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Abstract

Envy-freeness has become the cornerstone of fair division research. In settings where each
individual is allocated a disjoint share of collective resources, it is a compelling fairness axiom
which demands that no individual strictly prefer the allocation of another individual to their
own. Unfortunately, in many real-life collective decision-making problems, the goal is to choose
a (common) public outcome that is equally applicable to all individuals, and the notion of envy
becomes vacuous. Consequently, this literature has avoided studying fairness criteria that focus
on individuals feeling a sense of jealousy or resentment towards other individuals (rather than
towards the system), missing out on a key aspect of fairness.

In this work, we propose a novel fairness criterion, individual harm ratio, which is inspired by
envy-freeness but applies to a broad range of collective decision-making settings. Theoretically,
we identify minimal conditions under which this criterion and its groupwise extensions can
be guaranteed, and study the computational complexity of related problems. Empirically, we
conduct experiments with real data to show that our fairness criterion is powerful enough to
differentiate between prominent decision-making algorithms for a range of tasks from voting and
fair division to participatory budgeting and peer review.

1 Introduction

How to make collective decisions while treating (groups of) individuals in a fair manner is a ques-
tion that human societies have struggled to understand for centuries. Today, with the advent of
algorithms making increasingly critical decisions, the field of algorithmic fairness has considered
a plethora of novel fairness criteria [35], albeit they often have limited applicability due to be-
ing handcrafted for specialized decision-making tasks. To surpass this limitation, researchers have
looked towards computational social choice, a field at the intersection of economics and computer
science [22, 27], where fairness criteria applicable to a broad range of domains have been proposed.

Envy-freeness [44, 25, 23] is arguably the most well-studied fairness criterion in computational
social choice, defined for a general resource allocation setting in which a set of goods M is to be
divided between a set of agents N = {1, . . . , n}. The goal is to find an allocation A = (A1, . . . , An),
which is a partition of M , with Ai denoting the allocation to agent i. Each agent i has a utility
function ui : 2M → R>0 and her utility under allocation A is given by ui(Ai). Envy-freeness
demands that no agent strictly prefer the allocation to another agent over her own, i.e., ui(Ai) >

∗A preliminary version was published in the proceedings of the 4th ACM Conference on Equity and Access in
Algorithms, Mechanisms, and Optimization (EAAMO), 2024.
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ui(Aj) for all i, j ∈ N . Envy-freeness is the canonical embodiment of two interesting features of a
fairness criterion:

1. It is a pairwise individual fairness criterion, where an agent i, who feels that she is being
treated unfairly, points to another agent j as the reason for it.

2. It makes no interpersonal comparisons, i.e., the utility function ui of agent i is never compared
to the utility function of any other agent.

Significant literature has been devoted to exploring envy-freeness and its relaxations for a variety
of resource allocation domains beyond the allocation of homogeneous divisible goods [37, 1].

A problem arises when one moves to more general collective decision-making domains. In the
most general model, which we term the public outcomes model, there is a set N of n agents and
a set O of possible outcomes. Each agent i has a utility function ui : O → R>0 and the goal is
to choose an outcome o ∈ O. What would envy-freeness mean here? Even conceptually, can an
agent i really envy another agent j, despite both experiencing the common outcome o? From this
vantage point, envy-freeness may seem vacuous for public outcomes.

Due to this, the literature on (various special cases of) the public outcomes model has ignored
envy-freeness, which misses an essential consideration where an individual feels they have been
unfairly treated due to another individual receiving disproportionate importance.

Note that the public outcomes model captures the resource allocation model as a special case,
by setting O as the set of all possible allocations A and defining ui(A) , ui(Ai). But importantly,
it also captures a host of other collective decision-making problems such as choosing the winner
of an election based on voters’ preferences, choosing a company’s strategy based on its employees’
opinions, deciding which graduate applicants to admit based on the preferences of faculty members,
or picking interesting posts to showcase on a social media website’s (non-personalized) front page
based on its users’ interests.

1.1 Our Contributions

In Section 3, we propose our novel pairwise individual fairness criterion, individual harm ratio
(IHR), which is inspired by envy-freeness, makes no interpersonal comparisons, and applies to the
full range of the public outcomes model. We observe that in resource allocation with additive
utilities, 1-IHR logically implies (and is significantly stronger than) envy-freeness. We also define
its groupwise extensions, equal-sized group harm ratio (EGHR) and group harm ratio (GHR);
analyze their relations to each other as well as to analogous extensions of envy-freeness in resource
allocation [46, 5, 15]; and reconstruct a hierarchy of fairness criteria from resource allocation in the
broader public outcomes model (Figure 2).

In Section 4, we show that even a group harm ratio (GHR) of 1 (which implies 1-IHR) can
be guaranteed in the public outcomes model by maximizing the Nash welfare (geometric mean of
agent utilities), when the set of feasible utility vectors U = {(u1(o), . . . , un(o)) : o ∈ O} satisfies
two mild conditions of compactness and upper convexity. In doing so, we establish an equivalence
to proportional fairness and generalize several prior results; see Section 1.2. We also prove that

any outcome with a group harm ratio of 1 achieves a (tight)
(

n
bn/2c

)1/n
-approximation — at least as

good as a 2-approximation — of the maximum Nash welfare in any instance of the public outcomes
model. This complements an existing characterization of maximum Nash welfare via group fairness
due to Freeman et al. [24].
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In Section 5, we observe that in a special case of the public outcomes model, a (1+ε)-GHR out-
come can be computed in time polynomial in the instance size and 1/ε using convex programming,
but leave polynomial-time computation of a 1-GHR (or even 1-IHR) outcome as an open question.
For the allocation of indivisible goods under additive utilities, given an allocation, while checking
whether it is EF is trivially in P, we show that checking whether it is 1-IHR (which implies EF) is
coNP-complete.

In Section 6, we conduct experiments with simulated and real datasets for the allocation of
indivisible goods (Spliddit), peer review (CVPR 2017, CVPR 2018, ICLR 2018), and participatory
budgeting (Pabulib). Our findings suggest that individual and group harm ratios are powerful
enough to distinguish between prominent rules in terms of the level of fairness they achieve, and
correlate well with existing domain-specific fairness notions in each domain.

1.2 Summary of Significance and Implications

We argue the significance of our work in terms of providing a unifying framework to think of fairness
in a broad range of settings and opening the door to novel styles of fairness analyses in well-studied
domains. In Appendix A, we provide a technical comparison of our results to those from prior
works, and identify exactly which prior results our work subsumes. Here, we briefly summarize
four significant implications of our work.

1. Our work subsumes existing results from the resource allocation literature proving that MNW
allocations are envy-free (EF) and Pareto optimal (PO), e.g., in cake-cutting [47, 38] (with
our proof being more elementary than the existing ones), or that they are approximately
EF and PO, e.g., in one-sided matching [45]. This is a result of 1-IHR implying exact or
approximate EF in these domains.

2. Our work adds to a long line of literature identifying conditions guaranteeing the existence
of EF+PO allocations [46, 42, 18] and outcomes satisfying another fairness criterion, propor-
tional fairness [11].

3. In some domains where our results hold, the fact that MNW allocations satisfy 1-IHR and
PO is novel and interesting [16, 13, 9]; in one case, we are able to establish (a previously
unknown) existence of EF+PO allocations [16].

4. Finally, our work significantly expands the possibility of conducting pairwise individual fair-
ness analyses to a much larger set of collective decision-making domains than the resource
allocation domains where envy-freeness is well-defined.

2 Model

For t ∈ N, define [t] , {1, 2, . . . , t}. We consider a very general multi-agent decision-making setting,
which we term the public outcomes model, where each instance is given by a set of outcomes O,
a finite set of agents N = [n], and a utility profile u = (u1, . . . , un) containing a utility function
ui : O → R>0 for each agent i ∈ N . Without loss of generality, we assume that for each agent i ∈ N
there is some outcome o ∈ O such that ui(o) > 0; otherwise, agent i can effectively be removed
from consideration.
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A priori, we impose no assumption on the set of outcomes O (it could be finite, countably
infinite, or uncountable) or the utility functions of the agents. As such, this general model subsumes
various models studied in the literature as special cases, including cake-cutting [39], allocation of
homogeneous divisible or indivisible goods [32], public decision-making [14], and allocation of public
goods [21].

Utility set. Define the utility set U = {(u1(o), . . . , un(o)) : o ∈ O} to be the set of feasible
utility vectors. Because we have placed no assumptions on the agent utilities, this is essentially
the only object of interest as, given any U , one can easily construct underlying outcome set O and
utility profile u which induce U . Crucially, the fairness notions we define below also depend only
on U .

2.1 Fairness

While many fairness notions defined in the literature for specialized models do not extend to this
general model, the following ones do, and play a key role in our work. First, an outcome is
proportionally fair if the agents are not happier (in an average multiplicative sense) when switching
to any other outcome.

