of the algorithm, we refer the interested reader to the full version of our paper.
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ALGORITHM 1: Generalized L1-ERM (Regularized ERM with a weighted L1 loss)

Input: Data points D = (xi, yi)i∈N , convex hypothesis space F , constants (wxi )i∈N , convex regularizer
h : F → R, strictly convex function ‖ · ‖ : F → R.

Output: Function f∗ ∈ F .

∀f ∈ F , R̂(f,D) ,
∑

i∈N wxi · |yi − f(xi)|+ h(f);

r∗ ← inff∈F R̂(f,D);
return f∗ ← arg minf∈F :R̂(f,D)=r∗ ‖f‖;

There are several potential advantages of generalized L1-ERM over the vanilla L1-ERM. First,
generalized L1-ERM allows eliminating the tie-breaking step if the new risk function is guaranteed
to have a unique minimizer. For instance, adding a strictly convex regularizer would achieve this.

Second, for the aforementioned single dimensional setting, Moulin [33] proved that every strate-
gyproof3 and anonymous4 mechanism is a generalized median: for every α1, . . . , αn+1 ∈ R, the cor-
responding generalized median returns med{y1, . . . , yn, α1, . . . , αn+1}. Here, {αj}j∈[n+1] are called
“phantoms”. We can alternatively view this as returning arg miny∈R

∑
i∈[n] |y − yi| + h(y), where

h(y) =
∑

j∈[n+1] s.t. αj∈R |y − αj | + (k−∞ − k∞) · y, and for t ∈ {−∞,∞}, kt = |{j : αj = t}|.5

Since h(y) is a convex function, we can view it as a regularizer in our generalized L1-ERM. Hence,
for the single dimensional setting, generalized L1-ERM covers all generalized medians. In contrast,
L1-ERM reduces to a specific mechanism in this family, the median.

Finally, algorithms that add convex regularization to L1-ERM have been studied in the ma-
chine learning literature [42, 41]; our generalization establishes group strategyproofness of these
algorithms.

We also note that in the statistics literature, the vanilla L1-ERM is treated as a member of the
more general family of quantile regression mechanisms [27], which, given q ∈ [0, 1], minimize the
following empirical risk function:

R̂q(f,D) =
∑

i∈N :yi≥f(xi)

q · |yi − f(xi)|+
∑

i∈N :yi<f(xi)

(1− q) · |yi − f(xi)|. (1)

L1-ERM corresponds to the choice of q = 0.5. In the one-dimensional setting, other values of q cor-
respond to different quantiles (i.e., correspond to mink for various k), and thus induce strategyproof
mechanisms. One might wonder if quantile regression remains strategyproof in higher dimensions.
We answer this negatively by providing an example in Appendix C, in which the quantile regres-
sion mechanism for q = 0.4 is shown to violate strategyproofness. It is an interesting question to
discover a strategyproof version of quantiles for linear regression.

3.2 Generalized Resistant Hyperplane Mechanisms

In this section, we introduce a novel family of strategyproof mechanisms for linear regression. Our
family extends the known family of resistant line mechanisms from the statistics literature [24],

3Moulin [33] shows that for the single dimensional setting, strategyproofness is equivalent to group strategyproof-
ness.

4A mechanism is anonymous if permuting the reports of the agents does not change the output of the mechanism.
This is a reasonable desideratum in the single dimensional setting due to the absence of public information that
distinguishes agents naturally.

5When all phantoms are finite, h(y) =
∑

j∈[n+1] |y − αj |. The term |y − αj | has derivative 1 when y > αj , and

−1 when y < αj . For αj = −∞ (resp. ∞), we can mimic this effect by adding a different term whose derivative is
always −1 (resp. 1).
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which were only defined for simple linear regression (d = 1), to higher dimensions. We first take a
slight detour through a previous approach in the literature.

3.2.1 A Detour Through Clockwise Repeated Median Mechanisms

Perote and Perote-Peña [36] introduced a novel family of mechanisms, which they termed Clockwise
Repeated Median (CRM) mechanisms. CRM mechanisms are only defined for the special case of
simple linear regression, i.e., for fitting a straight line through a set of points on a plane. In
describing these mechanisms, we use scalar notations where possible. For instance, we use xi to
denote the x-coordinate of agent i, and β1 to denote the slope of the regression line. For CRM
mechanisms to be well defined, we also need to assume that the set of points is “admissible”.

Definition 3 (Admissible Set). A collection of data points D = (xi, yi)i∈N is called admissible if
xi 6= xj for all distinct i, j ∈ N .

The CRM family is parametrized by two subsets of agents, S, S′ ⊆ N . These subsets must be
chosen based on the public information x, and therefore can be treated as fixed. Informally, given
S, S′ ⊆ N , the (S, S′)-CRM mechanism first computes the median clockwise angle (CWA), defined
below, from each point i ∈ S to points in S′. Then, it chooses the point i∗ ∈ S whose median
CWA is the median of the median CWAs from all points in S. If the median CWA from point i∗

is towards point j∗ ∈ S′, then the mechanism returns the straight line passing through points i∗

and j∗. Formally, the mechanism is defined as follows. Perote and Perote-Peña [36] established the
equivalence of this formal definition and the aforementioned informal description.

Definition 4 (CRM Mechanisms). Define the clockwise angle (CWA) from (xi, yi) to (xj , yj) as:

CWA((xi, yi), (xj , yj)) = π + sign(xj − xi) ·
π

2
+ sign

(
yj − yi
xj − xi

) ∣∣∣∣arctan

(
yj − yi
xj − xi

)∣∣∣∣ . (2)

Given D = (xi, yi)i∈N and S, S′ ⊆ N , let the directing angle be defined as:

DA(S, S′) = med
i∈S

med
j∈S′:j 6=i

CWA((xi, yi), (xj , yj)). (3)

Then, the (S, S′)-CRM mechanism returns the line β = (β1, β0) given by:

β1 = tan
[
DA(S, S′)− π − π

2
· sign

(
DA(S, S′)− π

)]
,

β0 = med
i∈S

(yi − β1 · xi).
(4)

First, we notice that the definition of the CRM family uses three medians: two to define the
directing angle DA(S, S′), and one to define the y-intercept β0. Each median, when taken over an
even number of values, can be the left median or the right median. While Perote and Perote-Peña
[36] do not mention how these choices should be made, it is easy to check that in order to achieve
the desired incentive properties, these choices cannot be made independently of each other. Later,
we present a generalization which captures the different feasible choices in a simpler form.

Perote and Perote-Peña [36] claimed that the (S, S′)-CRM mechanism is strategyproof when
S ⊆ S′ or S ∩ S′ = ∅, and provided an involved, geometric proof. However, we have identified a
mistake in their proof. In fact, we have found two counterexamples, one with S ⊆ S′ and one with
S ∩ S′ = ∅, for which the corresponding (S, S′)-CRM mechanisms violate strategyproofness, thus
disproving their claim. These counterexamples are presented in Figure 1,
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Figure 1: Counterexamples showing violation of strategyproofness of (S, S′)-CRM mechanisms.
Figure 1a shows a case with S ∩ S′ = ∅, while Figure 1b shows a case with S ⊆ S′.

Example 1 (Example with S ∩S′ = ∅.). This example is shown in Figure 1a. Points in filled dots
are in S, while points in empty dots are in S′. The coordinates of these points are as follows.

S = {(1, 0), (3, 1), (5, 1.9)} , S′ = {(0, 1), (2, 2), (4, 3)} .

Notice that S ∩ S′ = ∅. Also, |S| and |S′| are odd, alleviating the need to choose between left
and right medians in the CRM definition.

When the agents truthfully report, one can check that CRM returns the line connecting points
(3, 1) from S and (0, 1) from S′. This line is given by the equation y = 1.

Suppose that the agent i controlling the point at x = 4 misreports ỹi = 1.8 instead of yi = 3.
The new point is depicted with a cross. One can check that this causes the CRM mechanism to
switch to the dashed line (y = 0.1 · x + 1.4), which makes agent i strictly better off, and violates
strategyproofness.

Example 2 (Example with S ⊆ S′.). This example is shown in Figure 1b. Points in S (thus
also in S′) are depicted with filled dots, while points in S′ \ S are depicted with empty dots. The
coordinates of these points are as follows.

