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Abstract

We consider the problem of fairly dividing a collection of indivisible goods among a set of
players. Much of the existing literature on fair division focuses on notions of individual fairness.
For instance, envy-freeness requires that no player prefer the set of goods allocated to another
player to her own allocation. We observe that an algorithm satisfying such individual fairness
notions can still treat groups of players unfairly, with one group desiring the goods allocated to
another. Our main contribution is a notion of group fairness, which implies most existing notions
of individual fairness. Group fairness (like individual fairness) cannot be satisfied exactly with
indivisible goods. Thus, we introduce two “up to one good” style relaxations. We show that,
somewhat surprisingly, certain local optima of the Nash welfare function satisfy both relaxations
and can be computed in pseudo-polynomial time by local search. Our experiments reveal faster
computation and stronger fairness guarantees in practice.

1 Introduction
Algorithms have come to play an increasingly prominent role in our everyday lives, augmenting, or
even replacing, traditional human decision making. As our dependence on algorithms in high-stakes
domains has increased, the spotlight has been placed on the potential for algorithms to exacerbate
inequalities, highlighting the need to design algorithms with fairness in mind to ensure that some
segments of the population are not treated differently than others.

While fairness is a relatively new design criterion in many areas of algorithmic decision making,
it has a long history of study in the literature on resource allocation, in which a set of goods or re-
sources must be divided among players with competing needs. In the context of resource allocation—
often referred to as fair division—fairness is usually considered at an individual level. For instance,
the classic definition of envy-freeness [14] requires that no player should prefer another’s allocation
to her own. When goods are indivisible, envy-freeness cannot always be guaranteed; consider a sin-
gle good that must be given to one of two players. Therefore, it is often relaxed to envy-freeness “up
to one good,” which allows for a player to envy another as long as this envy can be eliminated by
removing a single good from the envied player’s bundle.

In this paper, we ask whether such individual-level guarantees can be strengthened to ensure that
algorithmically generated allocations are fair with respect to arbitrary segments of the population.

∗A preliminary version of this paper appears in AAAI’19.
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We consider a setting in which a set of indivisible goods must be divided among players with hetero-
geneous, additive preferences. As an example, consider a manager in a corporate setting who needs
to allocate resources (interns, conference rooms, time slots for shared machines, equipment, etc.) to
employees. She may want to simultaneously ensure that no business team envies another team, that
the women do not envy the men, that people in one location do not envy those in another, that people
in one role do not envy those in another, and so on. Envy-freeness alone is not enough in this setting,
in the sense that an allocation that is envy-free up to one good may still yield significant levels of
inequality and envy between groups of players.

To address this problem, we introduce a notion of group fairness. Loosely speaking, an alloca-
tion is said to be group fair if no group of players would prefer to receive and redistribute among
themselves the goods allocated to any other group in place of the goods that they were originally
allocated, modulo some scaling to account for possibly different group sizes. Group fairness is a
stronger property than envy-freeness, so it is not satisfiable in general. We therefore relax group fair-
ness by requiring that any unfairness can be eliminated by removing a single good per player from
the envied allocation. We obtain two distinct relaxations by distinguishing between removing one
good per player in the more favored group before redistributing goods, and removing one good per
player in the less favored group after goods have been redistributed among them.

Our main theoretical result is algorithmic. We first show that certain local optima of the Nash
welfare function (the product of players’ utilities) satisfy both relaxations of group fairness. In par-
ticular, we show this for locally Nash-optimal allocations, in which transferring a single good from
one player to another does not increase the product of those players’ utilities. Thus although local
Nash optimality only imposes a requirement on pairs of individuals, it is strong enough to guarantee
fairness to groups of arbitrary size.

We then show that a locally Nash-optimal allocation, and therefore an allocation satisfying both
group fairness relaxations, can be computed in pseudo-polynomial time via a local search algorithm.
In contrast, we show that the problem of checking whether an arbitrary given allocation satisfies
either relaxation is coNP-hard. In experiments on real and synthetic data, we show that the local
search algorithm converges quickly, and is likely to output an efficient allocation.