Definition 1 (Proportional Fairness (PF)). We say that an outcome o ∈ O is proportionally fair

(PF) if 1
n

∑
i∈N

ui(o
′)

ui(o)
6 1 for all o′ ∈ O.1

A maximum Nash welfare outcome is one that maximizes the geometric mean of agent utilities.

Definition 2 (Maximum Nash Welfare (MNW)). Define the Nash welfare of an outcome o ∈ O
as the geometric mean of agent utilities for it: NW(o) = (

∏
i∈N ui(o))

1/n.2 For α > 1, we say
that an outcome o ∈ O is an α-approximate maximum Nash welfare (MNW) outcome if NW(o) >
(1/α) ·NW(o′) for all o′ ∈ O. When α = 1, we simply refer to it as an MNW outcome.

An outcome is in the core [23] if no group can find an alternative outcome that provides all of
them weakly higher utility, and at least one of them strictly higher utility, even after scaling their
utilities by the size of the group in proportion to the set of all agents.

Definition 3 (Core). We say that an outcome o ∈ O is in the core if there is no group of agents

S ⊆ N and outcome o′ ∈ O such that |S|n · ui(o
′) > ui(o) for all i ∈ S and at least one inequality is

strict.

Proportionality [39] says that each agent should receive at least a 1/n fraction of the utility she
can achieve in any outcome.

Definition 4 (Proportionality (Prop)). We say that an outcome o ∈ O is proportional (Prop) if
ui(o) > 1

nui(o
′) for all o′ ∈ O and all i ∈ N .

Finally, the following is traditionally considered a notion of efficiency, but we include it here
because it connects well to the notions defined above. An outcome is Pareto optimal if there is no
alternative outcome that makes each agent at least as happy and some agent strictly happier.

1If ui(o) = 0, we let ui(o
′)/ui(o) = ∞ and PF is automatically violated.

2If ui(o) = 0 for any agent i ∈ N , we say that NW(o) = 0.
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Definition 5 (Pareto Optimality (PO)). We say that an outcome o ∈ O is Pareto optimal (PO)
if there is no outcome o′ ∈ O such that ui(o

′) > ui(o) for all i ∈ N and at least one inequality is
strict.

Note that these notions are utilitarian, i.e., they depend only on the utility vector induced by
the outcome. Hence, one can equivalently speak of a utility vector satisfying these notions; if a
utility vector satisfies a utilitarian notion, every outcome inducing it must satisfy the notion as
well.

The following proposition describes well-known relationships between these notions.

Proposition 1 (PF ⇒ MNW, PF ⇒ Core ⇒ (Prop+PO)). Any proportionally fair outcome is
also a maximum Nash welfare outcome and lies in the core. Any outcome in the core satisfies
proportionality and Pareto optimality.

Proof. Proposition 1] PF ⇒ MNW. Suppose o ∈ O is PF. Then, ui(o) > 0 for all i ∈ N . For any
o′ ∈ O, we have (∏

i∈N

ui(o
′)

ui(o)

)1/n

6
1

n

∑
i∈N

ui(o
′)

ui(o)
6 1,

where we use the AM-GM inequality followed by the definition of PF. This shows that NW(o′) 6
NW(o), as desired.

PF ⇒ Core. Suppose o ∈ O is PF but violates the core. Then, there exists a group of agents

S ⊆ N and an outcome o′ ∈ O such that ui(o
′)

ui(o)
> n
|S| for all i ∈ S and at least one inequality is

strict (we can place ui(o) in the denominator because o being PF ensures ui(o) > 0). Thus, we
have

1

n
·
∑
i∈N

ui(o
′)

ui(o)
>

1

n
·
∑
i∈S

ui(o
′)

ui(o)
>

1

n
· |S| · n

|S|
= 1,

which violates o being PF.
Core⇒ (Prop+PO). Core⇒ Prop follows from observing that proportionality imposes the same

constraint as the core, but only for groups of agents S with |S| = 1. Similarly, Pareto optimality
imposes the same constraint as the core but only for S = N .

Remark 1. In many domains, every agent can possibly get zero utility under some outcome (i.e.,
∀i,∃o ∈ O : ui(o) = 0). However, when this is not the case, one can define stronger versions of the
core and proportionality that take umin

i , info∈O ui(o) into account.

In the definition of the core, we would write |S|n (ui(o
′) − umin

i ) > (ui(o) − umin
i ), and for pro-

portionality, we would write ui(o) > 1
nui(o

′) + n−1
n umin

i ⇔ ui(o) − umin
i > 1

n(ui(o
′) − umin

i ). One
can check that this strengthens the respective definition. Aziz et al. [4] refer to the strengthened
proportionality as general fair share (GFS).

Any method of achieving the regular versions can be modified to achieve the strengthened
versions by feeding it translated utility functions {u′i}i∈N , where u′i(o) = ui(o) − umin

i for all i ∈
N and o ∈ O. For maximum Nash welfare, we would then seek an outcome o that maximizes∏
i∈N (ui(o)− umin

i ); this is akin to the Nash bargaining solution [33], if umin
1 , . . . , umin

n are treated
as status quo utilities. Similarly, for proportional fairness, we would seek an outcome o for which
1
n

∑
i∈N

ui(o
′)−umin

i

ui(o)−umin
i

6 1.
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2.2 Private Goods Division

As demonstrated in the introduction, the public outcomes model subsumes a wide range of collective
decision-making models studied in the literature. Below, we formally introduce the special case of
private goods division, which we will refer to frequently in our results.

In a general private goods division setting, there is a set of goods M to be divided between a
set of agents N = [n]. The outcome set O is the set of allocations A = (A1, . . . , An) which are
partitions of M into pairwise-disjoint measurable bundles. Each agent i ∈ N has a measure ui over
M .3 Crucially, her utility for an allocation A is solely a function of the bundle Ai assigned to her,
namely ui(Ai).

This model captures three prominent settings studied in the literature:

1. Cake-cutting: M = [0, 1] and the utility function ui of each agent i is a (countably additive)
measure over M that is absolutely continuous with respect to the Lebesgue measure.

2. Homogeneous divisible goods: M is a set of m homogeneous divisible goods. An allocation
can be described as A = (Ai,g)i∈N,g∈M with Ai,g being the fraction of good g allocated to
agent i and

∑
i∈N Ai,g = 1 for all g. The utility of each agent i can be given by ui(Ai) =∑

g∈M Ai,g · vi,g, where vi,g is her value for receiving good g entirely.

3. Indivisible goods: This is identical to homogeneous divisible goods, except we further restrict
Ai,g ∈ {0, 1} for all i ∈ N and g ∈M .

For private goods division, additional fairness notions have been extensively studied, but they
do not extend to the more general model of public outcomes; coming up with natural extensions
of these notions is precisely the subject of our work. Envy-freeness [23] says that no agent should
prefer the allocation of another agent to her own.

Definition 6 (Envy-Freeness (EF)). We say that an allocation A is envy-free (EF) if ui(Ai) >
ui(Aj) for all i, j ∈ N .

Group fairness [15] requires that no group of agents should “envy” (in the sense of being able
to Pareto improve by taking the resources allocated to the other group and redistributing amongst
themselves, subject to an appropriate scaling factor to account for different-sized groups) any other
group of agents.

Definition 7 (Group Fairness (GF)). We say that an allocation A is group fair (GF) if there is
no pair of groups of agents S, T ⊆ N and a division B of ∪j∈TAj among agents in S such that
|S|
|T | · ui(Bi) > ui(Ai) for all i ∈ S and at least one inequality is strict.

For private goods division, envy-freeness implies proportionality, and group fairness implies the
core (and therefore also proportionality). Additionally, restricting the group fairness definition to
allow only pairs of groups with |S| = |T | yields the group envy-freeness definition of Berliant et al.
[5].

Note that the difficulty in extending these notions is that in the public outcomes model, there
is nothing “allocated” to individual agents. Instead, a common outcome is selected for all agents,
making the concept of envy between individuals or groups vacuous.

3A measure assigns a non-negative value to each measurable subset of M (0 to the empty subset) and is countably
additive.
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3 Harm Ratio: A Novel Fairness Criterion

To motivate the definition of individual harm ratio, let us first revisit envy-freeness (EF) in private
goods division with additive utilities (Definition 6): an allocation A is EF if ui(Ai) > ui(Aj) for all
i, j ∈ N . This is not a utilitarian notion: envy-freeness cannot be checked simply from the induced
utility vector (u1(A), . . . , un(A)), which makes it difficult to extend to the public outcomes model.
However, if A violates EF, there exists a new allocation A′, given by A′i = Ai ∪ Aj , A′j = ∅, and
A′k = Ak for all k ∈ N \ {i, j}, which induces a utility vector (u1(A

′), . . . , un(A′)) satisfying the
following: ui(A

′) > 2 · ui(A) and uk(A
′) > uk(A) for all k ∈ N \ {i, j}. This is a purely utilitarian

comparison, which can be generalized well beyond private goods division to the public outcomes
model. As argued in the introduction, the utility improvement factor of 2 in this case measures the
level of harm imposed on agent i due to the presence of agent j. We refer to it as the individual
harm ratio (IHR).