S = {(3, 12), (9, 9.5), (11, 9), (13, 4.5), (14, 11)} , S′ = S ∪ {(4, 8), (4.3, 12), (7, 6.5), (8, 7.5), (12, 11)} .

Notice that S ⊆ S′. Further, |S| is odd, and |S′| is even (thus, for each i ∈ S, |S′ \ {i}| is
odd), once again eliminating the need to choose between the left and the right medians in the CRM
definition.

When all points are reported truthfully, one can check that the CRM mechanism chooses the
solid line (3y = 2x + 8). Suppose now that agent i with point (12, 11) reports ỹi = 0, instead of
yi = 11. Then, the CRM mechanism chooses the dashed line, which makes agent i strictly better
off, again violating strategyproofness.

Nevertheless, we have been able to identify a subset of the CRM family, for which we can
establish strategyproofness (in fact, group strategyproofness). In particular, we replace S ⊆ S′

with the more restrictive condition S = S′, and for S ∩ S′ = ∅, we either add |S| = 1 or |S′| = 1,
or replace it with a stricter condition that we define below.

Definition 5 (Separable Sets of Points in a Plane). Let S, S′ be two sets of points in R2. We say
that S and S′ are separable if maxi∈S xi < minj∈S′ xj or maxj∈S′ xj < mini∈S xi. In other words,
it should be possible to separate them by a vertical line.

Note that separability of S and S′ implies S∩S′ = ∅. We now present a corrected version of the
result of Perote and Perote-Peña [36], and claim the stronger guarantee of group strategyproofness.

8



We do not present a proof as we later introduce a much broader family of mechanisms, and prove
their group strategyproofness directly.

Theorem 2. Given S, S′ ⊆ N , the (S, S′)-CRM mechanism is group strategyproof if one of the
following conditions holds.

1. S = S′.

2. S and S′ are separable.

3. S ∩ S′ = ∅ and min(|S|, |S′|) = 1.

The third condition partially resembles dictatorship as the agent in the singleton set is guaran-
teed to have zero residual (i.e., be on the regression line).

3.2.2 Generalized Resistant Line Mechanisms on a Plane

In this section, our goal is to introduce a novel family of group strategyproof mechanisms that
include, as special cases, the mechanisms covered in the three cases of Theorem 2. Our starting
point is the family of resistant line (RL) mechanisms from the statistics literature [24], which Perote
and Perote-Peña [36] showed to be equivalent to the case of separable S and S′.

The standard formulation of the RL mechanism involves three sets L,M,R ⊆ N such that
maxi∈L xi < mini∈M xi and maxi∈M xi < mini∈R xi, and returns a line β = (β1, β0) given by

medi∈L yi − β1 · xi − β0 = medi∈R yi − β1 · xi − β0 = 0.

That is, the line makes the median residuals in L and R zero. It is known that this equation yields
a unique solution [24]. Perote and Perote-Peña [36] showed that this is identical to the (L,R)-
CRM mechanism. Indeed, separability of L and R makes clockwise angles from points in L to
points in R monotonic in (and thus replaceable by) slopes, yielding the following formulation for
the (L,R)-CRM mechanism.

β1 = medi∈L medj∈R
yj−yi
xj−xi ,

β0 = medi∈L yi − β1xi = medj∈R yj − β1xj .

The alternative definition of β0 = medj∈R(yj − β1 · xj) follows from the fact that if the line passes
through i∗ ∈ L, it is directed towards the point in R which is at the median angle or slope, and
thus bisects R in addition to bisecting L.

Along with Theorem 2, this observation establishes group strategyproofness of all resistant line
mechanisms. Two popular mechanisms from this family are the Brown-Mood mechanism [5], in
which L and R each contain half of the points while M is empty, and the Tukey mechanism [40],
in which L, M , and R each contain a third of the points.

Our next step is to extend this family. A natural idea is that instead of making the median
residuals from S and S′ zero, we make the kth smallest residual in S and the (k′)th smallest residual
in S′ zero, for fixed k ∈ [|S|] and k′ ∈ [|S′|].

Definition 6 (Generalized Resistant Line (GRL) Mechanisms). Given separable sets S, S′ ⊆ N ,
k ∈ [|S|], and k′ ∈ [|S′|], the (S, S′, k, k′)-generalized resistant line (GRL) mechanism returns the
line β = (β1, β0) given by

minki∈S yi − β1xi − β0 = mink
′
j∈S′ yj − β1xj − β0 = 0. (5)
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We show that these mechanisms are well defined (i.e., there is a unique solution to Equation (5)),
and they are group strategyproof. Once again, we omit the proof because we later introduce an
even broader family of mechanisms, for which we prove these results directly.

Theorem 3. For separable sets S, S′ ⊆ N , k ∈ [|S|] and k′ ∈ [|S′|], the (S, S′, k, k′)-generalized
resistant line mechanism is well defined and group strategyproof.

While it is clear that generalized resistant line mechanisms cover the second case of Theorem 2
(i.e., separable S and S′), we surprisingly find that they also cover the first case (S = S′) and the
third case (S ∩ S′ = ∅ and min(|S|, |S′|) = 1). That is, Theorem 3 strictly generalizes Theorem 2.
The proof of the next result is in Appendix A.

Lemma 4. The (S, S′)-CRM mechanism is a generalized resistant line mechanism when 1. S = S′,
2. S and S′ are separable, or 3. S ∩ S′ = ∅ and min(|S|, |S′|) = 1.

3.2.3 Generalized Resistant Hyperplane Mechanisms in High Dimensions

Surprisingly, the statistics literature does not offer an extension of resistant line mechanisms to
higher dimensions. In our efforts to do so, we quickly realized that this is a non-trivial task. In
two dimensions, a generalized resistant line mechanism takes two subsets of data points separable
by a vertical line, and returns the regression line which makes prescribed percentiles of residuals
in each set zero. In d + 1 dimensions (recall that xi ∈ Rd and yi ∈ R), it seems natural to
take d + 1 “separable” subsets of data points, and return the regression hyperplane which makes
prescribed percentiles of residuals in each set zero. However, the separability condition must now
ensure existence of a unique hyperplane with this property, even if we ignore our game-theoretic
desiderata.

In resolving this issue, we make a connection to the literature on the Ham Sandwich Theorem
and its generalizations. Hereinafter, given a hyperplane H, we denote by H+ and H− its positive
and negative closed half-spaces, respectively. A basic version of the ham sandwich theorem due
to Stone and Tukey [38] states that given k continuous measures µ1, . . . , µk on Rk, there exists a
hyperplane H such that µi(H

+) = 1/2 for each i ∈ [k]. A discrete version of this result due to Elton
and Hill [18] states that given k finite sets S1, . . . , Sk ⊆ Rk, there exists a hyperplane H such that
for each i ∈ [k], H “bisects” Si and H ∩ Si 6= ∅. Here, we say that a hyperplane H bisects a set of
points S if each closed half-space of H contains at least d|S|/2e points.

For linear regression, this implies that given S1, . . . , Sd+1 ⊆ D, there exists a “resistant hyper-
plane” which makes the median residual from St zero, for each t ∈ [d + 1]. While this seems like
a natural generalization of resistant line mechanisms, it is easy to check that such a hyperplane is
not always unique, even in two dimensions. Further, if the median is replaced by other percentiles,
the existence is no longer guaranteed.6

Steiger and Zhao [37] provide a generalization that almost perfectly fits our needs. They show
that under certain conditions on S1, . . . , Sd+1, there exists a unique hyperplane H which contains
a given number of points from each set in its negative closed half-space. This discrete result builds
upon previous continuous variants [1, 4]. We first define a condition they require, which also plays
a key role in our result.

Definition 7 (Well Separable Sets [26]). Given t ∈ [k+ 1], finite sets S1, . . . , St of points in Rk are
called well separable if for all disjoint I, J ⊆ [t], there exists a hyperplane H such that Si ⊂ H+ \H

6Recall that even in two dimensions, we needed an additional condition on the sets S and S′: separability by a
vertical line.
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for each i ∈ I and Sj ⊂ H− \H for each j ∈ J , i.e., H separates ∪i∈ISi from ∪j∈JSj by putting
them in different open half-spaces.

Well separable sets are sometimes called affinely independent sets [4]. Well separability is
equivalent to various other conditions [4, 37]. In what follows, Conv(·) denotes the convex hull.

