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Abstract

Facility location is the problem of locating a public facility
based on the preferences of multiple agents. In the classic
framework, where each agent holds a single location on a line
and can misreport it, strategyproof mechanisms for choosing
the location of the facility are well-understood.
We revisit this problem in a more general framework. We as-
sume that each agent may hold several locations on the line
with different degrees of importance to the agent. We study
mechanisms which elicit the locations of the agents and dif-
ferent levels of information about their importance. Further,
in addition to the classic manipulation of misreporting loca-
tions, we introduce and study a new manipulation, whereby
agents may hide some of their locations. We argue for its nov-
elty in facility location and applicability in practice. Our re-
sults provide a complete picture of the power of strategyproof
mechanisms eliciting different levels of information and with
respect to each type of manipulation. Surprisingly, we show
that in some cases hiding locations can be a strictly more
powerful manipulation than misreporting locations.

1 Introduction
Approximate mechanism design without money is a
paradigm introduced by Procaccia and Tennenholtz (2009),
which sits at the intersection of computer science and eco-
nomics, and reasons about ways to prevent strategic manipu-
lations by agents without monetary transfers. They illustrate
this through the canonical facility location problem, where
n agents are located on the real line, and a mechanism elic-
its their locations to decide where to build a public facil-
ity. However, the agents are strategic, and may manipulate
their reports to bring the facility closer to their location. To
prevent such manipulations, one may seek a strategyproof
mechanism under which no agent can benefit by manipu-
lating, regardless of what the others do. However, imposing
this constraint comes at a price. Given an objective the de-
signer wants to minimize (such as the maximum distance
of the facility to any agent), she may only be able to ap-
proximately minimize it subject to strategyproofness. In the
last decade, research on facility location has exploded, and
many variants have been studied such as: locating multiple
facilities (Escoffier et al. 2011), locating a facility in multi-
ple dimensions (Sui, Boutilier, and Sandholm 2013), explor-

ing different types of agent preferences (Filos-Ratsikas et al.
2017) and objectives (Feldman and Wilf 2013), and strategic
opening of facilities (Chen et al. 2019).

However, this literature has mainly focused on a single
type of manipulation: agents misreporting their location. In
certain contexts however, agents may not be able to lie about
their location, but can still manipulate by hiding their lo-
cation. For example, to decide where the facility should be
built, a survey may request residents to provide their home
address, or school boards to provide the school address.
Such reports can often be easily verified, either through ex-
ternal methods or by requiring participants to upload proof.
In such cases, agents cannot lie about their location, but may
choose to not participate, thus hiding their location.

When each agent holds a single location, the hiding ma-
nipulation is very restrictive: an agent can either partici-
pate (and reveal the correct location) or not participate (and
hide the location). The desideratum of incentivizing agents
to participate is known as individual rationality, and is al-
ready widely studied (Nisan et al. 2007). However, when
each agent holds multiple locations, she may choose to re-
veal any subset of these locations, making the hiding manip-
ulation much more complex.

In facility location, agents holding multiple locations
arises naturally. In the aforementioned example, residents
may report both their home and work address, or a school
district may report the addresses of multiple schools under
its purview. This has been somewhat explored in facility lo-
cation (Dekel, Fischer, and Procaccia 2010; Filos-Ratsikas
et al. 2017). We also note additional motivation from a dif-
ferent line of literature. Recent explorations of strategic in-
teractions in machine learning have revealed that research on
facility location provides great insight into designing strate-
gyproof algorithms for tasks such as linear regression (Chen
et al. 2018; Hossain and Shah 2019), where the training data
may come from strategic sources and assuming that each
data source provides a single data point is highly unrealistic.

In our model, we assume that each strategic agent holds
multiple points with potentially different weights, and is in-
terested in minimizing the weighted sum of their distances to
the facility (a.k.a. her cost). This immediately raises a num-
ber of questions.



• How powerful is the hiding manipulation compared to the
more commonly studied misreporting manipulation?

• How do we characterize strategyproof mechanisms with
respect to such manipulations?

• What is the price of imposing strategyproofness in terms
of natural objectives that we may care about?

Our Results
This work focuses on answering such questions. We con-
sider two natural objectives: social cost, which is the sum of
costs to the agents, and fair social cost, which is the sum
of distances of all points to the facility (disregarding the
weights).

In addition to eliciting the points, our mechanisms also
elicits information about their weights. For full information
mechanisms, which ask agents to report the exact weights,
we show that the PROJECT-AND-FIT mechanism introduced
by Dekel, Fischer, and Procaccia (2010), with appropriate
generalization to our setting, is strategyproof with respect to
both types of manipulations, providing a 3 approximation to
social cost and 2m−1 approximation to fair social cost. Both
approximations are essentially optimal. While this may sug-
gest a deeper connection between families of strategyproof
mechanisms with respect to the two manipulations, we show
that the families are incomparable as there exist mechanisms
that are strategyproof with respect to one manipulation but
not the other.

For ordinal mechanisms, which ask agents to report only
a ranking of points by weight rather than the exact weights,
we show that only constant mechanisms are strategyproof
with respect to hiding; for misreporting however, the fam-
ily of strategyproof mechanisms is strictly larger. This indi-
cates that hiding is strictly more powerful than misreport-
ing in this case. We show that imposing strategyproofness
with respect to either manipulation results in infinite approx-
imation to both objectives, but without it, ordinal mecha-
nisms can achieve Θ(m)-approximation to social cost and
1-approximation to fair social cost.

Lastly, our negative results hold even when agents are not
allowed to manipulate their weight information, and our pos-
itive results hold even if they are allowed to.

Related Work
Much of the facility location literature works under the as-
sumption that each agent has single-peaked preferences over
possible locations of the facility (Moulin 1980; Schummer
and Vohra 2002; Alon et al. 2009; Procaccia and Tennen-
holtz 2009). In our model, preferences are generated by a
weighted sum of `1 distances to multiple points, and thus
are still single-peaked. However, our setting differs from
prior work in two key aspects. First, prior work assumes
that when agents manipulate they are allowed to report
any single-peaked preferences, whereas in our model they
can manipulate in limited ways. That said, the PROJECT-
AND-FIT mechanism we study is inspired by results on
strategyproofness in the single-peaked (or more accurately,
single-plateau) domain (Moulin 1980; 1984).