The factor of 2 is important. Not only does it show up in connection to private goods division
with additive utilities, we prove in Theorem 2 that it remains the tightest achievable factor for the
more general public outcomes model under certain conditions on the utility set U . It also generalizes
well to a factor of |S∪T ||S| in the groupwise extension of IHR introduced later (Definition 9). However,
a worse factor may be achieved when the utilities do not satisfy the requirements of Theorem 2, or a
better factor may be achieved in practice on real-world instances. To account for these possibilities,
we introduce an α-approximation of IHR.

Definition 8 (Individual Harm Ratio). We say that an outcome o ∈ O has an individual harm ratio
of α, denoted α-IHR, if there are no agents i, j ∈ N and outcome o′ ∈ O such that 1

2 ·ui(o
′) > α·ui(o)

and uk(o
′) > uk(o) for all k ∈ N \ {i, j}.

Definition 8 requires that no agent be able to find an outcome in which even half of her utility
is higher (by a factor of α) and at most one other agent is hurt. Intuitively, a large individual harm
ratio gives agent i a “justified claim” that the system is treating her unfairly due to its attempt to
make agent j happy. The higher the α, the stronger the claim. Conversely, the lower the value of
α for an outcome, the stronger its fairness guarantee.

3.1 Comparison to Envy-Freeness and Proportionality

Consider private goods division with additive utilities. From the argument above, it is clear that
1-IHR implies envy-freeness, but in fact, it is strictly stronger: even if moving the goods allocated
to agent j to agent i does not suffice to more than double agent i’s utility, a complete reshuffling
that also alters the allocations to the other agents may nonetheless be able to achieve this, while
still keeping the other agents at least as happy. The next result shows that envy-freeness is much
weaker than 1-IHR, as it implies only (n/2)-IHR.

Theorem 1. For private goods division with additive utilities:

• (1-IHR ⇒ EF) An individual harm ratio of 1 implies envy-freeness.

• (Prop ⇒ (n/2)-IHR) Proportionality (and therefore envy-freeness) implies an individual harm
ratio of n/2, and this is tight even for the allocation of homogeneous divisible goods.

Proof. Fix any private goods division instance with additive utilities. We have already argued that
1-IHR implies EF. To see that Prop implies (n/2)-IHR, consider any Prop allocation A. Hence,
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g1 g2 g3 . . . gn−1 gn

u1 1 0 0 . . . 0 0

u2 1 1 0 . . . 0 0

u3 1 1 1 . . . 0 0

...
. . .

...

un−1 1 1 1 . . . 1 0

un 1 1 1 . . . 1 1

Figure 1: Instance for Theorem 1. Blue and red rectangles show two different allocations; the
rectangle in each good’s column covers the agents among which the good is equally divided. The
blue allocation is EF, but (n/2)-IHR, as witnessed by the existence of the red allocation.

ui(Ai) > 1
n · ui(M). Suppose for contradiction that A is not (n/2)-IHR. Hence, there exist agents

i, j ∈ N and allocation A′ such that ui(A
′
i) > n · ui(Ai) > ui(M), which is a contradiction.

For n = 2, this shows that 1-IHR is equivalent to EF, which is also evident from the definitions
of IHR and EF. To show tightness for n > 3, consider the instance in Figure 1 where n homogeneous
divisible goods need to be divided between n agents. Agent i ∈ [n] values items j ∈ {1, . . . , i} at 1
and the rest at 0.

Consider an allocation A (shown via blue rectangles in Figure 1) that divides g1 equally among
all agents and allocates good j ∈ [n] \ {1} to agent j. Then, u1(A1) = 1

n and ui(Ai) = 1 + 1
n for all

i ∈ [n]\{1}. It is easy to check that this is EF. However, we show that agent 1 is significantly harmed
by the presence of agent 2 in the sense of IHR. Consider the allocation A′ (shown via red rectangles
in Figure 1) where each agent i ∈ [n]\{2} is allocated the i-th good, and the second good is equally
divided among agents in {3, . . . , n}. Then, u1(A

′
1) = 1 and ui(A

′
i) = 1 + 1

n−2 > 1 + 1
n = ui(Ai) for

all i ∈ [3, n]. Each agent i ∈ N \ {1, 2} is at least as happy under A′ as under A, and for agent 1,
u1(A

′
1) = 1 = n

2 · 2 · u1(A1). Hence, A is only (n/2)-IHR.

What happens once we go beyond private goods division? As noted earlier, envy-freeness is no
longer well-defined for the public outcomes model, but proportionality still is. For private goods
division with additive utilities, we noticed above that 1-IHR implies proportionality. This breaks
down when we move to the public outcomes model, as the following simple example shows.

Example 1. Consider an instance of the public outcomes model with a set of two outcomes
O = {o, o′} and a set of three agents N = [3]. The utilities are (u1(o), u2(o), u3(o)) = (1, 1, 0) and
(u1(o

′), u2(o
′), u3(o

′)) = (0.1, 0.1, 1). Outcome o is 1-IHR: agents 1 and 2 are maximally happy, and
while agent 3 receives zero utility, she cannot choose any other outcome where only one agent is
hurt and thus cannot improve at all in any outcome that hurts at most one other agent. Note that
o gives a zero approximation of proportionality for agent 3.

3.2 Groupwise Extension

Example 1 points out a weakness of IHR in the public outcomes model. Finding an outcome that
hurts at most one other agent can be quite limiting if there are no such alternative outcomes.
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What if we allow an agent (or a group of agents) to find outcomes that hurt multiple other agents?
This must be accompanied with a greater requirement of utility improvement. It turns out we can
strengthen IHR to group harm ratio (GHR) in the same way that envy-freeness is strengthened to
group fairness (GF) in private goods division [15].

Definition 9 (Group Harm Ratio). We say that an outcome o ∈ O has a group harm ratio of α,
denoted α-GHR, if there are no non-empty groups of agents S, T ⊆ N and outcome o′ ∈ O such
that the following two conditions hold:

1. For all agents i ∈ S, |S|
|S∪T | · ui(o

′) > α · ui(o) with at least one inequality being strict.

2. For all agents i ∈ N \ (S ∪ T ), ui(o
′) > ui(o).

We remark that one can also define equal-sized group harm ratio (EGHR) by only imposing
the GHR constraints when |S| = |T |, the same way GEF is defined for private goods division.

Proposition 2. In the public outcomes model, PF ⇒ 1-GHR ⇒ (PO + Core + 1-IHR).

Proof. PF ⇒ 1-GHR. Suppose o ∈ O is PF but violates 1-GHR. Then there exist non-empty
S, T ⊆ N and outcome o′ ∈ O such that |S|

|S∪T | · ui(o
′) > ui(o) for all i ∈ S, with at least one

inequality being strict, and ui(o
′) > ui(o) for all i ∈ N \ (S ∪ T ). If ui(o) = 0 for any i ∈ N , then

o clearly violates PF, which is the desired contradiction.
Assume that ui(o) > 0 for all i ∈ N . Then we have

1

n

∑
i∈N

ui(o
′)

ui(o)
>

1

n

∑
i∈S

ui(o
′)

ui(o)
+

∑
i∈N\(S∪T )

ui(o
′)

ui(o)


>

1

n

∑
i∈S

|S ∪ T |
|S|

+
∑

i∈N\(S∪T )

1


=

1

n
(|S ∪ T |+ |N \ (S ∪ T )|) = 1,

contradicting that o is PF.
1-GHR ⇒ (PO + Core + 1-IHR). Core, PO, and 1-IHR all impose the same constraints as

1-GHR, but only for some of possible pairs of groups S and T . PO imposes the constraint for
S = T = N , the core imposes the constraints for T = N (and any S), while 1-IHR imposes them
for |S| = |T | = 1.

Together with Proposition 1 and Theorem 1, Proposition 2 paints a clear picture of the relations
among the various fairness notions in the public outcomes model, depicted in Figure 2b, mimicking
a similar hierarchy for private goods division depicted in Figure 2a (except that 1-IHR no longer
implies proportionality in the public outcomes model).

4 Maximum Nash Welfare Solution

Without any conditions on U , an outcome satisfying any of the notions defined in Section 2.1 is not
guaranteed to exist. Proportionality cannot be guaranteed in the standard example of allocating

9



Proportional Fairness Max Nash Welfare

Group Fairness

Core Group Envy-Freeness

Proportionality Envy-Freeness

* *

*

(a) Private goods division.

Proportional Fairness Max Nash Welfare

1-Group Harm Ratio

Core 1-Equal-Sized Group Harm Ratio

Proportionality 1-Individual Harm Ratio

+

+

(b) Public outcomes.