Related Work. Several definitions of fairness at a group level have been considered in the resource
allocation literature. Most closely related to ours is the work of Berliant et al. [7] (and the later work
of Husseinov [18]), who defined group envy-freeness, an extension of envy-freeness to pairs of
equal-sized groups, in a setting with a single divisible good. Our notion of group fairness extends
group envy-freeness to cover groups of different sizes, but since we consider indivisible goods, our
results are technically not comparable to theirs even if we restrict attention to groups of equal size.
Aleksandrov and Walsh [2] defined an alternative notion of group envy-freeness between groups
of possibly unequal sizes. They extended individual preferences to group preferences by taking the
arithmetic mean of utilities of group members, which requires interpersonal comparison of utilities.
We avoid such comparisons by working only with individual utilities. Todo et al. [30] also extended
envy-freeness to groups, but considered mechanisms with monetary transfers.

Barman et al. [6] defined a notion of groupwise maximin share, which strengthens the maximin
share guarantee [8]. Their definition is of a different flavor than ours. In particular, they provide an
individual-level fairness guarantee relative to all subgroups of players, while we provide guaran-
tees between groups. Finally, several papers considered the problem of fair division among specific
groups that are fixed in advance [27, 26, 23, 29] considering different notions of fairness, again of a
different flavor than ours.

This line of work serves as a complement and point of contrast to research on algorithmic fairness
in other areas of AI, including the burgeoning subfield of fairness in machine learning. Our definition
of group fairness is stronger than individual fairness, as it requires fair treatment for groups of all

2



sizes, individuals included. In contrast, in machine learning, individual fairness is too strong as
decisions that are unfavorable to some individuals are typically unavoidable. Thus, it is common
to introduce group-level parity metrics as weaker notions than individual fairness. These metrics
ensure that outcomes are fair on average across pre-specified demographic categories, often defined
by protected attributes [21, 9, 16, 19, 1].

Kearns et al. [20] argue that algorithms that are fair only to pre-specified groups are at risk of
“fairness gerrymandering,” in which the algorithm appears to be fair to each group while violating
fairness constraints on particular structured subgroups. They and others [17, 31] have proposed al-
gorithms that provide or audit for fairness with respect to exponentially many groups. In a similar
spirit, our group fairness definition requires fairness with respect to all possible groups at once.

2 Preliminaries
Throughout the paper, we use the notation [K] to denote the set {1, . . . ,K}. For vectors x and y of
length K, we say that x Pareto dominates y if xk ≥ yk for all k ∈ [K], with at least one inequality
strict, and we say that x strictly dominates y if xk > yk for all k ∈ [K]. For set X and element t, we
use X + t to denote X ∪ {t} and X − t to denote X \ {t}.

Let M be a set of m goods, and N a set of n players. Each player i has a valuation vi : 2M →
R+ ∪ {0} over subsets of goods. For a single good g ∈ M , we slightly abuse notation and let
vi(g) = vi({g}). We assume that players have additive valuations, so that vi(Z) =

∑
g∈Z vi(g) for

all Z ⊆M and vi(∅) = 0. Without loss of generality, we assume that each good is positively valued
by at least one player, and each player positively values at least one good.

An allocationA is a partition of the goods inM into (possibly empty) bundlesAi for each player
i. An allocation A is non-wasteful if g ∈ Ai implies vi(g) > 0 for all g.

Much of the literature on fair division is concerned with finding allocations that satisfy particular
notions of fairness. One basic notion, proportionality, requires that each player receive a set of goods
that she values at least 1/n as much as she values the entire set of goods [28].

Definition 1 (Proportionality). An allocationA is proportional if for all i ∈ N , vi(Ai) ≥ (1/n)vi(M).

Envy-freeness [14], a stronger notion, says that no player should prefer another’s allocation to
her own.

Definition 2 (Envy-freeness). An allocation A is envy-free if for all i, j ∈ N , vi(Ai) ≥ vi(Aj).

Since envy-freeness cannot always be satisfied, relaxations have been proposed. Envy-freeness
up to one good allows a player i to envy a player j, but only if the removal of a single good from j’s
bundle would remove the envy [22]. Such an allocation is guaranteed to exist.

Definition 3 (Envy-freeness up to one good). An allocation A is envy-free up to one good (EF1) if
for all i, j ∈ N such that Aj 6= ∅, there exists a good g ∈ Aj such that vi(Ai) ≥ vi(Aj − g).