The most closely related work to ours is that of Dekel,
Fischer, and Procaccia (2010). Among other results, they
show that PROJECT-AND-FIT is strategyproof with respect
to misreporting when agents care about all their points
equally. Theorem 1 extends this to the case where agents
have weights for points, can manipulate the weights, and can
also misreport or hide points. Their work also establish that
PROJECT-AND-FIT gives a 3-approximation to social cost,
which is tight for strategyproof mechanisms with respect to
misreporting. We extend their result to our weighted domain
and different strategyspaces, while also giving asymptoti-
cally tight bounds for fair social cost approximation. Finally,
they establish their results in a linear regression framework.
Our negative results carry over to this more general domain.
Our positive results (Theorems 1 and 2) also hold in the more
general setting of Dekel, Fischer, and Procaccia (2010), but
we omit the details for ease of exposition.

The hiding manipulation has been very well studied in the
kidney exchange problem (Roth, Sönmez, and Ünver 2004;
Ashlagi et al. 2015). This setting has patient-donor pairs,
where a patient needs a kidney, a donor is willing to donate
one, but they are not a match. Centralized exchanges ask
hospitals to report their patient-donor pairs, so that perhaps
the donors and patients of two distinct pairs are a match for
each other. But hospitals can hide and internally match some
of their pairs to increase the total number of its matched
patients. Our work brings the idea of hiding manipulation
from this literature to facility location, where it can be com-
bined with complex preference structures and compared to
the misreporting manipulation. We note that hiding parts of
preferences is also well-studied in fair division and assign-
ment problems (Fadaei and Bichler 2017).

2 Model
For a natural number k ∈ N, define [k] = {1, . . . , k}. Also,
define the extended real line R = R ∪ {−∞,∞}. Let N =
[n] be a set of agents. Each agent i holds mi points denoted
by xi,j ∈ R, for j ∈ [mi]; let Di denote the (multi)set of
points held by agent i. In addition, the agent has a weight
function wi : Di → R≥0 such that

∑
xi,j∈Di

wi(xi,j) =

1; here, wi(xi,j) indicates the relative importance of point
xi,j to agent i.1 In our model, Di and wi form the private
information held by agent i. Let us definem = maxi∈N mi.

Agent preferences. The outcome of the facility location
problem is a single location x ∈ R where a public facil-
ity will be placed. For this outcome, the cost to agent i is
ci(x) =

∑
xi,j∈Di

wi(xi,j) · |x− xi,j |. Note that these pref-
erences are single-peaked (Moulin 1980).

Mechanisms. Often, it may not be feasible or practical to
ask agents to submit full preference information, and mech-
anisms may ask instead for partial information. Formally,
a mechanism M specifies how each agent i should submit
a response ρi given her private information (Di, wi). An in-
stance I consists of the private information of the agents and

1We treat points xi,j as “labeled” points. Hence, it is possible to
have different weights for two points at the same location, i.e., for
j 6= j′, we can have wi(xi,j) 6= wi(xi,j′) even when xi,j = xi,j′ .



the responses submitted by them. Let M(I) ∈ R denote the
location chosen by M on instance I . We consider mecha-
nisms that elicit four different levels of information about
agent preferences.
• Full information mechanisms: These ask each agent i to

report all her points and their weights, i.e., ρi = (Di, wi).
• Ordinal mechanisms: These mechanisms still ask each

agent i to report all her points, but instead of report-
ing their weights, they ask her to report a ranking of the
points by their weight. Formally, ρi = (Di, σi), where
σi is a linear order over Di with the property that for all
a, b ∈ Di, wi(a) > wi(b) implies a �σi

b.2 When this
property holds, we say that the ranking is consistent with
the weights.

• Weightless mechanisms: These mechanisms ask each
agent i to report only her points and do not elicit any
weight information, i.e., ρi = Di.

• Anonymous mechanisms: These mechanisms, like
weightless mechanisms, also ask each agent i to report
only her points (i.e. ρi = Di). However, the mechanism
only observes ∪i∈Nρi. That is, the mechanism receives
anonymized points, and cannot determine which agent
submitted any given point.
Some of our results concern constant mechanisms which

simply choose a constant location regardless of input. That
is, for a constant mechanism M , M(I) = M(I ′) for all
pairs of instances I, I ′.

Objective functions. In this work, we consider two objec-
tive functions that we may wish to minimize.
• Social cost: This is simply the sum of costs to the agents,

i.e., for all x ∈ R,

sc(x) =
∑
i∈N

∑
xi,j∈Di

wi(xi,j) · |x− xi,j |

• Fair social cost: The fair social cost is the sum of costs to
the individual points, disregarding the weights placed by
the agents on the points. Formally, for all x ∈ R,

fsc(x) =
∑
i∈N

∑
xi,j∈Di

|x− xi,j |

Fair social cost can be seen as social cost of the individ-
ual points. In the example from the introduction, where each
school district reports the locations of its schools, fair social
cost will give equal importance to all schools, ignoring any
weights placed by the districts on the schools.

(Worst-case) Approximation ratio. In this work, we are
interested in the (worst-case) approximation that a mecha-
nism provides to the two objectives, assuming agents sub-
mit honest reports. Formally, the approximation ratio of
mechanism M for objective obj (where obj = sc for so-
cial cost, and obj = fsc for fair social cost) is defined as
supI

obj(M(I))
minx∗ obj(x∗)

, where supremum is taken over all in-
stances I . Achieving 1-approximation may not be possible
when we either do not have access to full information or
want to satisfy other desiderata such as strategyproofness.

2The agent can break ties among points with equal weight.

Strategic behavior. We assume that each agent i is strategic
and seeks to minimize her own cost ci. To that end, she may
submit a strategic response ρ′i instead of the honest response
ρi requested by the mechanism. A strong desideratum to pre-
vent manipulations is strategyproofness.
Definition 1. A mechanism M is called strategyproof if
for every (Di, wi)i∈N , every possible set of agent reports
~ρ′ = (ρ′1, . . . , ρ

′
n), and every agent i ∈ N , it holds that

ci(M(ρi, ~ρ′−i)) ≤ ci(M(ρ′i,
~ρ′−i)), where ρi is the honest

response of agent i given (Di, wi). In words, an agent should
not be able to gain by manipulating regardless of the reports
submitted by the other agents.

The definition of strategyproofness is clearly sensitive to
the space of manipulations ρ′i that agent i is allowed to sub-
mit. In this work, we consider two types of manipulations.
• Misreporting: This is the standard manipulation studied

in facility location, where the agent may misreport her
points. Specifically, agent imay submitD′i = (x′i,j)j∈[mi]

as part of her strategic response ρ′i. Note that |D′i| =
|Di| = mi, and the agent still submits weight wi(xi,j) for
each manipulated point x′i,j to a full information mecha-
nism (or the corresponding ranking to an ordinal mecha-
nism).