Figure 2: The figure depicts a hierarchy of fairness notions for private goods division (already
known) and the public outcomes model (based on our novel fairness definitions and results). For
private goods division, the implications marked with (∗) hold for cake-cutting [15, 24]. For the public
outcomes model, we show the implications marked with (+) when the utility set U is compact and
upper convex (Theorem 2).

an indivisible item between two agents who value it at 1 (U = {(1, 0), (0, 1)}). An MNW outcome
is not guaranteed to exist if x ∈ [0, 1) fraction of a single homogeneous divisible good must be
allocated to a single agent with utility x for receiving x fraction of the good (U = {x : x ∈ [0, 1)});
in particular, since the agent is not allowed to receive the whole good, a Nash welfare arbitrarily
close to 1 can be attained but a Nash welfare of 1 cannot be attained. Nonexistence of the other
properties follows from the implications in Proposition 1.

In this section, we show that even proportional fairness, which implies a group harm ratio of 1,
can be guaranteed when the utility set U satisfies two simple conditions:

• Compactness: U is compact.

• Upper convexity: For any x,y ∈ U and α ∈ [0, 1], there is z ∈ U such that zi > α · xi +
(1− α) · yi for all i ∈ N .

Compactness and convexity (where even z = α · x + (1 − α) · y ∈ U is guaranteed) of the
utility set is a common feature of many decision-making models. Compactness of U holds whenever
the outcome set O is compact and the utility functions ui are continuous. Convexity of U holds
whenever the outcome set O is the set of probability distributions (over some set) and one uses
expected utilities [48]. In resource allocation contexts, it also holds for the richer class of concave
utilities [6, Proposition 1]. The celebrated result of Dubins and Spanier [19] establishes compactness
and convexity of the utility set for cake-cutting.

Upper convexity is a slightly relaxed version of convexity, which allows convexity to fail as long
as there is a utility vector that Pareto dominates the one obtained from a convex combination.
Intuitively, this relaxed requirement should not cause any issues because one should always be able
to switch to such a Pareto dominating outcome, although a priori it is not clear if such an outcome
would retain any fairness guarantees.4 Upper convexity is a useful relaxation.

4For example, in private goods division, it is well known that envy-freeness might not be preserved under Pareto
improvements.
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Example 2. Consider allocating a single homogeneous divisible good between two agents. The
outcome set is the simplex O = {(x1, x2) : x1, x2 > 0, x1 +x2 = 1}. Suppose the agents have utility
functions that are linearly increasing in the fraction of resource that they receive, but plateau
when at least half of the resource is allocated to them. That is, u1((x1, x2)) = min(0.5, x1) and
u2((x1, x2)) = min(0.5, x2). We have (0.5, 0) ∈ U and (0, 0.5) ∈ U , but (0.25, 0.25) /∈ U . Upper
convexity is still satisfied due to the fact that (0.5, 0.5) ∈ U , which Pareto dominates (0.25, 0.25).

Finally, it is worth noting that when U is compact, an MNW outcome is guaranteed to exist
because the product is a continuous function, which attains a maximum over a compact set via
Weierstrass’ extreme value theorem. Similarly, when U is compact and upper convex, a proportional
outcome is guaranteed to exist. For each agent i, let xi ∈ arg maxx∈U xi be a utility vector with
the highest utility for agent i (compactness ensures that the maximum is attained in U). Upper
convexity guarantees the existence of a utility vector that (weakly) Pareto dominates (1/n)

∑
i∈N xi,

and this is proportional by definition. Note that because this outcome has a strictly positive Nash
welfare, so must any MNW outcome (so it must give a positive utility to each agent).

Proposition 3. When U is compact, an MNW outcome exists. When U is compact and upper
convex, a proportional outcome exists and every MNW outcome has a strictly positive Nash welfare.

However, the existence of a proportionally fair (PF) outcome or even an outcome in the core is
not trivial to establish even under compactness and upper convexity of U . The next result shows
that under these conditions, every MNW outcome (which exists by Proposition 3) is PF, making
MNW and PF equivalent due to Proposition 1 and yielding the existence of PF. Combining this
with Proposition 2, we get a 1-GHR (and thus a 1-IHR) implication as well.

Theorem 2. Consider any instance of the public outcomes model where the utility set U is compact
and upper convex. A maximum Nash welfare (MNW) outcome exists, and every MNW outcome
is proportionally fair (PF). Consequently, MNW and PF are equivalent, and every MNW outcome
has a group harm ratio (and thus an individual harm ratio) of 1.

Proof. The existence of an MNW outcome is due to Proposition 3. Let o ∈ O be any MNW
outcome. Suppose for contradiction that it is not PF. Then, there exists an outcome o′ ∈ O such
that

1

n

∑
i∈N

ui(o
′)

ui(o)
> 1. (1)

Define a function f : (0, 1]→ R such that for α ∈ (0, 1],

f(α) =
1

n
·
∑
i∈N

log
(
α · ui(o) + (1− α) · ui(o′)

)
.

Note that this is well-defined because ui(o) > 0 for all agents i ∈ N (Proposition 3) and α > 0,
implying that the first term inside the logarithm is strictly positive (and the second term is weakly
positive since α 6 1 and ui(o

′) > 0). Note that f(1) = log NW(o).
Next, we prove that that there exists α ∈ (0, 1) such that f(α) > f(1). Since f is differentiable

in α, it suffices to show that the left-derivative of f at α = 1 is strictly negative. It is easy to see
that

∂−f(1) =
1

n

∑
i∈N

ui(o)− ui(o′)
ui(o)

= 1− 1

n
·
∑
i∈N

ui(o
′)

ui(o)
< 0,

11



where the last inequality follows from Equation (1).
Thus, there exists α ∈ (0, 1) for which f(α) > f(1). Due to upper convexity of U , there exists

an outcome ô ∈ O such that ui(ô) > α · ui(o) + (1 − α) · ui(o′) for all agents i ∈ N . Thus,
log NW(ô) > f(α) > f(1) = log NW(o), contradicting the fact that o is an MNW outcome. Hence,
we have proved that o must also be PF. Since PF implies MNW more generally (Proposition 1),
this makes MNW and PF equivalent on every instance of the public outcomes model.

For private goods division with additive utilities, 1-GHR implies PO and 1-IHR (which in turn
implies EF). Hence, Theorem 2 yields an alternative proof of the fact that every MNW allocation
is EF and PO in cake-cutting, where the utility set is known to be compact and convex [19]. We
remark that our elementary proof is much simpler than the proof by Segal-Halevi and Sziklai [38],
who proved it by first establishing that an MNW allocation is characterized by a form of market
equilibrium (s-CEEI), and the proof by Weller [47], who showed only the existence of an EF+PO
cake allocation using Kakutani’s fixed point theorem.

The equivalence between PF and MNW is a well-known fact in many domains, going back to
the work of Kelly [30], who proved it in the context of rate control in communication networks.
The proof provided above is very similar, except we strive to not make any assumptions on the
nature of the decision making (the outcome set O) or the utility functions of the agents. The key to
our proof is defining the function f in terms of the scalar α, which makes it differentiable without
requiring any perturbations of utilities.

Once MNW is established as equivalent to PF, one may wonder how much stronger MNW
is compared to the next property in the fairness hierarchy, namely 1-GHR. For private goods
division, the equivalent question would be how strong MNW is compared to group fairness (GF) [15].
Freeman et al. [24] study allocation rules that map each instance to a set of (tied) allocations, and
an allocation rule is said to satisfy GF if, on each instance, every allocation in the set returned by
the rule satisfies GF. They prove that the rule returning the set of MNW allocations satisfies GF
even for cake-cutting, and, subject to an axiom called replication invariance [17, 46], it is the only
rule satisfying GF.

Replication invariance informally requires that if one replicates an instance by creating k copies
of each agent and good, then a replication of every allocation returned by the rule on the original
instance must be returned by the rule on the new instance. It is difficult to extend to the public
outcomes model.

Nonetheless, the next result shows that a group harm ratio of 1 implies a (tight) 2-approximation
of maximum Nash welfare in the public outcomes model. This result nicely complements that
of Freeman et al. [24] and has two key advantages: first, it eliminates the need to impose any
additional axioms, which significantly changes the technical arguments required, and second, the
proof works on an instance-by-instance basis (rather than at the level of rules) in the very general
public outcomes model.

Theorem 3. Fix any instance of the public outcomes model. For every outcome o ∈ O with a

group harm ratio of 1 (i.e., 1-GHR), we have that NW(o) >
(

n
bn/2c

)−1/n · NW(o′) for all o′ ∈ O,

and this is tight. Finally,
(

n
bn/2c

)1/n
6 2 and approaches 2 as n→∞.

Proof. Fix any instance of the public outcomes model. Let o, o′ ∈ O be any two outcomes satisfying

1-GHR. We want to show that NW(o) >
(

n
bn/2c

)−1/n · NW(o′). If NW(o′) = 0, this holds trivially,

so let us assume that NW(o′) > 0, i.e., ui(o
′) > 0 for all agents i ∈ N .