Finally, envy-freeness up to the least valued good says that if i envies j, the removal of any good
that i values positively from j’s bundle should eliminate the envy [10]. It is an open question whether
such an allocation always exists.

Definition 4 (Envy-freeness up to the least valued good). An allocation A is envy-free up to the
least valued good (EFX) if for all i, j ∈ N such that Aj 6= ∅, and all g ∈ Aj with vi(g) > 0,
vi(Ai) ≥ vi(Aj − g).

In addition to fairness, it is desirable to produce economically efficient allocations. The standard
notion of efficiency is Pareto optimality, which says that it should not be possible to improve a
player’s utility without harming someone else.

3



Definition 5 (Pareto optimality). An allocationA is Pareto optimal if for all allocationsA′ such that
vi(A

′
i) > vi(Ai) for some i ∈ N , vj(A′j) < vj(Aj) for some j ∈ N .

The final notion we require is local Nash optimality. An allocation is locally Nash-optimal if it is
non-wasteful and transferring a single good from one player to another does not increase the product
of their utilities. Note that local Nash optimality does not imply Pareto optimality.

Definition 6 (Locally Nash-optimal allocation). An allocation A is locally Nash-optimal if for all
i, j ∈ N and g ∈ Aj , vj(g) > 0 and vi(Ai) · vj(Aj) ≥ vi(Ai + g) · vj(Aj − g).

3 Group Fair Allocations
In this section, we move beyond the standard fairness notions that operate on individuals or pairs
of players and introduce a new definition of group fairness. Our definition is modeled on envy-
freeness. It requires that no group of players S envy another group T , where S envies T if the
players in S could redistribute the goods allocated to T among themselves in a way that yields a
Pareto improvement, adjusting appropriately for any difference in the group sizes. Note that our
definition does not require S and T to be disjoint.

Definition 7 (Group Fairness). An allocation A is group fair if for every non-empty S, T ⊆ N and
every partition (Bi)i∈S of ∪j∈TAj , (|S|/|T |) · (vi(Bi))i∈S does not Pareto dominate (vi(Ai))i∈S .

Group fairness is a strengthening of several properties from the fair division literature. Group
envy-freeness [7] requires the no-envy condition in the definition to hold when |S| = |T |, while
envy-freeness requires it to hold only when |S| = |T | = 1. The core [14, 12, 13] requires that it hold
when T = N , while proportionality requires that it hold when |S| = 1 and T = N . Finally, Pareto
optimality requires the condition when S = T = N .

When goods are divisible, it is easy to check that the globally Nash-optimal allocation, which
coincides with a strong form of competitive equilibrium from equal incomes [25], satisfies group
fairness. However, when goods are indivisible, it cannot be guaranteed; this is easy to see from
the simple example with a single good and two competing players, one of whom necessarily gets
nothing. We therefore turn to relaxed notions.

3.1 Two Relaxations of Group Fairness
Before presenting the relaxations, let us step back to consider what an “approximately group fair”
allocation should look like. Consider the example in Figure 1. Here there are five players: one of type
“circle” who values only circle goods (with zero value for squares), two of type “square” who value
only square goods (with zero value for circles), and two of type “flex” who are more flexible and
value both squares and circles equally. There are four goods: two circles and two squares. Because it
is impossible to give a good to every player, there is no envy-free allocation, and therefore no group
fair allocation. However, the allocation A shown in the figure, which gives one circle and one square
to each of the flex players, satisfies EF1 and EFX. According to these criteria, we would thus call
this allocation fair.

However, we argue that allocation A is not fair to all groups of players, in a way that we will
soon make precise. Suppose group S consists of the circle player and one square player, and let T
consist of both flex players. Collectively, players in S have demand for all of the goods that have
been allocated to players in T . In fact, if T ’s goods were transferred to S and distributed to the
players who value them most, each player in S could be made significantly (that is, more than “up to
one good”) happier than they are under allocation A. We argue that an (approximately) fair solution
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Figure 1: An arguably unfair allocation satisfying EF1/EFX.

should split the goods more evenly between sets S and T to rectify this asymmetry, and we would
like our “up to one good” relaxation of group fairness to capture this idea.