• Hiding: This is a new type of manipulation that we study,
where the agent may hide some of her points. Specifi-
cally, agent i may submit D′i as part of her strategic re-
sponse ρ′i, where D′i ⊆ Di. Note that the agent is only
allowed to hide a subset of points, and not allowed to
change points. Also, the agent now submits re-normalized
weight wi(xi,j)/

∑
a∈D′i

wi(a) for each point xi,j ∈ D′i
that she reveals to a full information mechanism (or the
corresponding ranking to an ordinal mechanism).3

Note that in both cases, we assume that the agent does not
manipulate the part of her response that conveys weight
information. This makes our strategyproofness definition
weaker, and thus all our negative results stronger. In our
positive result (Theorem 1), the mechanism constructed is
strategyproof even when agents are allowed to manipulate
the part of their response that conveys weight information.
Thus, all our results hold regardless of whether the agents
can manipulate their weight information.

3 Full Information Mechanisms
We begin by considering the full information case, where
the mechanism asks the agents to submit both their points
and their weights. This case was studied by Dekel, Fis-
cher, and Procaccia (2010) for the misreporting manipula-
tion, in the special case where agents have uniform weights
over their points, i.e., wi(xi,j) = 1/mi for each i ∈ N
and j ∈ [mi]. For this case, they introduce a mechanism
called PROJECT-AND-FIT and argue that it is strategyproof.
We generalize their mechanism to our setting (presented as

3When an agent only reveals k zero-weight points, we assume
she reports weight 1/k for each point. When an agent hides all her
points, she does not submit anything and the mechanism pretends
the agent was not present.



Algorithm 1), where agents may have non-uniform weights
over their points, and show that the generalized PROJECT-
AND-FIT is strategyproof not only with respect to misre-
porting but also with respect to hiding. This mechanism first
computes a location x∗i most preferred by agent i (break-
ing ties appropriately), and then returns the median of all
x∗i , denoted by median({x∗i : i ∈ N}).4 Note that x∗i
is simply a weighted median of agent i’s points, satisfying∑
j:xi,j≥x∗i

wi(xi,j) ≥ 1/2 and
∑
j:xi,j≤x∗i

wi(xi,j) ≥ 1/2.

Algorithm 1: Mechanism PROJECT-AND-FIT

Input: ρi = (Di, wi) for each i ∈ N
Output: x∗ ∈ R

1 Project: S∗i ← argminx ci(x),∀i ∈ N
2 Tie-break: x∗i ← argminx∈S∗i |x|
3 Fit: x∗ ← median({x∗i : i ∈ N})

Theorem 1. PROJECT-AND-FIT is strategyproof with re-
spect to both misreporting and hiding, even when agents can
manipulate their weight information.

The proof effectively makes the same argument that
Dekel, Fischer, and Procaccia (2010) make, and is given in
the appendix. Informally, the reason PROJECT-AND-FIT is
strategyproof is that by misreporting her points, misreport-
ing their weights and/or by hiding points, an agent effec-
tively only changes the x∗i computed by the mechanism for
her. Because median (the fit step) is strategyproof, the agent
would want the mechanism to compute her correct x∗i , and
thus cannot gain by any manipulation.

Social Cost Objective
Next, we analyze the worst-case approximation ratio of this
mechanism for social cost and fair social cost objectives. For
this, we need the following technical result; its proof is given
in the appendix.
Lemma 1. Let xM ∈ R and α ∈ (0, 1]. If ∑

i,j:
xi,j≤xM

wi(xi,j) ≥ α · n

∧ ∑
i,j:

xi,j≥xM

wi(xi,j) ≥ α · n

,
then sc(xM )/ sc(x∗) ≤ (1− α)/α. Similarly, if[
|{(i, j) : xi,j ≤ xM}| ≥ α · n

]
∧
[
|{(i, j) : xi,j ≥ xM}| ≥ α · n

]
,

then fsc(xM )/ fsc(x∗) ≤ (m− α)/α.

Dekel, Fischer, and Procaccia (2010) show that for
the uniform weight case, PROJECT-AND-FIT gives a 3-
approximation to social cost. We show that this remains
true in our more general setting. Our proof, given in the ap-
pendix, draws ideas from their proof and uses Lemma 1.

4For n points, where n is even, median should either always
return the (n/2)th smallest point or always return the (n/2 + 1)th

smallest point.

Theorem 2. PROJECT-AND-FIT gives a 3-approximation to
social cost in the worst case.

Dekel, Fischer, and Procaccia (2010) also show that 3
is the best possible approximation ratio to social cost by
any strategyproof mechanism with respect to misreporting.
Hence, their result continues to hold in our case without the
uniform weight assumption.

What about mechanisms that are strategyproof with re-
spect to hiding? At first glance, it may seem that hiding is
a significantly weaker manipulation than misreporting. For
instance, the strategy space is infinite for misreporting, but
finite for hiding. Thus, one might expect it to be easier to
achieve strategyproofness with respect to hiding than it is
with respect to misreporting. Nonetheless, we show that 3 is
also the best approximation ratio to social cost by any strat-
egyproof mechanism with respect to hiding. Note that this
negative result holds even if agents cannot manipulate their
weight information, and continues to hold if they can.

Theorem 3. For any ε > 0, there is no full information
mechanism that is strategyproof with respect to hiding and
provides a 3 − ε approximation to social cost in the worst
case, even when there are only two agents.

Proof. This proof leverages some of the ideas from the proof
of Theorem 5.3 by Dekel, Fischer, and Procaccia (2010), but
also introduces new ideas to make the proof work for hiding
rather than misreporting. Fix ε > 0. Suppose for contradic-
tion that there exists a full information mechanism M that
is strategyproof with respect to hiding and achieves 3 − ε
approximation to social cost.

First, we construct another full information mechanism
M̂ which is also strategyproof with respect to hiding and has
no greater approximation ratio to social cost than M does.
Later, we show that M̂ cannot provide 3− ε approximation.

Construction of M̂ : Mechanism M̂ , on a given instance I ,
first constructs an instance Î by removing all zero-weight
points from I , and then returns M(Î). Let us argue that
this is strategyproof. Suppose for contradiction that there
exists a pair of instances I and I ′ which only differ be-
cause in I ′, agent i hides some of her points from I , and
ci(M̂(I ′)) < ci(M̂(I)). However, since M̂(I) = M(Î)

and M̂(I ′) = M(Î ′), we also have ci(M(Î ′)) < ci(M(Î)).
Given that Î ′ can be obtained from Î with agent i hiding
points, this contradicts strategyproofness of M . To see that
the worst-case approximation ratio of M̂ is no worse than
that of M , note that the approximation ratio of M̂ on in-
stance I is precisely the approximation ratio of M on in-
stance Î since zero-weight points do not change social cost.