12



Sort the agents i ∈ N in a non-decreasing order of ui(o)
ui(o′)

(this is well-defined because ui(o
′) > 0

for all i ∈ N); without loss of generality, let us rename the agents so that u1(o)
u1(o′)

6 u2(o)
u2(o′)

6 . . . 6
un(o)
un(o′)

. Let L = {i ∈ N : ui(o
′) > ui(o)} and H = {i ∈ N : ui(o

′) 6 ui(o)}. By our renaming, we

have that L = {1, 2, . . . , k} and H = {k + 1, k + 2, . . . , n}, where k = |L|.
Fix any i ∈ L. Let S = {1, 2, . . . , i} ⊆ L and T = H. Note that S ∩ T = ∅. Since o is 1-GHR,

there exists j ∈ S for which |S|
|S∪T | · uj(o

′) 6 uj(o), i.e.,
uj(o)
uj(o′)

> i
n−k+i . Due to the sorting of the

agents, this implies ui(o)
ui(o′)

> i
n−k+i . For any i ∈ H, we have ui(o)

ui(o′)
> 1 by the definition of H.

Putting these together, we have

NW(o)

NW(o′)
=

(∏
i∈N

ui(o)

ui(o′)

)1/n

>

(
k∏
i=1

i

n− k + i
·

n∏
i=k+1

1

)1/n

=

(
k!(n− k)!

n!

)1/n

=

(
n

k

)−1/n
>

(
n

bn/2c

)−1/n
,

as required.
To prove tightness, fix an ε ∈ (0, 1/2) and consider an example with O = {o, o∗}, where

ui(o) =

{
i

dn/2e+i + ε, i 6 bn/2c
1 + ε, i > bn/2c,

and ui(o
∗) = 1 for all i ∈ N . We claim that o is 1-GHR. To see this, suppose for contradiction

that there exist groups of agents S, T for which the two conditions from Definition 9 hold (taking
o′ = o∗). Note that T ⊇ {i : i > bn/2c}, since any agent who receives less utility in outcome
o∗ than in outcome o must be contained in T . In particular, |T | > dn/2e. Next, observe that
S ⊆ {i : i 6 bn/2c}, since agents in S must receive more utility in outcome o∗ than in outcome o.
In particular, writing |S| = k, we have k 6 bn/2c and |S ∪ T | > k + dn/2e. Additionally, we have
maxi∈S ui(o) > k

dn/2e+k + ε. Letting i′ = arg maxi∈S ui(o),

|S|
|S ∪ T |

· ui(o∗) 6
k

k + dn/2e
<

k

dn/2e+ k
+ ε 6 ui′(o),

contradicting the violation of 1-GHR. To obtain the desired bound, note that

NW(o)

NW(o∗)

ε→0−−→

bn/2c∏
i=1

i

dn/2e+ i

1/n

=

(
n

bn/2c

)−1/n
.

Finally,
(

n
bn/2c

)1/n
6 2 holds because there are only 2n subsets (of any size) of a set of size n, and

the limiting value as n→∞ follows directly from applying Stirling’s approximation.

When U is compact and upper convex, an MNW outcome exists (Proposition 3), and Theorem 3

shows that any 1-GHR outcome achieves a
(

n
bn/2c

)1/n
-approximation of its Nash welfare.
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5 Computation

Having established that MNW (equivalently, PF) outcomes are 1-GHR, and thus 1-IHR, under quite
general conditions (Theorem 2), we now examine the question of computation. We are interested
in two computational questions: checking whether a given outcome is 1-IHR and computing an
outcome with a low individual harm ratio (ideally, 1).

For the special case of homogeneous divisible goods with additive utilities, an MNW/PF solu-
tion can be found in strongly polynomial time [34]. However, in general, exact polynomial time
computation is not possible. We instead turn to approximate solutions.

Definition 10 (α-Proportional Fairness). An outcome o ∈ C is α-Proportionally Fair (α-PF) if
1
n

∑
i∈N

ui(o
′)

ui(o)
6 α for all o′ ∈ C.

When the utility space U is convex and can be described by a polynomial number of linear
constraints, as is the case for common settings such as public decision making [14], and budget-
feasible participatory budgeting [20] (in all cases, assuming fractional solutions are allowed), a (1 +
ε)-PF outcome can be computed in time polynomial in the input size and 1/ε using standard convex
programming techniques.5 However, approximate PF is interesting only insofar as it guarantees
some approximation of other, normative, properties. Our most general of these is GHR.

By slightly adapting the proof of Proposition 2, it is easy to see that approximate PF implies
approximate GHR.

Proposition 4. In the public outcomes model, (1 + ε)-PF ⇒ (1 + nε)-GHR for every ε > 0.

Proof. Fix any ε > 0. Suppose o ∈ O is (1 + ε)-PF but violates (1 + nε)-GHR. Then there exist

non-empty S, T ⊆ N and outcome o′ ∈ O such that |S|
|S∪T | · ui(o

′) > (1 + nε)ui(o) for all i ∈ S, and

ui(o
′) > ui(o) for all i ∈ N \ (S ∪ T ). If ui(o) = 0 for any i ∈ N , then o clearly violates (1 + ε)-PF,

which is the desired contradiction.
Assume that ui(o) > 0 for all i ∈ N . Then we have

1

n

∑
i∈N

ui(o
′)

ui(o)
>

1

n

∑
i∈S

ui(o
′)

ui(o)
+

∑
i∈N\(S∪T )

ui(o
′)

ui(o)


>

1

n

∑
i∈S

(1 + nε)|S ∪ T |
|S|

+
∑

i∈N\(S∪T )

1


=

1 + nε

n
· |S ∪ T |+ 1

n
· |N \ (S ∪ T )|

> 1 + ε · |S ∪ T | > 1 + ε,

contradicting that o is (1 + ε)-PF.

5To see this, note that the function PF(x,y) = 1
n

∑
i∈N

yi
xi

is convex in x. Therefore, since the supremum of

convex functions is itself convex, PF(x) = maxy∈U
1
n

∑
i∈N

yi
xi

is convex in x. Thus, minx∈U PF(x) is a convex
optimization problem with an optimal objective value of 1. It follows that a solution with objective value of 1 + ε
can be computed in time polynomial in the input size and 1/ε.
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G1 G2 G3 G4 G5

g11 ... g13d g21 ... g2d g31 ... g3d g41 ... g43d g51 ... g53d g∗

Y

y1 1 . . . 0 0 . . . 0 0 . . . 0 1− ε 0 ε 0 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

y3d 0 . . . 1 0 . . . 0 0 . . . 0 0 1− ε 0 ε 0

Z

z1 n1 . . . n3d 1 . . . 0 d . . . 0 0 . . . 0 0 . . . 0 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

zd n1 . . . n3d 0 . . . 1 0 . . . d 0 . . . 0 0 . . . 0 0

W
w1 0 . . . 0 2 . . . 2 0 . . . 0 1

3 . . . 1
3 0 . . . 0 ε

w2 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 ε . . . ε ε

Table 1: The indivisible goods allocation instance from the proof of Theorem 4. The outcome A is
indicated by circles.

Of course, our results have not ruled out the possibility of computing an exactly 1-IHR, or even
a 1-GHR, outcome in polynomial time; perhaps this can be done more directly without having to
appeal to (approximate) proportional fairness. We leave these as open questions.

With respect to checking whether a given outcome o ∈ O is 1-IHR (i.e., has a individual harm
ratio of 1), whenever the feasible utility space U can be described by a polynomial number of linear
constraints, the problem can be solved in polynomial time. To do so, we solve a linear feasibility
program for every pair of agents i, j to check if there exists x ∈ U for which xi > 2 · ui(o) and
xk > uk(o) for all k ∈ N \ {i, j}, which is a single linear program.

Indivisible goods. An interesting special case is that of indivisible goods allocation with
additive utilities. Here, it is known that a 1-IHR outcome cannot be guaranteed. For the case
of two agents, we know that EF and 1-IHR are equivalent (Theorem 1), and it is known via a
standard reduction from the Partition problem that determining the existence of an EF outcome
is NP-complete even with two agents.

Corollary 1. For indivisible goods allocation with additive utilities, checking if a 1-IHR outcome
exists is NP-complete.

Lastly, we show that it is hard to check whether a given allocation of indivisible goods is 1-IHR.
This is in sharp contrast with checking envy-freeness, which can be done easily by comparing the
utility of every agent with their value for every other agent’s allocation.

Theorem 4. For indivisible goods allocation with additive utilities, checking if a given outcome is
1-IHR is coNP-complete.

Proof. First, note that membership in coNP holds since an outcome o can be certified to not be
1-IHR by providing an alternative outcome o′ and two agents i, j for which the violating conditions
in Definition 8 hold.