Proposition 5. For t ∈ [k + 1], finite sets S1, . . . , St ⊂ Rk are well separable if and only if:

1. For all choices of (xi ∈ Conv(Si))i∈[t], the affine hull of x1, . . . , xt is a (t − 1)-dimensional
flat.

2. No (t− 2)-dimensional flat has a nonempty intersection with Conv(Si) for each i ∈ [t].

3. Conv(S1), . . . ,Conv(St) are well separable.

Steiger and Zhao [37] impose an additional condition, which we eliminate in our work.

Definition 8 (Weak General Position). Finite sets S1, . . . , Sk ⊂ Rk are said to have weak general
position if for every choice of (xi ∈ Si)i∈[k], the affine hull of x1, . . . , xk is a (k− 1)-dimensional flat
which contains no other point of ∪i∈[k]Si.

Theorem 6 ([37]). If finite sets S1, . . . , Sk ⊂ Rk are well separable and have weak general position,
then given any choice of ki ∈ [|Si|] for i ∈ [k], there exists a unique hyperplane H such that for
each i ∈ [k], H ∩ Si 6= ∅ and |H− ∩ Si| = ki.

This result gives us almost what we want for linear regression in Rd+1. Given a family of
sets S1, . . . , Sd+1 ⊆ D that are well separable and have weak general position, and kt ∈ [|St|] for
t ∈ [d + 1], it ensures the existence of a unique hyperplane which makes the ktht smallest residual
in each set St zero. However, it falls short of our requirements in two key aspects.

• Theorem 6 allows the assignment of points in D to sets S1, . . . , Sd+1 to depend on the private
information y. For strategyproofness, we need this assignment to be based solely on the public
information x. Recall that in two dimensions, we required sets S and S′ to be separable by
a vertical line. We choose the d+ 1 sets so that they are well separable in the d-dimensional
public information space,7 and establish group strategyproofness using a technical lemma,
which may be of independent interest.

• While we only want to make the ktht smallest residual in each St zero, Steiger and Zhao [37]
aim for something stronger: they want the number of points from each St in the negative
closed halfspace to be exactly kt. This necessitates their weak general position assumption,
which we relax.

We are now ready to present our results. They closely mirror, but do not make use of, the
results of Steiger and Zhao [37]. We revert to using notation of our linear regression setting. Recall
that a hyperplane β = (β1, β0) passes through (xi,β

T xi) for each i ∈ N , where xi = (xi, 1).

Definition 9. Given a family S = (S1, . . . , Sk) of nonempty, pairwise disjoint subsets of N , and a
set of points P = (pi)i∈N , define the partition function P(P,S) = (Pt)t∈[k], where Pt = (pi)i∈St for
each t ∈ [k]. That is, P(P,S) partitions the set of points P based on index sets from S.

Definition 10 (Publicly Separable Sets of Agents). We say that a family S = (S1, . . . , Sd+1) of
nonempty, pairwise disjoint subsets of N is publicly separable if P(x,S) is well separable.

7While Theorem 6 uses d+ 1 well separable sets in Rd+1, even Rd allows up to d+ 1 well separable sets.

11



Definition 11 (Generalized Resistant Hyperplane (GRH) Mechanisms). Given a family S =
(S1, . . . , Sd+1) of publicly separable sets of agents, and k = (k1, . . . , kd+1) with kt ∈ [|St|] for
t ∈ [d + 1], the (S,k)-generalized resistant hyperplane (GRH) mechanism returns a hyperplane β
such that minkti∈St

(ri , yi − βT xi) = 0 for each t ∈ [d + 1]. That is, it makes the ktht smallest
residual from every set St ∈ S zero.

We first need to establish that the GRH mechanisms are well defined, i.e., the hyperplane they
seek is guaranteed to exist and be unique. To that end, we prove a useful technical lemma, which
may be of independent interest.

Lemma 7 (Hyperplane Comparison Lemma). Given a family S = (S1, . . . , Sd+1) of publicly sepa-
rable sets of agents, and two distinct hyperplanes β1 and β2 in Rd+1, there exists a set St ∈ S such
that either (β1)T xi < (β2)T xi for all i ∈ St, or (β1)T xi > (β2)T xi for all i ∈ St.

Proof. Consider the intersection of the two hyperplanes in Rd+1, and let W be its projection on
Rd (the public information space). Note that W is a (d− 1)-dimensional hyperplane in Rd. Given
an open half-space of W (say W+), let Z be the set of points Rd+1 whose projection on Rd lies in
W+. Then, either (β1)T p > (β2)T p for all p ∈ Z, or (β1)T p < (β2)T p for all p ∈ Z, where
p = (p, 1).

Let P(x,S) = (X1, . . . , Xd+1). Because S is publicly separable, X1, . . . , Xd+1 are well separable.
By Proposition 5, no (d− 1)-dimensional flat has a nonempty intersection with Conv(Xt) for each
t ∈ [d+ 1]. Because W is a (d− 1)-dimensional flat, there exists t ∈ [d+ 1] such that W does not
intersect Conv(Xt), i.e., Xt lies entirely in an open half-space of W . Using the previous argument,
either (β1)T xi < (β2)T xi for all i ∈ St, or (β1)T xi > (β2)T xi for all i ∈ St. �

Proposition 8. Generalized resistant hyperplane mechanisms are well defined. That is, given a
family S = (S1, . . . , Sd+1) of publicly separable sets of agents, and k = (k1, . . . , kd+1) with kt ∈ [|St|]
for t ∈ [d+1], there exists a unique hyperplane β for which minkti∈St

yi−βT xi = 0 for each t ∈ [d+1].

Proof. First, we show that if such a hyperplane exists, it must be unique. Suppose for contradiction
that there are two distinct hyperplanes β1 and β2 which make the ktht smallest residual from every
St ∈ S zero. By the hyperplane comparison lemma (Lemma 7), there exists St ∈ S such that either
(β1)T xi < (β2)T xi for all i ∈ St, or (β1)T xi > (β2)T xi for all i ∈ St. Without loss of generality,
suppose it is the former. Then, at least kt points in St which have a non-positive residual under β2

have a negative residual under β1, contradicting the fact that β1 makes the ktht smallest residual
from St zero.

For proving existence, we use a counting technique. Create two bipartite graphs G = (V ∪W,E)
and G′ = (V ′ ∪W,E′). Let V (resp. V ′) contain a vertex vk (resp. v′k) corresponding to each

k = (k1, . . . , kd+1) such that kt ∈ [|St|] for each t ∈ [d + 1]. Thus, |V | = |V ′| =
∏d+1
t=1 |St|. Let

W contain a vertex wβ corresponding to every traversal hyperplane β, i.e., every hyperplane that
passes through at least one point from each set St ∈ S.

In graph G, we draw an edge between vk and wβ if β makes the ktht smallest residual zero in
each St ∈ S. For constructing graph G′, we fix an arbitrary ordering of points in each set, so that
we can write St = {it1, . . . , it|St|}. Then, we draw an edge in G′ between v′k and wβ if β passes

through point itkt for each t ∈ [d+ 1].
Our goal is to show that each vertex vk ∈ V has exactly one incident edge in graph G. We

prove this through a sequence of claims. First, we argue that each vertex v′k ∈ V ′ has exactly one
incident edge in graph G′. The fact that it has at least one incident edge follows from the fact that
any set of d+ 1 points in Rd+1 (in particular, T = {itkt}t∈[d+1]) lie on a hyperplane. If v′k has two
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or more incident edges, then there exist two distinct hyperplanes β1 and β2 which pass through all
points in T . Then, their intersection β∗, which is a (d−1)-dimensional flat in Rd+1, must also pass
through all points in T . Let P(x,S) = (X1, . . . , Xd+1). Then, the projection of β∗ on the public
information space Rd is a (d− 1)-dimensional hyperplane in Rd which intersects each Xt (and thus
each Conv(Xt)). However, S is a publicly separable family, i.e., X1, . . . , Xd+1 are well separable in
Rd. This violates the first condition of Proposition 5.