The benefit of constructing M̂ is that we know its out-
put does not change when zero-weight points are added or
removed from an instance, and this helps us derive a lower
bound on its worst-case approximation ratio.

Claim 1. Let q ∈ N ∪ {0}. Then, there exists an instance
with two agents, Iq = (Di, wi)i∈[2], satisfying Di = {xi}



and wi(xi) = 1 for each i ∈ [2], and x1 − x2 = 2q , such
that either M̂(Iq) ≥ x1 − 1/2 or M̂(Iq) ≤ x2 + 1/2.

The proof of the claim is given in the appendix. Now, we
derive a contradiction to the assumption that M̂ provides
3− ε approximation to social cost.

Consider an instance Iq with D1 = {x1} and D2 = {x2}
constructed in Lemma 1. Let us denote x

M̂
= M̂(Iq). With-

out loss of generality, assume that x
M̂
≥ x1 − 1/2 (the ar-

gument for the other case is symmetric). First, we argue that
x
M̂
≤ x1. Suppose for contradiction that x

M̂
> x1. Con-

sider another instance I ′ which is obtained from I by adding
a point at x1 with zero weight to D2 (i.e. D′1 = D1 = {x1}
and D′2 = {x2, x1} where w′2(x1) = 0). Because M̂ is
unaffected by zero-weight points, it still returns x

M̂
. Next,

construct an instance I ′′ where D′′1 = D1 = {x1} and
D′′2 = {x1}. For M̂ to have any finite approximation of
social cost, it must return x1 on I ′′, which violates strate-
gyproofness for agent 2 because I ′′ can be obtained from I ′

when agent 2 hides point x2.
We have thus established x

M̂
∈ [x1−1/2, x1]. Now, con-

sider a new instance Ĩ in which D̃2 = D2, D̃1 = {x1, x2},
w̃1(x1) = 1/2 + ε/8, and w̃1(x2) = 1/2 − ε/8. Let
x̃
M̂

= M̂(Ĩ) denote the output of the mechanism on this
instance. We consider three cases, and in each case, we ei-
ther derive a contradiction to strategyproofness of M̂ or to
its 3− ε worst-case approximation ratio.

1. Suppose x̃
M̂
< x2. Then, the cost to agent 1 without hid-

ing x2 is more than (1/2 + ε/8) · (x1 − x2). In contrast,
when the agent hides x2, the outcome of the mechanism
is x

M̂
∈ [x1 − 1/2, x1], and her cost is at most(

1

2
+
ε

8

)
· (1/2) +

(
1

2
− ε

8

)
· (x1 − 1/2− x2)

=

(
1

2
− ε

8

)
(x1 − x2) +

ε

8
<

(
1

2
+
ε

8

)
(x1 − x2),

where the last inequality holds because x1−x2 = 2q ≥ 1.
Hence, the agent benefits by hiding x2, which is a contra-
dition to strategyproofness of M̂ .

2. Suppose x̃
M̂

> x1. Then, under Ĩ , we have sc(x̃
M̂

) >
(1/2 − ε/8 + 1)(x1 − x2), whereas sc(x2) ≤ (1/2 +

ε/8)(x1 − x2). Hence, the approximation ratio of M̂ is
at least (3/2 − ε/8)/(1/2 + ε/8) > 3 − ε/8, which is a
contradiction.

3. Finally, suppose x̃
M̂
∈ [x2, x1]. Then, noting that agent 1

should not be able to gain by hiding x2 in Ĩ , we get(
1

2
+
ε

8

)
(x1 − x̃M̂ ) +

(
1

2
− ε

8

)
(x̃
M̂
− x2)

≤
(

1

2
+
ε

8

)
(x1 − xM̂ ) +

(
1

2
− ε

8

)
(x
M̂
− x2),

which implies x̃
M̂
≥ x

M̂
≥ x1 − 1/2. Hence, sc(x̃

M̂
) ≥

(1/2 − ε/8 + 1)(2q − 1/2), whereas sc(x2) = (1/2 +

ε/8) · 2q . It is easy to check that for a sufficiently large q,
3/2−ε/8
1/2+ε/8 ·

2q−1/2
2q > 3− ε, which is a contradiction.

This completes the entire proof.

Our results so far establish that PROJECT-AND-FIT gives
the lowest approximation ratio to social cost (which is 3)
among all mechanisms that are strategyproof with respect to
misreporting or hiding.

Fair Social Cost Objective
Next, we show that PROJECT-AND-FIT also gives asymp-
totically lowest approximation to fair social cost among all
mechanisms that are strategyproof with respect to misre-
porting or hiding; however, this approximation ratio is now
Θ(m). Recall that m is the maximum number of points held
by any agent.

We begin by establishing an upper bound on the approxi-
mation ratio of PROJECT-AND-FIT for fair social cost.

Theorem 4. PROJECT-AND-FIT gives (2m − 1)-
approximation to fair social cost in the worst case.

Proof. Fix an instance I = (Di, wi)i∈N . Let x∗ denote an
optimal solution for fair social cost, and xM denote the out-
put of PROJECT-AND-FIT. Let x∗i denote the location com-
puted for agent i in step 2 of PROJECT-AND-FIT.

As the mechanism returns median of all x∗i , it holds that
|{i : x∗i ≤ xM}| ≥ n/2. Further, as we noted earlier, x∗i is a
weighted median of points held by agent i. In particular, our
tie-breaking in step 2 of the algorithm ensures that it must
be one of the points held by agent i.

Hence, we have that |{(i, j) : xi,j ≤ xM}| ≥ n/2, and
by a symmetric argument, |{(i, j) : xi,j ≥ xM}| ≥ n/2.
The result now follows by applying Lemma 1.

Next, we show that no strategyproof mechanism with re-
spect to misreporting can achieve an asymptotically better
approximation ratio to fair social cost. The proof is in the
appendix.

Theorem 5. The worst-case approximation ratio to fair so-
cial cost of a full information mechanism that is strate-
gyproof with respect to misreporting is at least m− 1.

Finally, we show that no strategyproof mechanism with
respect to hiding can achieve an asymptotically better ap-
proximation. The proof is provided in the appendix.

Theorem 6. The worst-case approximation ratio to fair so-
cial cost of a full information mechanism that is strate-
gyproof with respect to hiding is at least m− 1.

Hiding versus Misreporting
So far, our results point out striking similarities between
misreporting and hiding manipulations: (a) PROJECT-AND-
FIT is strategyproof with respect to both manipulations; (b)
we prove a lower bound of 3 (resp.m−1) for the worst-case
approximation to social cost (resp. fair social cost) for strat-
egyproof mechanisms with respect to each type of manipu-
lation, and this bound is tight (resp. asymptotically tight).