As a first attempt, one might hope to require that no set S envy another set T (modulo rescaling
for size) once a single good has been removed from T ’s allocation. However, it is easy to see that
any relaxation that removes only a single good is still too strong to be satisfiable in general. Suppose
that there are n identical players (for any even n) and 3n/2 identical goods. Intuitively, the fairest
allocation would give half of the players one good each (call these players S), and the other half two
each (call these T ). Even if we remove a single good from a player in T , the remaining n− 1 goods
allocated to T can still be distributed among S in a way that yields a Pareto improvement. Indeed,
the same problem arises if we remove any fewer than n/2 = |T | = |S| goods. Therefore, minimal
relaxations of group fairness must remove one good per player.

There are two natural ways to do this: remove one good from each player in T before the set
of goods is handed over to S (“before”), or remove one good from each player in S after the goods
have been redistributed among them (“after”). We consider both in turn.

Figure 2: Examples illustrating the necessary technical conditions in the definitions of GF1A (left)
and GF1B (right).

Group Fairness up to One Good (After).

We first present the version of our relaxation in which goods are removed from each player in S after
redistribution occurs. To motivate our specific choice of definition, consider the example shown in
Figure 2 (left) with two circle players, four square players, one circle good, and three square goods.
We would argue that the allocationA that is pictured is the unique fair allocation, up to permutations
of identical players; all other non-wasteful allocations involve one player receiving multiple goods
while another player of the same type receives none. Thus, if we want our relaxed notion of group
fairness to be satisfiable, it must be satisfied by this allocation.

Consider sets S1 and T . These sets are witness to a violation of group fairness, because T ’s
goods can be reallocated among S1 such that, even after scaling by a factor of |S1|/|T | = 1/3, S1

has an allocation that Pareto improves over the original. In fact, even if we remove a good from
the player in S1, she would receive two goods that she values, still a Pareto improvement. Thus
relaxing the group fairness definition by removing a good from each player in S1 is not sufficient
to guarantee existence. To get around this technicality, which is due to the way in which scaling
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occurs, we consider a slight variant of the same idea: instead of removing a single good from the
bundle Bi received by player i in group S1 and then comparing the (scaled) value of the remaining
bundle to the (unscaled) value of the original allocation, we add this good to the original allocation
and compare its (unscaled) value to the (scaled) value of the whole Bi.

There is one other technicality our definition must account for. Consider sets S2 and T . When we
partition T ’s goods among players in S2 as pictured, we have (|S|/|T |) · (vi(Bi))i∈S2

= (0, 4/3),
which Pareto dominates the utilities under the original allocation to S2 even if each player in S2

were given a single good from group T . This problem arises from the fact that the circle player is
essentially serving as a dummy player; she does not value T ’s goods at all, yet still inflates the size
of the set S2, changing the scaling factor without meaningfully changing the fairness constraint that
we want to capture. We can avoid this issue by requiring that the partitionB must give positive value
to all players in the set S, which rules out sets with dummy players included.

We are now ready to formally define our first relaxation of group fairness.

Definition 8 (GF1A). An allocation A satisfies GF1A if for every non-empty S, T ⊆ N and every
partition (Bi)i∈S of ∪j∈TAj such that vi(Bi) > 0 for all i ∈ S, there exists a good gi ∈ Bi for each
i ∈ S such that (|S|/|T |) · (vi(Bi))i∈S does not Pareto dominate (vi(Ai + gi))i∈S .

Returning to the example from Figure 1, we see that, as desired, the pictured allocation fails to
satisfy GF1A, as witnessed by the set S consisting of the circle player and one square player and the
set T consisting of the two flex players. To provide more intuition for what this definition does and
does not allow, we point out that the set S′ consisting of the two square players does not serve as a
witness with the same set T . Loosely speaking, this is because the set S′ collectively has no demand
for circle goods, and so the allocation of the circle goods to players in T does not preclude these
players from also receiving the square goods.

Group Fairness up to One Good (Before).

In our second relaxation of group fairness, we consider removing one good from the bundle of each
player in set T before T ’s goods are redistributed among players in S, requiring that the (scaled)
values of the resulting bundles do not provide a Pareto improvement for S.