To show coNP-completeness, we reduce from the 3-Partition problem: Given a multiset C of
3d numbers c1, . . . , c3d lying strictly between 1/4 and 1/2, can C be partitioned into d triplets C1,
. . . , Cd such that the sum of the members of each triplet is 1?
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Given a 3-Partition instance, we define an indivisible goods instance (along with an outcome)
with m = 11d+ 1 goods arranged into the following subsets:

G1 = {g11, . . . , g13d}, G2 = {g21, . . . , g2d}, G3 = {g31, . . . , g3d},
G4 = {g41, . . . , g43d}, G5 = {g51, . . . , g53d},

along with a single good g∗. There are n = 4d+ 2 agents, arranged into the following subsets:

Y = {y1, . . . , y3d}, Z = {z1, . . . , zd}, W = {w1, w2}.

Let 0 < ε < 1. Valuations that the agents have for the goods are defined as follows (for ease of
reading, we use the notation vi(g) rather than vi,g; valuations that are not directly specified are
equal to zero). For every i ∈ Y , vi(g

1
i ) = 1, vi(g

4
i ) = 1 − ε, and vi(g

5
i ) = ε. For every i ∈ Z

and every j ∈ [3d], vi(g
1
j ) = nj . Thus, these agents and items directly encode the values from the

3-Partition instance. Further, for every i ∈ Z, vi(g
2
i ) = 1, and vi(g

3
i ) = d. For agent w1 we have

uw1(g2j ) = 2 for all j ∈ [d], uw1(g4j ) = 1/3 for all j ∈ [3d], and uw1(g∗) = ε. For agent w2, we have

uw2(g5j ) = ε for all j ∈ [3d] and uw2(g∗) = ε.

The allocation A is as follows, and is also depicted in Table 1. For every j ∈ [3d], good g1j is

allocated to agent yj . For every j ∈ [d], goods g2j and g3j are allocated to agent zj . Agent w1 is

allocated the entire set of goods G4. Finally, agent w2 is allocated the entire set of goods G5 as
well as good g∗. We have uyi(Ayi) = 1 for all i ∈ [3d], uzi(Azi) = d+ 1 for all i ∈ [d], uw1(Aw1) = d,
and uw2(Aw2) = (3d+ 1)ε. Note that for all agents i 6= w1, it is the case that ui(Ai) > ui(M)/2.

First suppose that there exists a solution to the 3-Partition instance. Then we can define an
outcome A′ as follows. For every i ∈ [3d], agent yi ∈ Y is allocated g4i and g5i . For every i ∈ [m],
agent zi ∈ Z is allocated g3i and a set of three goods from G1 with total value exactly equal to
1 (this is possible by the assumption of a 3-Partition solution). Agent w1 is allocated g∗ and all
goods in G2. We have uyi(A

′
yi) = 1 = uyi(Ayi) for all i ∈ [3d], uzi(A

′
zi) = d + 1 = uzi(Azi) for all

i ∈ [m], and uw1(A′w1
) = 2m+ ε > 2d = 2uw1(Aw1). Since only agent w2 receives less utility under

A′ than under A, allocation A′ is witness to a violation of 1-IHR.
Next, suppose that there does not exist a solution to the 3-Partition instance. We will show

that outcome A is 1-IHR.
Since ui(Ai) > ui(M)/2 for all i 6= w1, the only agent who can more than double her utility in

some outcome A′ 6= A is w1. Consider such an outcome A′ and suppose for contradiction that A′

witnesses a violation of 1-IHR.
For it to be the case that uw1(A′w1

) > 2uw1(Aw1) = 2m, agent w1 must be allocated some goods
from G2 (each of which she has utility 2 for). Suppose that she receives k such goods. We may
assume that m > 3 and therefore receiving only k = 1 good from G2 is not sufficient to double her
utility; assume therefore that k > 2. We now follow a chain of implications about what this means
for the outcome A′, given that there can be at most one agent i with ui(A

′
i) < ui(Ai).

At least k agents in Z must not be allocated any g2j ∈ G2 under allocation A′. Denote this
set of agents by Z ′. For A′ to witness a violation of 1-IHR, it must be the case that for at least
k − 1 > 1 of these agents in Z ′, they receive utility at least uzi(A

′
zi) > d + 1, which implies that

A′zi = {g3zi} ∪X for some X ⊆ G1 with |X| > 3. The condition X ⊆ G1 is required because, other
than g3zi (for which agent zi has utility d) and g2zi (which is not allocated to agent zi, by definition),
agents in Z ′ only get positive utility from G1, and uzi(g

1
j ) < 1/2 for all j ∈ [3d].
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Now, there exist at least three agents yi ∈ Y for whom g1i 6∈ A′yi . Since A′ witnesses a violation
of 1-IHR, it is necessary for at least two of these agents to have uyi(A

′
yi) > uyi(Ayi) = 1, which

implies that A′y1 = {g4i , g5i }. In particular, if good g5i is allocated to agent yi under A′, then it is no
longer allocated to agent w2, which means that uw2(A′w2

) < uw2(Aw2). Thus, for all agents i 6= w2,
it must be the case that ui(A

′
i) > ui(Ai), or else A′ would not witness a violation of 1-IHR.

Having established this fact, the remaining analysis is simplified. Agent w1 receives k goods from
G2 under A′. Therefore, at least 3k goods from G1 must be allocated to agents in Z ′, to compensate
each of them for their lost good from G2. Accordingly, at least 3k goods from G4 and 3k goods from
G5 must be allocated to agents in Y , to compensate those agents who lost a G2 good. Since agent
w1 values each G4 good at 1/3, her utility from A′ is uw1(A′w1

) 6 2k+(3d−3k)/3+ε = d+k+ε (the
additional ε comes from allocating g∗ to w1). Thus, unless k = d, uw1(A′w1

) < 2d, contradicting
the assumption that A′ is a witness to a 1-IHR violation. So assume k = d. But in this case, all
of the goods in G1 need to be allocated to agents in Z. Since there does not exist a solution to
the 3-Partition problem, it is impossible to assign them so that uzi(A

′
zi) > d+ 1 = uzi(Azi) for all

i ∈ [d], since doing so would require each agent zi receiving utility exactly 1 from a subset of the
G1 goods. Again, this contradicts A′ witnessing a 1-IHR violation. Therefore, A is 1-IHR.

Our proof uses a variable number of agents. For two agents, 1-IHR is equivalent to EF, so
checking whether a given outcome is 1-IHR is in P. Could it perhaps be in P for any constant
number of agents? We leave this as an open question.

6 Experiments

In this section, we validate our theoretical definitions by running numerical simulations on data
from three real-world settings: private goods allocation, peer review, and participatory budgeting.

Consistent with real-world constraints in these settings, we require that solutions be discrete.
In this case, the utility sets are not upper convex and it is therefore no longer the case that an
outcome with an IHR/GHR of at most 1—or even a finite IHR/GHR—always exists. Our approach
will be to evaluate the individual and group harm ratios of prominent rules for these settings.

As a minimal requirement, our definition should differentiate between rules across a wide range
of settings, since the practical consequence of any fairness definition is limited to those cases where
it can make a specific recommendation. Second, in settings where well-established and validated
fairness notions already exist, we would like IHR to align well with those existing notions.6

6.1 Private Goods

Our first setting is that of indivisible private goods allocation. Every agent i has a value vi,g for
every good g, with valuations normalized so that

∑
g vi,g is independent of i.

Datasets. We use two synthetic and one real datasets. For the synthetic ones, we first consider
agent valuations drawn from a uniform multinomial distribution (i.e., randomly dividing 200 points
between m goods) and, second, valuations drawn from a Dirichlet-multinomial distribution. The
Dirichlet-multinomial can be thought of as first drawing an underlying “market value” for every
good from a uniform Dirichlet distribution, and then drawing agent valuations from a multinomial
distribution whose expectations equal to the market values, thus correlating agent valuations. For

6Of course, the strength of IHR lies in its broad applicability to all these settings.
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Figure 3: Scatter plots showing instance-wise individual harm ratio and private envy ratio, and
bar charts displaying their averages as well as the fraction of instances with infinite ratios. In the
scatter plots, the inset plot shows the full set of instances, while the main plot is zoomed into its
lower left region that contains approximately 90% of the instances.

the synthetic experiments, we vary n ∈ [3, 16] and m ∈ [n, 5n] and generate 10 samples for each
combination of n and m. Finally, we also use real data from the popular fair division website
Spliddit.org [26].

Rules. For every fair division instance, we compute the outcomes that maximize the egalitarian
welfare (minimum utility), the Nash welfare (product of utilities), and the utilitarian welfare (sum
of utilities) — we refer to these rules by Egal., Nash, Util. respectively. We additionally consider
round robin (RR), which fixes an ordering of the agents and allows each to pick one good at a
time in a cyclic fashion; this, like Nash, is guaranteed to achieve an approximate envy-freeness
guarantee [8].