Could there be a deeper connection between the family
of strategyproof mechanisms with respect to hiding and the
family of strategyproof mechanisms with respect to misre-
porting? For the full information case, we show that the two
families are at least incomparable, i.e., each family contains
a mechanism that is not in the other family.

One reason is that the two manipulations place very differ-
ent restrictions on what the agents absolutely cannot do. Un-
der misreporting, agents cannot change the number of points
they hold, and under hiding, agents cannot expand the sup-
port of the set of points they hold. We utilize this to create
mechanisms that are strategyproof with respect to one type
of manipulation but not with respect to the other.

For example, consider mechanism Mmisreport which re-
turns 0 when the total number of points reported by the
agents is exactly n, and 1 otherwise. This is clearly strate-
gyproof with respect to misreporting because agents cannot
change the number of reported points, and thus cannot influ-
ence which of the two constant mechanisms (“return 0” and
“return 1”) is used. Since each constant mechanism is strat-
egyproof, so is the overall mechanism. However, it is also
easy to see that this is not strategyproof for hiding. Consider
an instance where each agent except agent 1 has a single
point. Agent 1 has two points: one at 0 with weight 1, and
one at 1 with weight 0. If the agents report honestly, the
mechanism returns 1. But agent 1 can benefit by hiding the
point at 1, resulting in the mechanism returning 0.

Interestingly, we could not find an equally trivial mecha-
nism that is strategyproof with respect to hiding but not with
respect to misreporting. In the appendix, we present a mech-
anism that leverages PROJECT-AND-FIT as a subroutine to
achieve this. This yields the following result.

Theorem 7. There exists a full information mechanism that
is strategyproof with respect to hiding but not with respect to
misreporting, and also one that is strategyproof with respect
to misreporting but not with respect to hiding.

4 Ordinal Mechanisms
We now consider mechanisms which do not elicit full in-
formation about agents’ weights. In particular, we start by
studying ordinal mechanisms, which ask agents to report
only a ranking of the points by their weight (rather than the
exact weights), in addition to reporting the points. That is,
the response of each agent i is ρi = (Di, σi), where σi is a
ranking of points in Di by their weight.

We remark that eliciting less information can only con-
strain the family of strategyproof mechanisms, when we
view mechanisms as functions mapping instances to their
corresponding outputs. For example, if there is an ordinal
strategyproof mechanism Mord, we can construct an equiva-
lent5 full information strategyproof mechanism Mfull which
elicits full information, converts the reported weights into a
ranking of points by their weight, and feeds it as input to
Mord. It is easy to see that agents would have no incentive to
manipulate under Mfull as well.

5Two mechanisms are called equivalent if they return the same
output on each instance.

Strategyproof Ordinal Mechanisms
We are interested in studying how limited the family of ordi-
nal strategyproof mechanisms is compared to the family of
full information strategyproof mechanisms. First, we con-
sider strategyproofness with respect to hiding. Our next the-
orem shows that this family is significantly limited, and con-
tains only constant mechanisms. Note that the result holds
even when agents cannot manipulate the ranking of points,
and continues to hold if they can.

Theorem 8. The only ordinal mechanisms that are strate-
gyproof with respect to hiding are constant mechanisms.

Proof. For contradiction, assume that there is a non-constant
ordinal mechanism M that is strategyproof with respect to
hiding. Then, there are two instances I and I ′ such that
M has different outputs on these instances, i.e., M(I) 6=
M(I ′). Let x = M(I) and x′ = M(I ′). Without loss of
generality, assume that both instances have n agents.6 Let
I = (Di, wi)i∈N and I ′ = (D′i, w

′
i)i∈N . Let σi (resp. σ′i)

denote the ranking of points in Di (resp. D′i) induced by the
weight function wi (resp. w′i).

Now, consider an instance I
1

that is similar to I ′ except
that for agent 1,D

1

1 = D1∪D′1∪{x, x, x′} andw1
1(x′) = 1.

Let σ1
1 = x′ � x � x � σ1 � σ′1 be the ranking that agent 1

chooses to submit; note that this is consistent with the weight
function w1

1. Then, the output of M on I
1

must be x′, oth-
erwise agent 1 would have an incentive to hide some of her
points and return to instance I ′. Next, for k ∈ {2, . . . , n}
we similarly create I

k
from I

k−1
by changing the set of

points held by agent k to D
k

k = Dk ∪D′k ∪ {x, x, x′}, set-
ting wkk(x′) = 1, and having the agent submit the ranking
σkk = x′ � x � x � σk � σ′k. By the same argument, the
output of M must be M(I

k
) = x′.

Specifically, note that M(I
n
) = x′. In this instance, each

agent i holds the setD
n

i = Di∪D′i∪{x, x, x′} and submits
the ranking x′ � x � x � σi � σ′i.

Next, construct an instance I∗ that is similar to I
n

ex-
cept the weight function of each agent i is changed so that
w∗i (x′) = 1/3 + ε and w∗i (x) = 1/3 − ε/2 for each point
x, where ε ∈ (0, 1/6); the remaining points still have zero
weight. Suppose each agent i still submits the same ranking
of points σ∗i = x′ � x � x � σi � σ′i, which is still consis-
tent with the weights. Since I∗ is indistinguishable from I

n

to the ordinal mechanism M , it must return x′ on I∗.
However, note that in I∗, agent 1 strictly prefers outcome

x to any other outcome. Hence, she should not be able to
obtain outcome x by hiding some of her points. Specifically,
construct instance Î1 which is similar to I∗ except the set of
points held by agent 1 is D̂1

1 = D1, she has equal weight
for all these points, and she submits ranking σi over these
points. Then, the output of M on Î1 should not be x. Now,
for k ∈ {2, . . . , n}, we similarly construct instance Îk from

6If they have different number of agents, we can add dummy
agents with no points to the instance with fewer agents.



Îk−1 by changing the data of agent k, and obtain that that
the output of the mechanism cannot be x. However, the final
instance În is precisely instance I , on which the output of
the mechanism is x, which is the desired contradiction.

As we argued before, eliciting less information only re-
stricts the family of strategyproof mechanisms. Hence, The-
orem 8 immediately yields the following negative result for
weightless and anonymous mechanisms.

Corollary 1. The only weightless or anonymous mecha-
nisms that are strategyproof with respect to hiding are con-
stant mechanisms.