Once again, the most straightforward definition would be susceptible to dummy players in S
inflating the scale factor without impacting the underlying fairness of the allocation, as illustrated
in Figure 2 (right). Here the allocation A is the only intuitively fair and non-wasteful allocation, up
to permutations of identical players, so it must satisfy our relaxation if we want the relaxation to
be satisfiable in general. If we remove a single good from the one player in T and reallocate her
remaining good to S as pictured, both players in S would get the same value as they would under
allocation A, but since |S|/|T | = 2, their scaled values under partition B would Pareto dominate
their values under A. Like before, we avoid this problem by considering only pairs S and T for
which it is possible to partition T ’s goods among S so that all players in S receive positive value.

Definition 9 (GF1B). An allocation A satisfies GF1B if for every non-empty S, T ⊆ N for which
there exists a partition (Ci)i∈S of ∪j∈TAj with vi(Ci) > 0 for all i ∈ S, there exists a good gj ∈ Aj

for every j ∈ T with Aj 6= ∅ such that for every partition (Bi)i∈S of ∪j∈TAj \ ∪j∈T :Aj 6=∅{gj},
(|S|/|T |) · (vi(Bi))i∈S does not Pareto dominate (vi(Ai))i∈S .

Once again it is easy to verify that the allocation pictured in Figure 1 fails to satisfy GF1B, as
witnessed by the same sets S and T as before. And just as it was with GF1A, the set S′ consisting
of the two square players does not serve as a witness with the same set T .

Notice that in the definition of group fairness, the no-envy condition is agnostic about the ex-
act allocation Aj for each j ∈ T ; only ∪j∈TAj is relevant. While this is also true for the GF1A
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relaxation, it is not true for GF1B since we require that only a single good be removed from each
player in T . An alternative, weaker definition of GF1B would be to remove |T | goods in total from
players in T , without the requirement that one is removed from each player. (See the appendix for
an example where the two definitions differ.) We present the stronger definition here, but note that
all of our results hold for the weaker version also.

3.2 A Comparison of GF1A and GF1B.

Figure 3: Allocations that satisfy GF1A but not GF1B (left) and GF1B but not GF1A (right).

To gain further intuition, we briefly discuss examples of cases in which GF1A and GF1B differ,
as shown in Figure 3. The players in these examples are again of type circle, square, or flex, but the
goods in Figure 3 (left) are more general. A circle (respectively, square) with a label v is valued v
by players who value circles (respectively, squares), and 0 by other players. A pentagon labeled v is
valued v by all.

In Figure 3 (left), S and T are witness to a violation of GF1B. After removing any good from
the player in T , it is still possible to give one of the players in S a value of at least 4 and the other a
value of 4.1. Since |S|/|T | = 2, this violates GF1B. However, allocation A does satisfy GF1A.

In Figure 3 (right), groups S and T are witness to a violation of GF1A. When T ’s goods are
redistributed to the players in S who value them most, both players in S end up better off even with
a single good removed. However, it can be verified that A satisfies GF1B.

GF1A and GF1B both imply “up to one good” style variants of the core and group envy-freeness.
They additionally both imply proportionality up to one good [11] and envy-freeness up to one
good [8, 10].

In the special case in which all players have identical valuations, stronger implications hold.
In this case, GF1A is stronger than GF1B, in the sense that any GF1A allocation satisfies GF1B
but the converse does not hold. In fact, GF1B becomes equivalent to EF1 in this special case. To
further complete the picture, the relationship between our group fairness relaxations and local Nash
optimality explored in the next section allows us to show that all three properties are implied by
EFX.

Theorem 1. When all players have identical valuations, EFX ⇒ GF1A ⇒ GF1B, and GF1B ⇔
EF1, where⇒ is strict logical implication and⇔ is logical equivalence.

Proof. We first show that envy-freeness up to the least valued good is equivalent to local Nash
optimality. By Theorem 3, this establishes the first implication.

Lemma 2. For identical valuations, EFX is equivalent to local Nash optimality.

Proof. Let v be the common valuation function. An allocation A is locally Nash optimal if and only
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if for all i, j ∈ N ,

∀x ∈ Aj : (v(Ai) + v(x))(v(Aj)− v(x)) ≤ v(Ai)v(Aj)

⇔ ∀x ∈ Aj : v(x)(v(Aj)− v(Ai)− v(x)) ≤ 0

⇔ ∀x ∈ Aj s.t. v(x) > 0 : v(Ai) ≥ v(Aj)− v(x).