Since each vertex in V ′ has exactly one incident edge, we have |E′| = |V ′| =
∏d+1
t=1 |St|. We next

argue that |E| = |E′|. Take a vertex wβ ∈W . Note that if hyperplane β passes through at points

from each St ∈ S, then it has degree
∏d+1
t=1 at in both G and G′. Since each vertex in W has the

same degree in both graphs, we have |E| = |E′| = |V ′| = |V |.
Finally, we already established that if there is a hyperplane which makes the ktht smallest residual

in each St zero, then it must be unique. Thus, each vertex in V has at most one incident edge in
G. Together with |E| = |V |, this implies that each vertex in V has exactly one incident edge in G.
�

We are now ready to present our main contribution.

Theorem 9. Every generalized resistant hyperplane mechanism is group strategyproof.

Proof. Consider an (S,k)-generalized resistant hyperplane mechanism. Consider a set of data
points D = (xi, yi)i∈N . Suppose a coalition S ⊆ N of agents changes their report to (ỹi)i∈S , and
changes the resulting hyperplane from β to β̃. Set ỹi = yi for i ∈ N \ S, and let D̃ = (xi, ỹi)i∈N .

By the hyperplane comparison lemma (Lemma 7), there exists St ∈ S such that either βT xi <
β̃T xi for all i ∈ St, or βT xi > β̃

T xi for all i ∈ St.
Without loss of generality, suppose it is the former. The ktht smallest residual from St is zero

under β in D, and under β̃ in D̃. If S ∩ St = ∅, or if every manipulator in S ∩ St has a positive
residual under β in D, then at least kt non-manipulators in N \ S have a non-positive residual
under β in D, and thus a strictly negative residual under β̃ in D̃, which contradicts the fact that
β̃ makes the ktht smallest residual in St zero in D̃.

In other words, there must exist a manipulator i ∈ S∩St who has a non-positive residual under
β in D. Thus, β̃T xi > βT xi ≥ yi, implying that the manipulator is strictly worse off after the
manipulation. Hence, the mechanism is group strategyproof. �

For two dimensions (d = 1), we already argued that our sub-family of group strategyproof CRM
mechanisms given by Theorem 2 is part of the larger family of GRL mechanisms (Lemma 4). It
is easy to see that GRL mechanisms are precisely GRH mechanisms in two dimensions. Indeed,
GRH mechanisms would require two subsets of agents S1, S2 that are publicly separable, i.e., well
separable on the x-axis. Note that this coincides with the separability definition used by GRL
mechanisms (Definition 5). Hence, the (S, S′, k, k′)-GRL mechanism is precisely the (S,k)-GRH
mechanism with S = (S, S′) and k = (k, k′). In three or more dimensions, we do not know if,
given x, one can always construct a family S of publicly separable sets of agents such that each set
St ∈ S contains at least a constant fraction of the agents.

3.3 Strategyproofness vs Group Strategyproofness

In the single dimensional setting (d = 0), Moulin [33] proved that all strategyproof mechanisms are
also group strategyproof. This alternatively follows from a result by Barberà et al. [2], who gave a
sufficient condition on the underlying domain for the sets of strategyproof and group strategyproof
mechanisms to coincide.
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Interestingly, all known strategyproof mechanisms for the multidimensional linear regression
setting (including generalized L1-ERM and generalized resistant hyperplane mechanisms) are group
strategyproof as well. However, it is easy to check that the linear regression setting does not satisfy
the sufficient condition of Barberà et al. [2]. Is it still true that all strategyproof mechanisms for
linear regression are also group strategyproof? We answer this question negatively.

Example 3. Consider the simple linear regression setting (d = 1) with n = 2 agents. Fix the public
information x = (x1, x2) ∈ R2, and consider the mechanism M that, on input y = (y1, y2), returns
the line passing through points (x1, y2) and (x2, y1). Under this mechanism, the outcome for each
agent is independent of the agent’s report: indeed, the outcome for agent 1 (resp. agent 2) is ŷ1 = y2
(resp. ŷ2 = y1). Hence, the mechanism is clearly strategyproof. However, group strategyproofness
is violated because when y1 6= y2, the two agents can collude, and report ỹ = (y2, y1). This makes
the resulting line pass through both agents, making both strictly better off.

The requirement that the outcome for each agent be independent of the agent’s report, called
impartiality in mechanism design, is stricter than (i.e., logically implies) strategyproofness, and has
been studied for aggregating opinions or dividing rewards [14, 22, 39, 19, 28].

Definition 12 (Impartial Mechanisms). A mechanism M is called impartial if the outcome for
each agent is independent of the agent’s report. Formally, for every agent i ∈ N , reports y, and
alternative report y′i by agent i, we require that ŷi(M(y)) = ŷi(M(y′i,y−i)).

In linear regression, when the number of agents is n = d + 1, we can easily characterize all
impartial mechanisms because we can set ŷi to be an arbitrary function of y−i, and return a
hyperplane passing through the resulting d+ 1 points (xi, ŷi)i∈N .

Proposition 10. For n = d + 1, mechanism M is impartial if and only if there exist functions
f1, . . . , fn : Rn−1 → R such that given y, M returns a hyperplane passing through (xi, fi(y−i))i∈N .

Note that functions fi can even be discontinuous, which can make the regression hyperplane
discontinuous in the input y. However, we later show (Theorem 14) that under any strategyproof
mechanism, the outcome ŷi for agent i must be a continuous function of yi (it is a constant function
of yi in case of impartial mechanisms).

With n > d+ 1 points, the question of whether impartial mechanisms even exist is non-trivial.
While we still need to set each ŷi as a function of y−i, it cannot be done arbitrarily as the resulting
points (xi, ŷi)i∈N may no longer lie on a hyperplane. In other words, setting ŷi as a function of y−i
for d + 1 agents already determines the hyperplane, and thus ŷj for all remaining agents j. The
mechanism must ensure that these ŷj are also independent of yj . At first glance, this may seem
impossible, except in the trivial case where a constant hyperplane is returned regardless of y.

Nonetheless, we show that there exists a wide family of non-trivial impartial mechanisms for
linear regression. Our family provides a full characterization of impartial mechanisms for d = 1
(i.e., for simple linear regression). In the result below, we use the notation 〈a, b〉 instead of aTb
for the sake of simplicity. Its proof is in Appendix A.

Theorem 11. Given x, mechanism Mx for linear regression is impartial if there exist functions
{gxi : R→ Rd}i∈N and constant cx ∈ R such that for all y, we have Mx(y) = β = (β1, β0), where

β1 =
∑

i∈N g
x
i (yi), β0 = cx −

∑
i∈N 〈gxi (yi),xi〉 . (6)

For d = 1 and an admissible set of points, this characterizes all impartial mechanisms.
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Impartial mechanisms are not compelling from a statistical viewpoint. For instance, in the
standard two-dimensional stochastic model where the data points are assumed to be generated by
taking points on an underlying line and introducing i.i.d. errors in the dependent variables, it is
easy to show that no impartial mechanism can produce an unbiased estimator of the underlying
line. Nonetheless, impartial mechanisms help us establish the existence of a rather wide family of
strategyproof mechanisms that are not group strategyproof. In fact, the next result shows that
almost all impartial mechanisms violate group strategyproofness; its proof is in Appendix A.

Proposition 12. For simple linear regression (d = 1) with an admissible set of points, an impartial
mechanism is group strategyproof if and only if it is a constant function (i.e., it returns a fixed
regression line regardless of its input).

4 Characterizing Strategyproof Mechanisms

As mentioned in Section 3.1, Moulin [33] studied the one-dimensional setting (d = 0), and analyti-
cally characterized all strategyproof mechanisms for n agents. While we are unable to provide an
analytical characterization for multidimensional linear regression, we provide two non-constructive
characterizations, and discuss their implications.

Interestingly, to characterize strategyproof mechanisms for linear regression with n agents, we
use the characterization of strategyproof mechanisms for the one-dimensional setting with a single
agent. In this case, Moulin [33] shows that a mechanism is strategyproof if and only if there exist
constants α1, α2 ∈ R such that when the agent reports y, the mechanism returns ŷ = med(y, α1, α2).
Constants α1 and α2 are called phantoms. First, we extend this result by providing an alternative
characterization, which uses the following definition. The proof of the next result is in Appendix A.

Definition 13 (Locally Constant Function). For A,B ⊆ R, function f : A → B is called locally
constant at x ∈ A if there exists ε > 0 such that for all x′ ∈ [x− ε, x+ ε], f(x′) = f(x).