Thus, for hiding, there exist good full information strat-
egyproof mechanisms (such as PROJECT-AND-FIT), but as
soon as we drop to the ordinal case, surprisingly, we have
nothing but constant mechanisms.

For misreporting, clearly constant mechanisms also strat-
egyproof. But it is also easy to construct non-constant mech-
anisms that are strategyproof. In fact, mechanism Mmisreport
that we constructed in Section 3 is anonymous (and there-
fore, also weightless and ordinal) and yet strategyproof with
respect to misreporting.

This implies that in the ordinal, weightless, and anony-
mous cases, the family of mechanisms that are strategyproof
with respect to hiding is a strict subset of the family of mech-
anisms that are strategyproof with respect to misreporting.
That is, in these three cases, hiding is, in a sense, a stronger
manipulation than misreporting. In our opinion, this is not
only in stark contrast to the full information case (where the
two families are incomparable, as shown in Theorem 7), but
also quite counter-intuitive.

Approximation Ratio with SP

In terms of approximating our two objective functions (so-
cial cost and fair social cost), Theorem 8 immediately im-
plies that no ordinal mechanism that is strategyproof with
respect to hiding can provide a finite approximation to ei-
ther objective. To see this, consider a constant mechanism
which always outputs x. When all agents have a single point
at x′ with x′ 6= x, the mechanism has infinite approximation
ratio for both objectives.

Corollary 2. Any ordinal mechanism that is strategyproof
with respect to hiding has infinite worst-case approximation
ratio to social cost and fair social cost.

For ordinal mechanisms that are strategyproof with re-
spect to misreporting, we do not have a characterization.
Nonetheless, we can show that they also cannot provide a
finite approximation. The proof follows roughly the same
outline as in the proof of Theorem 8, and is given in the ap-
pendix. The result holds even if agents cannot manipulate
their ranking of points, and continues to hold if they can.

Theorem 9. Any ordinal mechanism that is strategyproof
with respect to misreporting has infinite worst-case approx-
imation ratio to social cost and fair social cost.

Approximation Ratio without SP
We saw that ordinal mechanisms that are strategyproof with
respect to hiding or misreporting cannot give finite approx-
imation to social cost or fair social cost. There are two po-
tential reasons why this happens: it could be due to the en-
forcement of strategyproofness, or it could be simply due to
the fact that an ordinal mechanism does not have access to
full information about the weights.

For fair social cost, the reason is clearly the former. This is
because optimizing fair social cost does not require knowl-
edge of weights. Hence, without strategyproofness, one can
simply achieve an optimal 1-approximation to this objective
via an ordinal mechanism.

The situation is not so clear for social cost. Here, we show
that without strategyproofness, the best worst-case approx-
imation ratio to social cost that an ordinal mechanism can
provide is Θ(m). This implies that while we face a signifi-
cant “price of incomplete information”, the unbounded ap-
proximation arises as the “price of strategyproofness”.

We begin by presenting the lower bound; its proof is in
the appendix.
Theorem 10. Any ordinal mechanism gives Ω(m) approxi-
mation to social cost in the worst case.

For the upper bound, we construct an ordinal mechanism
— MEDIAN-OF-TOPS, given as Algorithm 2 in the appendix
— which returns the median of top-ranked points of the
agents, and show that it achieves O(m) approximation to
social cost. The proof of the next result is in the appendix.
Theorem 11. MEDIAN-OF-TOPS achieves O(m) approxi-
mation to social cost in the worst case.

5 Discussion
We considered a facility location setting in which agents
hold multiple locations with different weights. We intro-
duced and studied a new type of manipulation, whereby
agents can hide some of their points, and compared its power
to that of the standard misreporting manipulation, whereby
agents change their reported locations.

Our work leaves a number of directions open for future
work. It would be interesting to extend our results to more
general preference structures. For instance, in our formula-
tion of agent costs, we use `1 distances. Although some of
our results extend to more general distances, many of our
results rely on the `1 distance. What happens if we measure
costs using squared distances instead?

More broadly, the hiding manipulation is quite realis-
tic in machine learning settings such as linear regression
or classification (Perote and Perote-Pena 2004; Meir, Pro-
caccia, and Rosenschein 2012; Chen et al. 2018), where
strategic agents provide training datasets and may decide
to omit parts of datasets for their own benefit. Studying
ways to prevent such manipulations can lead to the design of
learning algorithms which are robust not only to stochastic
noise (Littlestone 1991; Goldman and Sloan 1995) or ad-
versarial noise (Kearns and Li 1993; Bshouty, Eiron, and
Kushilevitz 2002; Chen, Caramanis, and Mannor 2013), but
also to “strategic noise”.
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Appendix
A Proof of Theorem 1

Proof. We basically make the same argument as Dekel,
Fischer, and Procaccia (2010). Their first step is to notice
that the cost function of an agent induces so-called single-
plateau preferences (Moulin 1984). This is a simple gen-
eralization of single-peaked preferences where the set of
most preferred points to an agent may be an interval in-
stead of a single point. Then, they notice that due to the tie-
breaking step, PROJECT-AND-FIT effectively converts the
single-plateau preferences into single-peaked preferences.
The final step of the mechanism — choosing the median
of the peaks — is well known to be strategyproof (Moulin
1984).

In our case, it is easy to check that the preferences remain
single-plateau for the more general cost function where the
agent has different weights for different points, and our tie-
breaking step is the same as the tie-breaking step of Dekel,
Fischer, and Procaccia (2010).

B Proof of Lemma 1
Proof. We first prove the part regarding social cost. Let x∗ ∈
R be the optimal solution for social cost. Denote d = |xM −
x∗|, and assume without loss of generality that xM < x∗.
We are given that ∑

i,j:
xi,j≤xM

wi(xi,j) ≥ α · n

∧ ∑
i,j:

xi,j≥xM

wi(xi,j) ≥ α · n


Then, we have that

sc(xM ) =
∑
i,j

wi(xi,j)|xi,j − xM |

=
∑

xi,j≤xM

wi(xi,j)(xM − xi,j)

+
∑

xM<xi,j≤x∗
wi(xi,j)(xi,j − xM )

+
∑

xi,j>x∗

wi(xi,j)(xi,j − xM )

≤
∑

xi,j≤xM

wi(xi,j)(xM − xi,j) +
∑

xM<xi,j≤x∗
wi(xi,j) · d

+
∑

xi,j>x∗

wi(xi,j)(d+ xi,j − x∗)

=
∑

xi,j≤xM

wi(xi,j)(xM − xi,j) +
∑

xi,j>x∗

wi(xi,j)(xi,j − x∗)

+
∑

xM<xi,j

wi(xi,j) · d

≤
∑

xi,j≤xM

wi(xi,j)(xM − xi,j)

+
∑

xi,j>x∗

wi(xi,j)(xi,j − x∗)

+ (n− α · n) · d,

where the last inequality follows from the given assumption.
Similarly,

sc(x∗) ≥
∑

xi,j≤xM

wi(xi,j)(d+ xM − xi,j)

+
∑

xi,j>x∗

wi(xi,j)(xi,j − x∗)

≥
∑

xi,j≤xM

wi(xi,j)(xM − xi,j)

+
∑

xi,j>x∗

wi(xi,j)(xi,j − x∗) + n · α · d.