Measurements. For each dataset, we display two graphs (Figure 3). The first (Figure 3a
to 3c) is a scatter plot with each point being an outcome, color coded by the rule that produced
it. The vertical axis measures the individual harm ratio (IHR), and the horizontal axis measures
the private envy ratio, defined as per , 1

2(1 + maxi,j∈[n] ui(Aj)/ui(Ai)), which is the maximum
multiplicative increase in utility that any agent could get by swapping their assigned bundle of
goods with some other agent, linearly scaled so that an IHR of α guarantees per 6 α. Hence, all
points are guaranteed to lie on or above the 45 degree line y = x. Note that EF guarantees a
private envy ratio of at most 1.

The second graph for each dataset is a bar graph that shows, for each rule, the average IHR,
the average private envy ratio, and the fraction of instances with infinite IHR and private envy
ratio. Infinite ratios occur whenever some agent receives zero utility from their allocation, and the
average ratios are taken over instances with finite ratios.

Observations. In all datasets, we observe that individual harm ratio and private envy ratio

18

www.spliddit.org


are strongly correlated, with the points in the scatter plot lying somewhat close to the 45 degree
line. The Nash and egalitarian rules give the lowest public and private envy ratios. Round robin is
competitive on the uniform Dirichlet and Spliddit datasets, but less so for the Dirichlet-multinomial
model. The utilitarian rule has high individual harm ratio and private envy ratio, and a large
fraction of instances with infinite ratios.

6.2 Peer Review

Datasets. In the peer review setting, we use real data from three conferences: ICLR 2018, CVPR
2017, and CVPR 2018. Each submission is an “agent” who has a value for being assigned a
reviewer equal to a (system-generated) similarity score reflecting the reviewer’s expertise in the
paper’s topic. Following the methodology of Aziz et al. [3], we assume that each submission has
exactly one author, and that the set of reviewers coincides with the set of authors. The matching
of reviewers to submissions is constrained in that no author can review their own submission, each
submission must be assigned three distinct reviewers, and each reviewer must be assigned three
submissions to review.

We also follow the methodology of Aziz et al. [3] to infer authorship information. The ICLR
2018 dataset provides a conflict matrix, indicating when reviewer j has a conflict with submission
i. We find a maximum matching on the conflict matrix, and use this as the authorship matrix. We
then subsample 300 instances of size 50 (that is, 50 submissions along with their 50 authors as the
pool of reviewers). For the CVPR datasets, no conflict matrices are available. Instead, we again
sample 300 instances of size 50 by randomly selecting one paper at a time. As its author, we select
the author with the highest similarity score from those not already added to the pool of reviewers,
and add that author to the pool of reviewers.

Rules. We compare five rules for peer review. The Toronto Paper Matching System
(TPMS) [10] maximizes the utilitarian welfare, and we also include the Nash welfare-maximizing
assignment and the PeerReview4All (PR4A) [40] algorithm, which is a heuristic algorithm for the
leximin solution, which maximizes the minimum utility (egalitarian welfare) and, subject to that,
maximizes the second-minimum, and so on. We also compare the Core-Based Reviewer Assignment
(CoBRA) algorithm of Aziz et al. [3], which computes a reviewer assignment that lies in the core,
and an appropriate adaptation of the round robin rule. In the constrained setting of peer review,
round robin works by letting agents choose a single reviewer in a cyclic fashion according to some
fixed order, subject to their choice of reviewer leaving at least one feasible reviewer assignment
remaining that is consistent with earlier choices.7

Measurements. For the peer review setting the standard definition of envy does not make
sense, since the reviewers allocated to paper j may not be allowed to be allocated to paper i (in
particular, if the author of paper i is a reviewer for paper j). Denoting j’s “bundle” of assigned
reviewers by Aj , it might be the case that ui(Aj) is undefined. To avoid this issue, we consider a
modified notion of envy ratio that we term the shuffle envy ratio.8 For a pair of agents i, j, agent i’s

7We also assume that the minimum utility of any author for any reviewer is nonzero. Specifically, we set this
minimum score to 10−3 while the maximum utility of each author for a reviewer is exactly 1. This avoids infinite
ratios, and it is reasonable to assume receiving more reviews (with TPMS score of 0) is at least slightly better than
receiving fewer.

8Similar results are obtained if we instead use the standard definition of envy, and only consider an agent’s envy
towards papers that they themselves are not reviewing.
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Figure 4: Scatter plots showing instance-wise public and shuffle envy ratios and bar charts dis-
playing average public and shuffle envy ratios. In the scatter plots, the main plot is zoomed into
the lower left region of the graph that contains more than 90% of all data points – except for
CVPR’17 where CoBRA and TPMS lie far from the others – while the inset plot shows the full set
of instances.

shuffle envy ratio towards j is half9 of the ratio between the maximum utility agent i could receive
from a feasible allocation B such that Ak = Bk for all k 6= i, j, and her utility for her assigned set
of reviewers, ui(Ai). That is, agent i is allowed to improve the outcome (from her perspective) by
shuffling her own allocation and agent j’s allocation in whatever way she wishes, but cannot touch
the allocation of any other agent. The shuffle envy ratio of a given allocation is the maximum
shuffle envy ratio over all pairs of agents. Note that IHR must be at least as large as the shuffle
envy ratio, since the modified allocations that shuffle envy allows are also allowed by the definition
of IHR.

Observations. Examining the graphs, we again see that IHR is highly correlated with the
shuffle envy ratio. Taken together with the private goods division results in the previous subsection,
these results give us confidence that IHR is capturing an intuitive and meaningful aspect of fairness.
In terms of the algorithms that we examine, Nash, PR4A, and round robin all perform well. TPMS
does well on ICLR 2018 and CVPR 2018 data, but relatively badly on CVPR 2017. Finally, CoBRA
performs much worse than all other algorithms in terms of both IHR and shuffle envy ratio.

6.3 Participatory Budgeting

Our final setting is participatory budgeting, where the goal is for a city to select a subset of proposed
projects to fund subject to a budget constraint, based on residents’ preferences. Specifically, there

9This factor is chosen to align it with the definition of IHR, which also measures half of the ratio between the
maximum utility of agent i in any outcome that hurts no agent but agent j and the current utility of agent i.
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is a set of projects, each with an associated cost. Each voter casts an approval ballot, approving a
subset of the projects. The outcome is a set of projects to fund whose total cost is at most a given
budget.

Datasets. We use real participatory budgeting elections from Pabulib.org [41]. We focus on
five Polish cities: Warsaw, Gdynia, Lodz, Wroclaw, and Zabrze. For tractability, we use the 321
elections with less than 15 projects on the ballot. We consider two common models of voter utility:
approval utilities, in which the utility that a voter has for an outcome is the number of her approved
projects that are funded, and cost utilities, in which her utility is the total cost of her approved
projects that are funded. We define a voter’s utility for having none of her approved projects funded
to be ε instead of 0.10 This avoids infinite harm ratios and arguably better reflects reality, where
we would expect voters to derive at least a small amount of utility even for projects that they did
not vote for.

Measurements. When the number of agents is large, as in citywide elections, the individual
harm ratio tends to be very small because it is hard for to find an alternative outcome that makes
one agent better off, hurts at most one other agent, and keeps all the remaining (many) agents at
least as happy. For this reason, we instead evaluate the group harm ratio in this section, which is
always at least as large as the individual harm ratio. However, note that it is easy for a small group
of agents to be harmed by the presence of a larger group. For example, a single agent who has no
approved projects funded gets utility ε, but can increase her utility by a very large multiplicative
factor if she is allowed to hurt all other agents and simply choose her most preferred budget-feasible
set of projects to fund.

Recognizing this, we examine the average GHR as a function of the size of the harmed group S.
By the above argument, small groups S will often produce large GHR, but these are violations that
an election organizer might be comfortable with in a large election; unfairness towards a large group
of agents, on the other hand, remains undesirable. Technically, we measure GHR as in Definition 9,
but only taking maximum over harmed groups S of a fixed size.

In Figure 5, we plot the average (over elections) of the maximum group harm ratio across all
(S, T ) subject to the condition that |S|/n > x. For comparison, in Figure 6, we consider the full
distribution of agent utilities, normalized by their maximum possible utility.11 For every instance,
we order the agents by this normalized utility, and take the average over instances (we give voter
percentile on the x axis to control for instances having different numbers of agents).