Lemma 13. Suppose mechanism π : R → R for the one-dimensional setting with a single agent
elicits private value y from the agent and returns π(y). Then, π being strategyproof is equivalent to
each of the following conditions.

(a) There exist constants α1, α2 ∈ R , R∪{−∞,∞} such that for all y ∈ R, π(y) = med(y, α1, α2).

(b) π is continuous, and for every y ∈ R, either π(y) = y or π is locally constant at y.

In the one-dimensional setting, Moulin [33] observed that a mechanism is strategyproof if and
only if its outcome is strategyproof in the report of each individual agent when other agents’ reports
are fixed. That is, a mechanism π : Rn → R for n agents is strategyproof if and only if

∀i ∈ [n], ∃α1
i , α

2
i ∈ R independent of yi s.t. π(y1, . . . , yn) = med(yi, α

1
i , α

2
i ). (7)

Moulin [33] solved Equation (7) to derive an elegant analytical expression for π in terms of {yi}i∈[n].
Note that in this equation, the outcome ŷ = π(y1, . . . , yn) is common to all agents.

In contrast, in linear regression each agent i has a potentially different outcome ŷi. Like before,
strategyproofness requires that each ŷi obey the conditions in Lemma 13, when seen as a function
of yi, when other agents’ reports are fixed. However, the outcomes for different agents are now
constrained so that (xi, ŷi)i∈N lie on a hyperplane. This added complexity prevented us from solving
the equations to derive an analytical characterization, despite significant effort. The only exception
was the special case of impartial mechanisms, where we further restrict ŷi to be independent of yi
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(Theorem 11). This corresponds to the case where α1
i = α2

i for each agent i. Nonetheless, by simply
applying Lemma 13 for every agent i, we obtain the following non-constructive characterization of
strategyproof mechanisms for linear regression.

Theorem 14. Given public information x, mechanism Mx for linear regression being strategyproof
is equivalent to each of the following conditions.

(a) For every y−i ∈ Rn−1 and i ∈ N , there exist `i, hi ∈ R such that ŷi(M
x(y)) = med(yi, `i, hi)

for all yi ∈ R;

(b) For every y−i ∈ Rn−1 and i ∈ N , function fi(·) = ŷi(M(·,y−i)) is continuous, and for every
yi ∈ R, either fi(yi) = yi or fi is locally constant at yi.

The first condition provides an analytical form of ŷi in terms of yi, and is perhaps the more
useful characterization. For instance, we crucially use this characterization in the next section to
give a lower bound on the efficiency of strategyproof mechanisms. Our earlier (more complex) proof
of group strategyproofness of GRH mechanisms (Theorem 9) was also based on this condition, and
identified the precise `i and hi for each agent i.

Note that for fixed y−i, we have ŷi = yi when yi ∈ [`i, hi]. For yi ≤ `i, ŷi = `i is fixed, and for
yi ≥ hi, ŷi = hi is fixed. We therefore say that agent i is influential over the interval (`i, hi), and
call `i and hi the lower and upper influence bounds, respectively. Analysis of influence bounds has
received attention in the statistics literature, where it is called sensitivity analysis. For instance,
Narula and Wellington [34] observed that under L1-ERM, the regression hyperplane is unaffected
when the dependent variable of a point is changed so that the point still lies on the same side of the
hyperplane as before. From Theorem 14, we can see that for every strategyproof mechanism, doing
so should at least keep the outcome for agent i unchanged. Narula and Wellington [34] also focused
on computing the influence bounds. Theorem 14 lends a simple algorithm to compute influence
bounds (see Appendix B). Finally, note that while ŷi must be continuous in yi, it need not be
continuous in y (see our discussion on Proposition 10).

5 Efficiency of Strategyproof Mechanisms

Insofar, we studied families of strategyproof mechanisms for linear regression. In the absence
of strategic considerations, a popular mechanism for linear regression is the OLS (ordinary least
squares), which is the empirical risk minimizer for the squared loss. Under this loss function,
which is also called the residual sum of squares (RSS), the loss when choosing hyperplane β given

data points D is RSS(D,β) =
∑

i∈N
(
yi − βT xi

)2
. A classic justification for the OLS is due to

the Gauss-Markov theorem, which states that when the errors (deviations of data points from an
underlying hyperplane we wish to identify) are stochastic, zero in expectation, uncorrelated, and
of equal variance, the OLS is the best linear unbiased estimator.

However, in our strategic setting, the OLS is not strategyproof [15]. This raises an important
question: Is there a strategyproof mechanism that is close to the OLS? We assess this by the worst-
case approximation ratio of a mechanism for the optimal squared loss.

Definition 14 (Efficiency). Given x, we say that mechanism Mx for linear regression is c-efficient
if for every D = (xi, yi)i∈N , we have RSS(D,Mx(y)) ≤ c · infβ RSS(D,β).

We show that no strategyproof mechanism that is too close to the OLS can be strategyproof.
The proof of the next result leverages our characterization of strategyproof mechanisms (Theo-
rem 14).
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Theorem 15. For n ≥ 4, there exist x for which no strategyproof mechanism is (2 − ε)-efficient
for any ε > 0.

Proof. For simplicity of notation, we use n+ 1 agents instead of n agents (and assume n+ 1 ≥ 4,
i.e., n ≥ 3). We also consider simple linear regression (d = 1); the proof easily extends to higher
dimensions by simply setting all other coordinates to zero. Fix n ≥ 3. Consider a setting with n+1
agents where xi = i for i ∈ [n], and xn+1 = X, where X is the solution of the following equation:

n3 − n
2(1 + 3n+ 2n2 + 6X2 − 6Xn− 6X)

= 1. (8)

Interested readers may note that X = Θ(n1.5). Let T denote the LHS in Equation (8).
Consider a strategyproof mechanism Mx. Suppose Mx is c-efficient. We want to show that

c ≥ 2. We consider a family of inputs y, in which we fix yi = 0 for i ∈ [n], and vary yn+1 = Y .
First, we note that the optimal RSS, as a function of Y , is given by

f0(Y ) = Y 2 · n3 − n
2 + 5n+ 4n2 + n3 − 12X − 12nX + 12X2

= Y 2 · T

T + 1
=
Y 2

2
,

where the first transition is obtained by minimizing (Y −X · β1− β0)2 +
∑n

i=1(i · β1 + β0)
2 over all

(β1, β0), the second transition follows through simple algebra, and the final transition follows from
Equation (8). For verification of these claims through Mathematica, see Figure 2 in Appendix A.

Recall that we fixed yi for i ∈ [n]. Due to our characterization result (Theorem 14), there exist
`, h ∈ R with ` ≤ h such that the line returned by the mechanism passes through (X,med(Y, `, h))
for all Y . We take two cases.

Case 1: h > 0. Set Y = h. Then, the line returned by the mechanism passes through (X,h).
In this case, we can show that the RSS of the mechanism is at least

f1 = h2 · n3 − n
2(1 + 3n+ 2n2 + 6X2 − 6Xn− 6X)

= h2 · T = h2,

where the first transition is obtained by minimizing (Y − β1 ·X − β0)2 +
∑n

i=1(β1 · i+ β0)
2 over all

(β1, β0) which satisfy β1 ·X + β0 = Y , and the rest follows from Equation (8). For verification of
these claims through Mathematica, see Figure 2 in Appendix A. This implies c ≥ f1/f0(h) = 2.

Case 2: h ≤ 0. Set Y = 1. Then, the line returned by the mechanism passes through (X,h). In
this case, the RSS of the mechanism is at least f2 = 1 because agent n+ 1 contributes (1−h)2 ≥ 1
to the squared loss. Once again, we have c ≥ f2/f0(1) = 2.

The proof is complete as we have c ≥ 2 in each case. �

For n = 2 agents (or n = d + 1 agents in d + 1 dimensions), there is an obvious 1-efficient
strategyproof mechanism which returns a hyperplane passing through all input points. Theorem 14
leaves open the case of n = 3 in two dimensions.