From the upper bound on sc(xM ) and the lower bound for
sc(x∗), it follows that sc(xM )/ sc(x∗) ≤ n(1−α)d

nαd = 1−α
α .

Next, for fair social cost, we are given the following as-
sumption.

(|{(i, j) : xi,j ≤ xM}| ≥ α · n)∧
(|{(i, j) : xi,j ≥ xM}| ≥ α · n)

In this case, following the same proof as in the case of
social cost (and with slight abuse of notation, just using
wi(xi,j) = 1,∀i, j), we have that

fsc(xM ) ≤
∑

xi,j≤xM

(xM − xi,j) +
∑

xi,j>x∗

(xi,j − x∗)

+ (nm− α · n) · d,
whereas

fsc(x∗) ≥
∑

xi,j≤xM

(xM − xi,j)

+
∑

xi,j>x∗

(xi,j − x∗) + α · n.

By the same reasoning, we conclude that
fsc(xM )/ fsc(x∗) ≤ m−α

α .

C Proof of Theorem 2
Proof. Fix an instance I = (Di, wi)i∈N . Let x∗ denote an
optimal solution for the social cost objective, and xM denote
the output of PROJECT-AND-FIT. Let x∗i denote the location
computed for agent i in step 2 of PROJECT-AND-FIT.

As the mechanism returns median of all x∗i , it holds that:

|{i : x∗i ≤ xM}| ≥
n

2
.

Further, as x∗i is the weighted median of points held by agent
i, we have that ∑

(i,j):xi,j≤x∗i

wi(xi,j) ≥
1

2
.

Combining the above inequalities, we obtain∑
(i,j):xi,j≤xM

wi(xi,j) ≥
n

4
,

and by symmetric arguments∑
(i,j):xi,j≥xM

wi(xi,j) ≥
n

4
.

The result now follows by applying Lemma 1.



D Proof of Claim 1
Proof. We prove this by induction on q. For the base case of
q = 0, we can simply set x1 = 1 and x2 = 0. The output of
the mechanism trivially satisfies the desired property.

Suppose the result holds for some q. Let Iq = (Di =
{xi}, wi)i∈[2] be the corresponding instance. Let us denote
x
M̂

= M̂(Iq). By induction hypothesis, we know that
x
M̂
≥ x1 − 1/2 or x

M̂
≤ x2 + 1/2. In each case, we con-

struct an instance Iq+1.

Case I: x
M̂
≥ x1 − 1/2. Construct an instance I ′ such that

D′1 = D1 = {x1} and D′2 = {x2, 2x2 − x1}. The weight
functions are such that w′1 = w1, w′2(x2) = w2(x2) = 1,
and w′2(2x2 − x1) = 0. Since M̂ is unaffected by zero-
weight points, it still returns x

M̂
on this instance.

Next, construct an instance I ′′ such that D′′1 = D1,
w′′1 = w1, D′′2 = {2x2 − x1}, and w′′2 (2x2 − x1) = 1. First,
note that x1 − (2x2 − x1) = 2(x1 − x2) = 2q+1. Hence,
instance I ′′ has the desired structure of Iq+1. Further, notice
that agent 2 can obtain I ′′ by hiding point x2 in I ′.7 Suppose
the output of M̂ on I ′′ is x′′

M̂
. Then, by strategyproofness of

M̂ , we must have

c′2(x′′
M̂

) = |x2 − x′′M̂ | ≥ c
′
2(x

M̂
) = |x2 − xM̂ | ≥ 2q − 1/2.

Thus, x′′
M̂
≥ x2 + (2q − 1/2) = x1 − 1/2, or x′′

M̂
≤ x2 −

(2q − 1/2) = 2x2 − x1 + 1/2, as desired.

Case 2: x
M̂
≤ x2 + 1/2. In this case, let us construct

an instance I ′ such that D′2 = D2, w′2 = w2, D′1 =
{x1, 2x1 − x2}, w′1(x1) = 1, and w′1(2x1 − x2) = 0.
Once again, M̂ still outputs x

M̂
on this instance. Then, we

construct an instance I ′′ such that D′′2 = D2, w′′2 = w2,
D′′1 = {2x1 − x2}, and w′′1 (2x1 − x2) = 1. If x′′

M̂
is the

output of M̂ on this instance, then a similar argument as in
case 1 shows that, due to strategyproofness of M̂ , I ′′ is the
instance Iq+1 where the desired property holds.

E Proof of Theorem 5
Proof. Let M be a full information mechanism that is strat-
egyproof with respect to misreporting. Consider an instance
I0 with n agents in which each agent i holds m points at 0,
but has weight 1 for one of these points and zero for the re-
mainingm−1 points. To have a finite approximation ratio to
fair social cost, M must output M(I0) = 0 on this instance.

Next, consider the instance I1 obtained from I0 by chang-
ing the location of the m − 1 zero-weight points of agent
1 from 0 to 1. By strategyproofness of M , it must still re-
turn M(I1) = 0, otherwise under I1, agent 1 would have
an incentive to switch to I0 as 0 is still her most preferred
outcome in I1. Similarly, for each k ∈ [n], we construct Ik
from Ik−1 by changing the locations of m − 1 zero-weight
points of agent k from 0 to 1. A similar argument shows that
M(Ik) = 0 for each k ∈ [n].

7Recall that when an agent reveals only one (previously) zero-
weight point, she reports weight 1 for it.

In particular, note thatM(In) = 0. Here, fsc(0) = n(m−
1), whereas fsc(1) = n. Hence, the worst-case approxima-
tion ratio of M to fair social cost is at least m− 1.

F Proof of Theorem 6
This proof is very similar to the proof of Theorem 5; the only
difference is that instead of starting with each agent having
m points located at 0 and changing m− 1 points from from
0 to 1 in each step, we start with each agent having a single
point located at 0 and add m− 1 points located at 1 in each
step.