Rules. We consider five commonly studied rules. Global-U is the utilitarian welfare-maximizing
solution, Greedy-U is its greedy version that is more commonly used in practice [2], and Nash
denotes the MNW rule.12 We also consider the method of equal shares (MES) [36] and Phragmen’s
sequential rule (see, e.g., [7]). Importantly, since MES and Phragmen might return an outcome
that does not exhaust the allowed budget, we complete the outcomes of these rules into maximal
solutions using the greedy utilitarian method (which adds budget-feasible unselected projects one
by one, in the decreasing order of their utilitarian welfare). MES is considered a very attractive
rule for participatory budgeting and is known to satisfy compelling proportionality properties, while
the utilitarian rules are typically considered to be less fair than other rules due to their focus on

10We set ε = 10−2 for approval utilities, and ε = 10−3B for cost utilities, where B is the total budget.
11The ratio of an agent’s utility to her maximum possible utility is the approximation of proportionality for her.
12Greedy-U selects projects one by one in decreasing order of their utilitarian welfare, skipping over any project

that cannot be added due to the budget constraint. In practice, instead of MNW, its two close approximations,
namely proportional approval voting (PAV) and maximum smoothed Nash welfare, are more often used due to their
better axiomatic properties. In Appendix B, we show that these rules have performance similar to that of MNW.
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Figure 5: Plots show normalized public group envy ratio as a function of the minimum size of the
envious group of agents S.
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Figure 6: Plots show percentiles of voters proportional utilities (fraction of one’s maximum feasible
utility) averaged over all PB instances.

satisfying a majority of voters, potentially at the expense of a minority.
Observations. In Figure 5, we see that the group harm ratio is high when small harmed groups

S are included, but decreases steadily as only larger harmed groups are considered. Under all rules
and both utility models, only a very small group harm ratio remains for harmed groups of size
larger than 0.5n. Perhaps most interesting is the relative performance of the algorithms. For both
utility models, Nash yields the smallest harm ratios, closely followed by Global-U, the utilitarian
solution. Somewhat surprisingly, MES and Phragmen, the two rules that are considered more fair
in the literature, give outcomes with significantly higher GHR. The reason is clear when considering
Figure 6, which shows a clear dominance of the utility vectors achieved by Nash and Global-U over
those achieved by MES and Phragmen, and it is this dominance that is being captured by the
group harm ratio values in Figure 5.

7 Discussion

Our proposal of novel fairness criteria opens the doors for a variety of extensions that have been
popular in the fair division literature lately. For example, in integral settings where the utility
set is discrete, can we guarantee “up to one” relaxations of our fairness criteria? Can the results
be extended to weighted agents with unequal entitlements? Theorem 2 goes through with the

usual weighted extensions of MNW (arg maxo
∏
i∈N ui(o)

wi) and PF (maxo′
∑

i∈N wi ·
ui(o

′)
ui(o)

6 1),
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along with a natural weighted extension of group harm ratio, where the factor |S|
|S∪T | is replaced by

w(S)
w(S∪T ) (with w(C) ,

∑
i∈C wi). However, extending Theorem 3 or considering the discrete case

can be interesting. Finally, what can we say about the public bads model, where each agent has a
non-positive utility for every outcome?
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Appendix

A Detailed Significance and Implications

Simpler proof of envy-free and Pareto optimal cake-cutting. We prove that maximum
Nash welfare (MNW) achieves group harm ratio (GHR) under compactness and upper convexity
of the feasible utility set U (Theorem 2). As we elaborate in Section 4, for the prototypical fair
division model of cake-cutting (formally defined in Section 2.2), these conditions hold [19] and GHR
implies envy-freeness (EF) and Pareto optimality (PO). Thus, our result provides an alternative
proof of the celebrated result that MNW achieves EF+PO in cake-cutting [47, 38].

Beyond using the result of Dubins and Spanier [19] that the feasible utility set U is closed and
convex for cake-cutting, our proof is fully elementary, e.g., teachable in a graduate course on the
subject. Its domain-agnostic nature alleviates the need for defining domain-specific terminology
(e.g., Borel sets and σ-algebra for cake-cutting), once closedness and convexity of U (a subset of
Rn) has been established. Finally, it is much more straightforward than the proof of existence of
an EF+PO allocation by Weller [47], which uses Kakutani’s fixed point theorem, and the proof
of MNW satisfying EF+PO by Segal-Halevi and Sziklai [38], who first establish an equivalence
between MNW and a market equilibrium concept called s-CEEI.

MNW allocations are 2-EF and PO when swaps are allowed. Hylland and Zeckhauser
[29] show existence of EF and PO outcomes in the one-sided matching setting, where n agents
need to be (fractionally) matched to n items. This is equivalent to allocating n private goods to
n agents but with the additional constraints that each agent receives a total fraction of 1 from all
the goods. Very recently, Troebst and Vazirani [45] show that finding a fractional matching that
is EF and PO is PPAD-complete, and that the MNW solution – which can be approximated in
polynomial time – achieves 2-EF. We recover this result as a direct corollary of Theorem 2 (MNW
=⇒ 1-IHR) and that 1-IHR implies 2-EF in the one-sided matching setting. To observe the latter
implication, suppose by contradiction that a 1-IHR matching is not 2-EF, and the pair of agents i, j
witness a violation of 2-EF. By swapping the bundles of i and j, we obtain another matching that
the envious agent more than doubles their utilities without hurting anyone but the envied agent,
thus failing 1-IHR. The key observation here is that while we are not allowed to take the union of
the allocations to agents i and j, and give it entirely to agent i (as we did in cake-cutting), we are
allowed to swap the allocations to agents i and j, and this is sufficient for 1-IHR to imply 2-EF.

Novel fair division implications. Theorem 2 is connected to a series of works that establish the
existence of EF+PO allocations in allocation of homogeneous divisible goods with strongly mono-
tone preferences and a different additional condition: convex preferences [46], a unique allocation
inducing any given (weakly) PO utility vector [46], the set of allocations inducing any given PO
utility vector being convex [43], or the last set being a contractible space [18]. Our result provides
the existence of a IHR +PO (in fact, a proportionally fair) allocation under a different condition
of compactness and upper convexity of utility set U .

Chaudhury et al. [11] show that a proportionally fair (PF) outcome exists under three conditions:
O is non-empty, compact and convex; each ui is continuous; and the set of outcomes maximizing
any non-negative weighted welfare, arg maxo∈O

∑
i∈N wiui(o), is convex. This is one of the most

general PF existence result known. Theorem 2 is not subsumed by their result, and points to the
possibility of an even more general result for the existence of a PF outcome.
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Dall’Aglio [16] studies a model that generalizes even cake-cutting, in which each point on the
cake (represented as [0, 1]) can be “divided” between the agents, each agent receiving a fraction of
the point. Formally, an allocation is given by φ = (φi)i∈N with φi : [0, 1] → [0, 1] for each i ∈ N
and

∑
i∈N φi(x) = 1 for all x ∈ [0, 1]; here, φi(x) denotes the fraction of point x allocated to agent

i. The utility to agent i is given by
∫
x φi(x)fi(x)dx, where fi is a density function of agent i.

Dall’Aglio [16] proves that the utility set in this model is compact and convex, allowing Theorem 2
to go through to establish the existence of an EF+PO allocation.

Caragiannis et al. [9] study a model of allocating homogeneous divisible goods, but where the
utility function of an agent is weakly monotone over the fraction of a good allocated to her and only
additive across the goods. They consider randomized allocations by evaluating the expected utility
of the agents. Instead of EF+PO, they seek an allocation satisfying the weaker guarantee of EF and
Pareto optimality within the set of EF allocations — a combination which is trivially guaranteed
to be satisfiable. When the agent utilities are concave over the fraction of a good allocated,
compactness and convexity of the utility set U follows and Theorem 2 implies the existence of
a deterministic IHR +PO allocation. IHR does not necessarily imply EF beyond fully additive
utilities, so this is another relaxation of EF+PO, but one that is apriori not trivially satisfiable.

Cole and Tao [13] study a resource allocation model where an allocation is a lottery over a given
finite set of deterministic allocations. Agents have arbitrary utilities for deterministic allocations
and calculate expected utilities for a randomized allocation. They show the existence of an EF+PO
allocation under a swappability condition on the set of deterministic allocations. Theorem 2 implies
the existence of a IHR +PO allocation (which is an incomparable guarantee to EF+PO) in their
model without any swappability condition.

Envy in public outcomes. Finally, our work significantly expands the reach of envy-freeness
(or more specifically, the idea of a pairwise notion of individual fairness) to a much larger set of
collective decision making domains. In Section 5, we point out an open question of computing a IHR
outcome in voting (where n voters express cardinal preferences over m candidates and a lottery
over the candidates is selected) in polynomial time. One can also now explore IHR in domains
where the concept of envy has not been explored (but other fairness notions have been), such as
clustering [12, 31], classification [28], and federated learning [11].

B Additional Experiments

For the experiments in the approval-based participatory budgeting setting, in Figure 7, we compare
the Nash welfare-maximizing solution to its two close approximations:

• Proportional Approval Voting Rule (PAV), which selects the set of projects O that maximizes∑
i H(ui(O)) where H(0) = 0 and H(k) =

∑k
k′=1

1
k′ for k ∈ N is the kth harmonic number.

• Maximum Smoothed Nash Welfare Rule (Smooth-Nash), which selects the set of projects
that maximizes

∑
i log(ui(O) + 1).

All three rules achieve similar results.
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Figure 7: Comparison among the Nash welfare-maximizing solution (Nash), Proportional Approval
Voting (PAV), and the maximum smoothed Nash nash solution (Smooth-Nash), based on partici-
patory budgeting datasets with approval utilities.
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