6 Discussion

Our work leaves several open questions. Perhaps the most ambitious one is to find a constructive
characterization of all strategyproof or group strategyproof mechanisms for linear regression, which
may allow us to pinpoint the most efficient strategyproof mechanism; Caragiannis et al. [8] provide
a similar analysis in the one-dimensional setting. It is easy to show that L1-ERM is n-efficient
(see Proposition 17 in Appendix A). Does there exist a more efficient strategyproof mechanism?
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It would also be interesting to analyze efficiency in a stochastic setting where the data points are
drawn from an underlying distribution.

The characterization result of Moulin [33] for strategyproof and anonymous mechanisms in
the one-dimensional setting extends the median to generalized medians by adding fixed phantom
values, and then taking the median. It is also shown that adding n + 1 phantoms is sufficient to
obtain full generality. We can extend all our proposed families of mechanisms by adding a certain
number of “phantom points” in Rd+1, and then applying the mechanisms to the union of data
points and phantom points. The resulting mechanism retains the incentive guarantees.8 Given n
data points, how many phantoms are sufficient to obtain full generality? Do the phantoms play a
role in obtaining the elusive constructive characterization?

Another interesting observation is that our generalized resistant hyperplane mechanisms are
guaranteed pass through d + 1 input points in d + 1 dimensions. It is known that at least one
minimizer of the L1 loss also has this property. It would be interesting to identify a generic family
of conditions, which, when imposed in addition to the requirement of making d+ 1 residuals zero,
yield group strategyproofness.

Finally, Dekel et al. [15] study a regression setting in which a single agent may control mul-
tiple data points, show that L1-ERM is no longer strategyproof, and provide novel strategyproof
mechanisms. It would be useful to see if our ideas can be used to design additional strategyproof
mechanisms in this model. Another interesting variant is when only a small number of data points
are held by strategic agents, but the mechanism does not know which ones. A similar setting was
studied by Charikar et al. [11], but for classification and with adversarial manipulations. On a
high level, we view our work as a stepping stone to studying incentives in more realistic machine
learning environments.
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Appendix

A Missing Results and Proofs

In this section, we present the results and proofs missing from the main body of the paper.

A.1 Generalized L1-ERM is Group Strategyproof

Proof of Theorem 1. We will follow the structure of the proof presented by Dekel et al. [15].

Proposition 16. Let Ŝ = {(xi, ŷi)}mi=1 and S̃ = {(xi, ỹi)}mi=1 be two training sets on the same

set of points and let f̂ = w-ERM-reg(F , `, Ŝ) and f̃ = w-ERM-reg(F , `, S̃), where by w-ERM-reg we
denote the weighted L1-ERM with convex regularizer (i.e., f̃ = arg maxf

∑
i∈N w

x
i |yi−f(xi)|+h(f)

) and by ` the L1 loss function. If f̂ 6= f̃ then, there exists i ∈ N , such that ŷi 6= ỹi and

`(f̂(xi), ŷi) < `(f̃(xi), ŷi) (9)

Proof. Let U = {i : ŷi 6= ỹi} and assume that `(f̂(xi), ŷi) ≥ `(f̃(xi), ŷi) for all i ∈ U . First, we will
consider functions of the form fα(x) = αf̃(x) + (1− α)f̂(x) and prove that there exists α ∈ (0, 1]
such that:

R̂
(
f̂ , S̃

)
− R̂

(
f̂ , Ŝ

)
= R̂

(
fα, S̃

)
− R̂

(
fα, Ŝ

)
(10)

For all i ∈ U from Equation (9) we get that either of the four inequalities below holds:

f̃(xi) ≤ ŷi < f̂(xi), f̃(xi) ≥ ŷi > f̂(xi) (11)

ŷi ≤ f̃(xi) < f̂(xi), ŷi ≥ f̃(xi) ≥ f̂(xi) (12)

Observe now, that similarly to Dekel et al. [15] since ỹi 6= f̃(xi) produces the least sum of
the weighted loss and the convex regularizer, then assuming that ỹi = f̃(xi) will cause greater
risk reduction for f̃ , and therefore, f̃ will still minimize the risk. If one of the two inequalities in
Equation (11) holds:

αi =
ŷi − f̂(xi)

f̃(xi)− f̂(xi)
(13)

where αi ∈ (0, 1] and fαi(xi) = ŷi. By substituting, for every α ∈ (0, αi] it holds that:

ỹi ≤ ŷi ≤ fαi(xi) < f̂(xi) or ỹi ≥ ŷi ≥ fαi(xi) > f̂(xi)

Based on the above and if we set ci = |ŷi − ỹi|, we have that for all α ∈ (0, αi]:

`(f̂(xi), ỹi)− `(f̂(xi), ŷi) = ci and `(fα(xi), ỹi)− `(fα(xi), ŷi) = ci (14)

By using Equation (12) and setting αi = 1 and ci = −|ỹi − ŷi| one ends up again with Equa-
tion (14). Equation (14) holds for every i ∈ U if we set α = mini∈U αi and it trivially holds for
all i 6= U with ci = 0. Multiplying with the appropriate weights wxi the equalities for each i and
summing them all, one gets to Equation (10). Note that in this step, the regularizer h(f) can be
ignored, since it cancels out from each side of the equation.

Since F is a convex set, fα ∈ F . Since f̂ minimizes the empirical risk with respect to Ŝ over F
we have that R̂(f̂ , Ŝ) ≤ R̂(fα, Ŝ) and combining with Equation (9) we get that R̂(f̂ , S̃) ≤ R̂(fα, S̃).
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The emprical risk function is convex in its first argument (we are using a strictly convex regularizer)
we have that:

R̂(f̂ , S̃) ≤ R̂(fα, S̃) ≤ αR̂(f̃ , S̃) + (1− α)R̂(f̂ , S̃) (15)

However, since f̃ minimizes the loss with respect to S̃: R̂(f̃ , S̃) ≤ R̂(f̂ , S̃) and thus

R̂(f̂ , S̃) = R̂(f̃ , S̃) = min
f∈F

R̂(f, S̃) (16)

In other words we have shown that both f̂ and f̃ minimize the empirical risk with respect to S̃. The
only thing that is left to be shown for the contradiction argument is that the tie breaking step of
the algorithm does not distinguish between two functions that are risk minimizers. In order words,
we need to show that both functions attain the minimum norm over all empirical risk minimizers.

Combining Equation (16) with (15) we get that R̂(fα, S̃) ≤ R̂(f̂ , S̃). From (10) we have that
R̂(fα, S̃) ≤ R̂(f̂ , Ŝ) and thus R̂(fα, Ŝ) = R̂(f̂ , Ŝ). However, f̂ was chosen to miminimize the
empirical risk with respect to Ŝ and therefore, ||f̂ || ≤ ||fα||. Using convexity of the norm, we get
||f̂ || ≤ ||f̃ ||. Also, for the case of sample S̃, the algorithm chose function f̃ and therefore ||f̂ || ≥ ||f̃ ||.
This concludes our contradiction argument, since

||f̂ || = ||f̃ || = min
f∈F :R̂(f,S̃)=R̂(f̃ ,S̃)

||f || (17)

Hence, both functions attain the minimum norm over all empirical risk minimizers. Since the norm
is strictly convex, its minimum is unique and therefore f̂ ≡ f̃ . �

Using now the aforementioned proposition we will complete the proof of the theorem. Again, we
follow the proof of Dekel et al. [15]. Let S = {(xi, yi)}mi=1 be the set of the true reports of agents in

N and let S̃ = {(xi, ỹi)}mi=1 be the reports revealed by the agents and used to traing the regression
function. Let C ⊆ N be an arbitrary coalition of agents that misreport their information, in order
to decrease some of their respective losses. We define the hybrid set of values where ∀i ∈ N :
ŷi = yi if i ∈ C and ŷi = ỹi otherwise. Let Ŝ = {(xi, yi)}mi=1, f̂ = w-ERM-reg(F , `, Ŝ) and

f̃ = w-ERM-reg(F , `, S̃).
If f̂ ≡ f̃ then agents in C have no incentive to misreport. If f̂ 6= f̃ then from Proposition 16

we have that there exists an agent i ∈ N such that ŷi 6= ỹi and `(f̂(xi), ỹi) < `(f̃(xi), ŷi). Since
ŷi 6= ỹi, agent i must be a member of C. Therefore, ỹi = yi and `(f̂(xi), yi) < `(f̃(xi), yi). However,
no member of C should lose from reporting S̃ instead of Ŝ, contradiction. Since the proof holds
regardless of the values revealed by the agents outside of C, we have group-strategyproofness. �

A.2 CRM Mechanisms are Also GRL Mechanisms

In the CRM mechanism, we refer to the point in S which has the median of all median CWAs (i.e.,
DA) as the “directing point”, and the point in S′ to which this DA is pointing as the “directed
point”.