Note that the final set of inequalities is precisely the definition of EFX.1

GF1A and GF1B trivially imply EF1 by definition. Hence, it remains to show that a) GF1A is
strictly stronger than EF1, and b) EF1 implies GF1B.

To show the first part, consider an instance with 4 players and 6 goods, where four goods are
worth 1 and two goods are worth 2. Consider the allocation in which each player gets a single good
worth 1, and two of the players (say players 3 and 4) additionally get one good worth 2. It is easy
to check that the allocation is EF1. However, players in S = {1, 2} can take the goods allocated to
players in T = {3, 4}, and redistribute among themselves so that player 1 receives both goods worth
2, and player 2 receives both goods worth 1. Now, removing a single good from each bundle would
still yield a Pareto improvement for S, violating GF1A.

Next, we show that EF1 implies GF1B. Let v be the common value function. Suppose allocation
A is EF1. Consider arbitrary sets of players S, T . For j ∈ T , let Āj = Aj \ gj , where gj ∈
arg maxg∈Aj

v(g). Suppose for contradiction that there exists a partition of ∪j∈T Āj into {Bi}i∈S
that gives a Pareto improvement for S. Then, we have that for all i ∈ S, |S|/|T | · v(Bi) ≥ v(Ai),
and at least one inequality is strict. Thus, we have∑

i∈S
v(Ai) <

|S|
|T |
·
∑
i∈S

v(Bi) =
|S|
|T |
·
∑
j∈T

v(Āj).

However, due to EF1, we have that for all i ∈ S, j ∈ T , v(Ai) ≥ v(Āj). Summing them all up, we
have

|T | ·
∑
i∈S

v(Ai) ≥ |S| ·
∑
j∈T

v(Āj),

which is the desired contradiction.

4 Local Nash Optimality Implies GF1A/B
Our desire to relax the notion of group fairness stemmed from the fact that group fair allocations may
not exist in general when goods are indivisible. In this section, we show that both GF1A and GF1B
allocations are always guaranteed to exist. In particular, every locally Nash-optimal allocation is
guaranteed to satisfy both GF1A and GF1B. This result is surprising given that local Nash optimality
is a local property, involving only pairs of players, while GF1A and GF1B are global properties
involving arbitrary player groups.

Theorem 3. Every locally Nash-optimal allocation A satisfies GF1A and GF1B.

The proof follows a similar structure to the proof due to Caragiannis et al. [10] that Nash op-
timality implies EF1.2 We observe that instead of removing a good from player j that depends on

1We note that this matches the original definition of envy-freeness up to the least valued good by Caragiannis et al. [10],
where player i should not envy j if, among all goods in player j’s bundle that player i values positively, we remove a good
that player i values the least. Some later work (e.g., Plaut and Roughgarden [24]) dropped the positive value condition. For
identical valuations, we could drop zero valued items, and the two conditions would coincide.

2While Caragiannis et al. [10] state their result for globally Nash-optimal allocations, an identical proof holds for locally
Nash-optimal allocations too.
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the identity of the envying player i, the same good gj ∈ Aj can be removed irrespective of i. This
observation is what allows us to extend the proof to groups. (It also implies some slightly stronger
results for individual fairness, which we discuss in Section 7.)

Proof of Theorem 3. Here we provide the proof for GF1A. The proof for GF1B follows a similar
outline and appears in the appendix.

Let A be a locally Nash-optimal allocation. Assume for contradiction that A does not satisfy
GF1A, and let (S, T ) be groups with smallest |T | that are witness to the violation of GF1A. Note
that this implies |Aj | ≥ 1 for all j ∈ T , which in turn implies that vj(Aj) > 0 by non-wastefulness;
if |Aj | = 0 for some j ∈ T , (S, T − j) would also be witness to the violation of GF1A.

Fix a partition (Bi)i∈S of ∪j∈TAj for which the GF1A constraint is violated. For the constraint
to be violated, it must be the case that vi(Bi) > 0 for all i ∈ S, which implies that Bi 6= ∅ for
all i ∈ S. For all i ∈ S, let g∗i ∈ arg maxg∈Bi

vi(g). Then, we have vi(g∗i ) > 0, and hence,
vi(Ai + g∗i ) > 0.