Proof. LetM be a full information mechanism that is strate-
gyproof with respect to hiding. Consider an instance I0 with
n agents in which each agent i holds a single point at 0 (i.e.
D0
i = {0}). To have a finite approximation ratio, M must

output M(I0) = 0 on this instance.
Next, consider the instance I1 obtained from I0 when

agent 1 has m − 1 additional points located at 1, all with
weight zero. Recall thatm is the maximum number of points
that any agent can have. By strategyproofness of M , it must
return M(I1) = 0, otherwise agent 1 would have an in-
centive to hide her zero-weight points, as 0 is still her most
preferred outcome in I1. Similarly, for each k ∈ [n], we
construct Ik from Ik−1 by adding m− 1 zero-weight points
located at 1 in the set of agent k. A similar argument shows
that M(Ik) = 0 for each k ∈ [n].

In particular, note that M(In) = 0. In this instance,
fsc(0) = n(m − 1), whereas fsc(1) = n. Hence, the worst-
case approximation ratio of M to fair social cost must be at
least m− 1.

G Mechanism Mhide
Consider the following full information mechanism Mhide.
It ignores every agent who does not report a point that is
at most α (where α > 0 is a fixed constant), and runs
PROJECT-AND-FIT among the remaining agents.

To see that it is strategyproof for hiding, consider agent
i. If all of her points are more than α, she cannot change
the outcome of the mechanism anyway. If at least one of
her points is at most α, she has only two choices: (a) if she
reveals a subset of points which contains a point at most
α, she will not gain due to strategyproofness of PROJECT-
AND-FIT for hiding. (b) If she reveals a subset of points
which does not contain a point at most α, then she will be ig-
nored, which is equivalent to the hiding manipulation where
she hides all her points. Again, due to strategyproofness of
PROJECT-AND-FIT for hiding, she will not gain.

To see why the mechanism is not strategyproof for misre-
porting, consider an instance with three agents, where agent
1 has a single point at α/2, agent 2 has a single point at α,
and agent 3 has a single point at 2α. Under honest reporting,
mechanism M2 will ignore agent 3, and return the median
of α/2 and α. Without loss of generality, suppose it chooses
the smaller median α/2.8 Then, it is easy to see that agent 3

8If it chooses the larger median, we can consider a similar ex-
ample with four agents where agents 1 and 2 have a point at α/2,
agent 3 has a point at α, and agent 4 has a point at 2α.



has an incentive to report α instead of 2α.

H Proof of Theorem 9
Proof. LetM be an ordinal mechanism that is strategyproof
with respect to misreporting. Consider an instance I0 in
which, each agent i ∈ N has a set of three points Di =
{xi,1, xi,2, xi,3} that are all located at 1, and weight 1 for
xi,1 and zero for the rest. Suppose each agent i submits the
ranking xi,1 � xi,2 � xi,3. Note that because all points are
located at 1, the mechanism must return 1 to have any finite
approximation to social cost or fair social cost.

Next, for k ∈ [n], consider instance Ik which is similar
to Ik−1 except that for agent k, the locations of points xk,2
and xk,3 are changed to 0. Assuming that the mechanism
outputs 1 on Ik−1, it must also output 1 on Ik, otherwise
under Ik, agent k would have an incentive to misreport to
instance Ik−1. Hence, by induction, the mechanism outputs
1 on Ik for every k ∈ [n].

Specifically, the mechanism outputs 1 on instance In.
Now, construct an instance Î0 which is similar to In except
that for each agent i, ŵ0

i (xi,1) = 1/3 + ε, ŵ0
i (xi,2) = 1/3,

and ŵ0
i (xi,3) = 1/3−ε, where ε ∈ (0, 1/6). Note that this is

still consistent with the ranking xi,1 � xi,2 � xi,3. Hence,
the mechanism cannot distinguish Î0 from In, and must re-
turn 1. However, for each agent i, the optimal outcome is
now 0. Since the agents are not achieving the optimal out-
come 0 in Î0, they should not be able to achieve outcome 0
through misreporting.

Once again, for k ∈ [n], construct instance Îk which is
similar to Îk−1 except that for agent k, the location of point
xk,1 is changed to 0. Assuming that the mechanism does
not output 0 on Îk−1, the mechanism also cannot output 0
on Ik. Hence, by induction, the output of the mechanism is
not 0 on instance În. However, in this instance, all points of
all agents are located at 0. Hence, by not outputting 0, the
mechanism faces infinite approximation to both social cost
and fair social cost.

I Proof of Theorem 10
Proof. LetM be an ordinal mechanism. Suppose each agent
i ∈ N has m points given by xi,1 = 0 and xi,j = 1 for
j ∈ {2, . . . ,m}, and weights consistent with a ranking σi
in which xi,1 is the highest ranked. Suppose that M outputs
location x given this input.

Let us now consider two distinct instances which will
result in this input. Specifically, we construct two sets of
weights (wi)i∈N and (w′i)i∈N such that for each i ∈ N both
wi and w′i are consistent with ranking σi. Note that being an
ordinal mechanism, M outputs x on both instances.

In the first case, we let wi(xi,1) = 1 for each i ∈ N .
Then, it is easy to see that for M to achieve any finite ap-
proximation to social cost, we must have x = 0.

In the second case, we let w′i(xi,j) = 1/m for each j ∈
[m] and i ∈ N . Recall that the mechanism still outputs x =
0. We have sc(0) = n · (m − 1)/m, whereas sc(1) = n ·
1/m. Hence, the worst-case approximation ratio to social
cost achieved by M is at least m− 1.

J Proof of Theorem 11

Algorithm 2: Mechanism MEDIAN-OF-TOPS

Input: (Di, σi) for each i ∈ N
Output: x∗ ∈ R

1 Tops: x∗i ← σi(1),∀i ∈ N
// σi(1) is the top-ranked point in

σi
2 Median: x∗ ← median({x∗i : i ∈ N})

Proof. Consider an instance I . Let x∗ ∈ argminx sc(x)
be an optimal point. Let x∗i denote the top-ranked point of
agent i, and x∗ denote the output of MEDIAN-OF-TOPS. As
MEDIAN-OF-TOPS returns the median of all x∗i , we have
that |{i ∈ N : x∗i ≤ x∗}| ≥ n/2. Further, since x∗i is the
top-ranked point of agent i, we have wi(x∗i ) ≥ 1/m. Hence,
we have ∑

i,j:xi,j≤x∗
wi(xi,j) ≥

∑
i:x∗i≤x∗

wi(x
∗
i ) ≥

n

2m
.

Symmetrically, we also have
∑
i,j:xi,j≥x∗ wi(xi,j) ≥

n/(2m). Applying Lemma 1 yields that MEDIAN-OF-TOPS
achieves 2m− 1 approximation to social cost.