Proof of Lemma 4. First, we show that for any S ⊆ N , the (S, S)-CRM mechanism is (L,R, k, k′)-
GRL mechanism for some L,R, k, k′. Without loss of generality, we can assume S = N as the other
points are simply ignored. Thus, we will refer to the (N,N)-CRM mechanism.

First, consider the case where n is even. Let L (resp. R) be the set of n/2 points with the
smallest (resp. largest) x coordinates. We show equivalence of the (N,N)-CRM mechanism to
the (L,R, k, k′)-GRL mechanism for appropriate k and k′. Let (β1, β0) be the line returned by the
CRM mechanism.

Choose x∗ ∈ (maxi∈L xi,mini∈R xi), and define the following sets.
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• A = {i : xi < x∗, yi ≥ β1xi + β0}

• B = {i : xi > x∗, yi > β1xi + β0}

• C = {i : xi < x∗, yi < β1xi + β0}

• D = {i : xi > x∗, yi ≤ β1xi + β0}

Note that A ∪ C = L and B ∪D = R. For i ∈ N , let MCWAi denote the median CWA from
i to points in N \ {i}. Note that for each i ∈ L, there are strictly more points in N \ {i} to the
right of it, than to the left of it, implying that MCWAi ∈ [π, 2π]. Similarly, for each i ∈ R, we
have MCWAi ∈ [0, π].

Let DA be the directing angle under the CRM mechanism. Then, DA = mini∈LMCWAi or
DA = maxi∈RMCWAi based on whether the outer median in the directing angle definition uses the
right median or the left median. Let us assume it uses the left median, so DA = maxi∈RMCWAi.
The proof for the other case is symmetric.

We now show that in this case, B = C = ∅. This would imply that the mechanism is equivalent
to (L,R, |L|, 1)-GRL because every point in L has a non-positive residual while every point in R
has a non-negative residual.

Suppose for contradiction that B 6= ∅. Take a point iB ∈ B. Note that MCWAiB ≤
maxi∈RMCWAi = DA. Note that the directing point i∗ is on the regression line, and hence
i∗ ∈ D. Then, one can check that if xiB < xi∗ , then xiB has strictly less number of points to
which its angle is less than MCWAiB than xi∗ has to which its angle is less than MCWAi∗ = DA.
In the case xiB > xi∗ , the same happens but for points with angle greater than MCWA. This is
a contradiction because each point has exactly (n − 2)/2 points with angle more or less than its
MCWA. Hence, B = ∅. Using a symmetric argument, we can establish C = ∅, which completes the
proof.

We now consider the case where n is odd. In this case, let L (resp. R) be the set of (n− 1)/2
points with the smallest (resp. largest) x-coordinate, and let i∗ be the point with the median
x-coordinate. Once again, we have that MCWAi ∈ [π, 2π] for each i ∈ L, and MCWAi ∈ [0, π]
for each i ∈ R. We add i∗ to L if MCWAi∗ ∈ [π, 2π], and to R otherwise. Suppose we add it to
R, and let R′ = R ∪ {i∗}. Then using an argument similar to above, we can check that the CRM
mechanism is equivalent to (L,R′, k, k′) for appropriate k, k′.

The case where S ∩ S′ = ∅ and min(|S|, |S′|) = 1 is much simpler. Again, without loss of
generality, we can consider S ∪ S′ = N , and for simplicity, consider the case where n is even and
|S| = 1. The other cases are similar. Let S = {i∗}. Without loss of generality, suppose there are
more points to the right of i∗ than to the left of it. Let R be the set of points to the right of i∗,
and L be the set of points to the left of i∗. Then, it is easy to see that when we take the median
CWA from i∗ (say, the left median, i.e., the (n/2− 1)th smallest CWA), it will always be towards a
point in R. Moreover, it will be the (n/2− 1− |S|)th smallest CWA towards points in R. However,
CWAs towards points in R are monotonic in slopes to points in R. Hence, the regression line will
make the (n/2− 1−|S|)th smallest residual in R zero. In other words, the mechanism is equivalent
to ({i∗}, R, 1, n/2− 1− |S|)-GRL. �

A.3 Impartial Mechanisms

We now present the proof of Theorem 11. First, we need the following definition.

Definition 15 (Completely Additively Separable). Function f : Rk → R is called completely
additively separable if there exist functions {gi}ki=1 such that f(t1, . . . , tk) =

∑k
i=1 gi(ti) for all

t = (t1, . . . , tk) ∈ Rk.
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It is well known that f is completely additively separable if and only if for all t ∈ Rk, i ∈ [k],
and t′i ∈ R, f(ti, t−i)− f(t′i, t−i) is independent of t−i.

Proof of Theorem 11. We omit x from all superscripts for simplicity. Suppose mechanism M is
given by Equation (6). Then:

ŷi(β) = 〈β,xi〉 =
〈∑

j∈N gj(yj),xi

〉
+ c−

∑
j∈N 〈gj(yj),xj〉

= c+
∑

j∈N\{i} 〈gj(yj),xi − xj〉 .

Note that ŷi(β) is independent of yi, which implies that M is impartial.
We now prove the converse for simple linear regression (d = 1) with an admissible set of points.

Suppose mechanism M is impartial. Given y, let β1(y) be the slope of the line returned by M ,
and fi(y) = ŷi(M(y)) be the outcome for agent i. Because M is impartial, fi is independent of yi.
Hence, we denote the outcome for agent i by fi(y−i).

We want to show that h is completely additively separable. Equivalently, for every y and ỹ
such that y−i = ỹ−i, we want to show that β1(y)−β1(ỹ) is independent of y−i. Choose j ∈ N \{i}
arbitrarily. By the definition of the slope of a line, we have

β1(y) =
fj(y−j)− fi(y−i)

xj − xi
, β1(ỹ) =

fj(ỹ−j)− fi(ỹ−i)
xj − xi

.

Taking the difference, and noting that y−i = ỹ−i, we get

β1(y)− β1(ỹ) =
fj(y−j)− fj(ỹ−j)

xj − xi
.

Note that the RHS is independent of yj . Since we chose j ∈ N \ {i} arbitrarily, it follows that
β1(y) − β1(ỹ) is independent of y−i, implying that h is completely additively separable. Thus,
there must exist functions {gi}i∈N such that β1(y) =

∑
i∈N gi(y).

We now want to calculate β0. Recall that for every i ∈ N , the outcome for agent i is

fi(y−i) = β1(y) · xi + β0 = gi(yi) · xi +
∑

j∈N\{i}

gj(yj) · xi + β0.

Since the LHS is independent of yi, so must be the RHS. Hence, β0+gi(yi) ·xi must be independent
of yi for each i ∈ N . This implies β0 = c−

∑
i∈N gi(yi) · xi for some constant c, as desired. �

Proof of Proposition 12. By Theorem 11, an impartial mechanism for simple linear regression with
an admissible set of points must be of the form given in Equation (6). We want to show that
function gxi is constant for each i ∈ N . Suppose for contradiction that for some agent i ∈ N ,
function gxi is not constant. Thus, there exist y1i and y2i such that gxi (y1i ) 6= gxi (y2i ). Fix an agent

j ∈ N \ {i} and y−{i,j} ∈ Rn−2. Let ŷ1j and ŷ2j denote the outcomes for agent j under the impartial

mechanism when agent i reports y1i and y2i , respectively, and agents in N \ {i, j} report y−{i,j}.
That is,

ŷtj = gxi (yti) · (xj − xi) +
∑

k∈N\{i,j} g
x
k (yk) · (xj − xk) + cx, ∀t ∈ {1, 2}.

Note that gxi (y1i ) 6= gxi (y2i ) and xi 6= xj imply that ŷ1j 6= ŷ2j . Now, suppose that the private values

of the agents are (y1i , ŷ
2
j ,y−{i,j}). In this case, the outcome for agent j is ŷ1j , which is different from

her private value ŷ2j . If agent i changes her report to y2i , her own outcome would not change, but

the outcome for agent j would change to ŷ2j , making agent j strictly better off. Thus, the coalition
{i, j} successfully manipulates their reports, showing a violation of group strategyproofness.

For the reverse direction, note that all constant functions are trivially group strategyproof. �
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A.4 Characterization of Strategyproof Mechanisms

Proof of Lemma 13. Part (a) is precisely the characterization of strategyproof mechanisms due
to Moulin [33, Proposition 3], applied to the case of a single agent.9

We would like to show that part (b) is equivalent to part (a). It is easy to check that a function
π of the form given in part (a) satisfies the conditions of part (b). We now show the converse.

Suppose that π is continuous, and for every y ∈ R, either π(y) = y or π is locally constant at
y. Let O = {y ∈ R : π is locally constant at y}. We first show that O is an open set. That is, if
y ∈ O, there must exist a δ > 0 such that (y − δ, y + δ) ⊆ O. Indeed, fix a y ∈ O. Because π is
locally constant at y, there must exist an ε > 0 such that π is constant in [y− ε, y+ ε]. Set δ = ε/2,
and pick an arbitrary y′ ∈ (y − δ, y + δ). We want to show that y′ ∈ O. Note that for ε′ = ε/2,
[y′ − ε′, y′ + ε′] ⊆ [y − ε, y + ε]. Hence, π is constant in [y′ − ε′, y′ + ε′], implying that y′ ∈ O. This
concludes the proof that O is an open set.

Next, we use the well-known fact that any open subset of R is a countable union of pairwise
disjoint open intervals. That is, we can write O = ∪k∈N (ak, bk), where ak, bk ∈ R. For k ∈ N,
because π is locally constant over (ak, bk), and an open interval is a connected metric space, it
follows that π is globally constant over (ak, bk). That is, there exists a value tk ∈ R such that
π(y) = tk for all y ∈ (ak, bk).

We now show that for any k ∈ N with ak 6= bk (i.e., the interval (ak, bk) is non-empty), it cannot
be the case that both ak and bk are finite. Suppose for contradiction that both are finite. Note that
continuity of π implies that π(ak) = π(bk) = tk. However, since ak, bk /∈ O, we have π(ak) = ak
while π(bk) = bk, which is a contradiction because ak 6= bk. Hence, for every k ∈ N with ak 6= bk,
at least one of the two must lie in {−∞,∞}.

This leaves precisely five possibilities for the set O: ∅, R, (−∞, a) for a ∈ R, (b,∞) for b ∈ R,
and (−∞, a) ∪ (b,∞) for a, b ∈ R with b ≥ a. We know that π is constant over each interval in O,
and the identity function for every point outside O. For each of these five cases, we show that π
must be of the form given in part (a) by identifying the corresponding constants α1 and α2.

1. O = ∅: π is the identity function everywhere, i.e., α1 = −∞ and α2 =∞.

2. O = R: There exists t ∈ R such that π(y) = t for all y ∈ R. This corresponds to α1 = α2 = t.

3. O = (−∞, a) for a ∈ R: Then π(y) = y for all y ≥ a. In particular, π(a) = a. Because π is
continuous and constant over (−∞, a), we have π(y) = a for y ∈ (−∞, a). This corresponds
to α1 = a and α2 =∞.

4. O = (b,∞) for b ∈ R: Similarly to case (3), this corresponds to α1 = −∞ and α2 = b.

5. O = (−∞, a) ∪ (b,∞) for finite b ≥ a: As argued in the previous two cases, for y ∈ (−∞, a)
we have π(y) = π(a) = a, and for y ∈ (b,∞) we have π(y) = π(b) = b. For y ∈ [a, b], we have
π(y) = y. This corresponds to α1 = a and α2 = b.

This concludes our proof. �

A.5 Efficiency of Strategyproof Mechanisms

Figure 2 below verifies several claims made in the proof of Theorem 15 using Mathematica.
We remark that none of the strategyproof mechanisms we study achieve a constant approxima-

tion. For instance, it is easy to show that L1-ERM is n-efficient.

9Equivalently, one can use Proposition 2, which characterizes strategyproof and anonymous mechanisms, as
anonymity becomes trivial in case of a single agent.
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Figure 2: Verification of various claims through Mathematica

Proposition 17. The L1-ERM mechanism is n-efficient.

Proof. Fix D = (xi, yi)i∈N . Let β1 and β∗ be the outputs of L1-ERM and OLS, respectively.
Then, we have

RSS(D,β1) ≤
(∑

i∈N
∣∣yi − (β1)T xi

∣∣)2 ≤ (∑i∈N
∣∣yi − (β∗)T xi

∣∣)2 ≤ n · RSS(D,β∗),

where the first inequality follows from the power mean inequality, the second inequality holds
because β1 minimizes the sum of absolute losses, and the third inequality follows from the Cauchy-
Schwarz inequality. This concludes the proof. �

B Computing Influence Bounds

ALGORITHM 2: Computing Influence Bounds

Input: Data points D = (xj , yj)j∈N , agent i ∈ N .
Output: `i, hi
Z ← set of hyperplanes β which pass through d+ 1 agents from N \ {i};
tβ ← βT xi,∀β ∈ Z;
L← minβ∈Z tβ − 1;
H ← maxβ∈Z tβ + 1;
VL ←Mx(L,y−i);
VH ←Mx(H,y−i);
if VL = L then

`i ← −∞;
else

`i ← VL;
end
if VH = H then

hi ←∞;
else

hi ← VH ;
end
return `i, hi;
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Our characterization result (Theorem 14) establishes existence of influence bounds `i, hi ∈ R
for each agent i as a function of the reports of the other agents. In this section, we address the
problem of computing these influence bounds for a given strategyproof mechanism.

Fix y−i. We begin from the simple observation that if `i is finite, then for a sufficiently low
value of yi (any yi ≤ `i), we have that the outcome for agent i will be ŷi = med(yi, `i, hi) = `i. If
`i = −∞, then for all yi < hi, the outcome for agent i will be ŷi = yi. Thus, if we can identify a
sufficiently low value of yi, we can check if ŷi is equal to yi (in which case `i = −∞), or ŷi is equal
to some other value (in which case this value must be `i). A symmetric observation holds for hi.

While it is difficult to pin down a sufficiently low value for an arbitrary strategyproof mechanism,
we can do so for the class of strategyproof mechanisms which are guaranteed to pass through d+ 1
data points in d+ 1 dimensions (e.g., the generalized resistant hyperplane mechanisms).

In this case, note that `i, if finite, must be the point where a hyperplane containing some
d + 1 agents (excluding agent i) intersects the vertical line at xi. Thus, if we iterate through
all hyperplanes passing through d + 1 agents except agent i, and find their intersections with the
vertical line at xi, then any value lower than the lowest intersection point will work as a sufficiently
low value. Once again, a symmetric observation can be made for hi.

This provides an algorithm that runs in time that is polynomial in n, but exponential in d,
and makes two calls to the strategyproof mechanism (one to identify `i and one for hi). This is
presented as Algorithm 2.

C Quantile Regression is Not Strategyproof

In this section, we show that quantile regression is not guaranteed to be strategyproof. In particular,
we show that quantile regression with q = 0.4 violates strategyproofness. The coordinates for the
20 data points shown in Figure 3 are as follows.

(-79.3, -45.8) (-77.3, 89.5) (-74.8, -87.4) (-58.5, 14.3) (-33.2, -28.4)
(-31.5, 5.2) (-8.0, -73.1) (-1.7, -52.8) (10.0, 88.6) (13.0, 13.3)
(13.9, 7.4) (15.4, 39.4) (18.5, -2.0) (23.0, 6.6) (23.8, -33.0)

(24.2, -60.3) (26.0, 49.5) (39.5, 49.5) (45.3, 88.9) (71.2, 33.2)

If the agents report truthfully, then the quantile regression mechanism with q = 0.4 returns the
solid line. If agent with data point (13.9, 7.4) reports a very large value of y (e.g., 2000), then the
output line becomes the dashed one, which is clearly beneficial for the manipulating agent.

−80 −60 −40 −20 0 20 40 60
−100

−50

0

50

100 Truthful reports
CRM before deviation
CRM after deviation

Figure 3: Example of a beneficial manipulation under quantile regression with q = 0.4.
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