With a little algebraic simplification, we can rewrite the final condition from Definition 6 as
vi(Ai + g) · vj(g) ≥ vi(g) · vj(Aj). Then for all i ∈ S, j ∈ T , and g ∈ Bi ∩ Aj , vi(g) · vj(Aj) ≤
vi(Ai + g) · vj(g) ≤ vi(Ai + g∗i ) · vj(g), where the second transition follows from the definition of
g∗i . Rearranging, we have

vi(g)

vi(Ai + g∗i )
≤ vj(g)

vj(Aj)
.

Summing over i ∈ S, j ∈ T , and g ∈ Bi ∩Aj , we obtain∑
i∈S

vi(Bi)

vi(Ai + g∗i )
≤ |T |.

Since the partition B violates the constraint, (|S|/|T |) · (vi(Bi))i∈S Pareto dominates (vi(Ai +
g∗i ))i∈S , and so vi(Bi)/vi(Ai + g∗i ) ≥ |T |/|S| for each i ∈ S, with at least one inequality strict.
This implies that

∑
i∈S vi(Bi)/vi(Ai + g∗i ) > |T |, a contradiction.

Since Nash-optimal allocations always exist, this immediately implies the existence of alloca-
tions that satisfy both GF1A and GF1B. In the next section, we provide an algorithm for computing
such an allocation.

Corollary 4. An allocation A satisfying both GF1A and GF1B always exists.

5 Complexity Results
We have shown that any locally Nash-optimal allocation satisfies GF1A and GF1B. We now show
that such an allocation can be computed in pseudo-polynomial time.

We consider a simple local search algorithm that works as follows. Begin with an arbitrary allo-
cation A. At every step, check for a violation of local Nash optimality: that is, find a pair of players
i, j ∈ N and a good g ∈ Aj such that either vj(g) = 0 and vi(g) > 0, or transferring the good from
Aj to Ai increases the product of utilities of i and j (i.e., vi(Ai +g) ·vj(Aj−g) > vi(Ai) ·vj(Aj)).
If such a violation exists, transfer the good. Otherwise, terminate. We show that this algorithm ter-
minates at a locally Nash-optimal allocation in a pseudo-polynomial number of steps.

Theorem 5. A locally Nash-optimal allocation can be computed in pseudo-polynomial time.

Proof. First, we argue that the algorithm produces a locally Nash-optimal allocation upon termina-
tion. Hence, for each pair of players i, j ∈ N and each good g ∈ Aj , we need (i) vj(g) > 0 and (ii)
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vi(Ai + g) · vj(Aj − g) ≤ vi(Ai) · vj(Aj). This holds upon termination because if either condition
is violated, we could find a pair of agents i and j, along with a good g ∈ Aj , which would constitute
a violation of local Nash optimality in the algorithm (in the former case, this would be due to our
assumption that there exists an agent i with vi(g) > 0), which would in turn prevent the algorithm
from terminating.

We now show that the algorithm terminates in a pseudo-polynomial number of steps. Since each
step of the algorithm runs in polynomial time, the overall running time of the algorithm is pseudo-
polynomial. Specifically, suppose K ∈ N, and that for each player i, vi(g) ∈ N for each good g and
vi(M) ≤ K. We show that the algorithm terminates in poly(n,m,K) steps.

Let At denote the allocation at the beginning of time step t (i.e., before the transfer of the good
in step t). Let Zt denote the set of players with non-negative utility in At.

We first note that during the execution of the algorithm, a player never goes from having non-
zero utility to having zero utility. Consider a step t in which player j loses good g to player i. Players
other than j do not lose any utility. For player j, either vj(g) = 0, in which case player j also
does not lose any utility, or the algorithm ensures that vi(At+1

i ) · vj(At+1
j ) > vi(A

t
i) · vj(At

j) ≥ 0,
implying vj(At+1

j ) > 0.
This implies that the set of players with non-zero utility is monotone nondecreasing (i.e., Zt ⊆

Zt+1 for each t).
We use this property to divide the execution of the algorithm into phases. Each phase is marked

by steps during which the set of players with non-zero utility remains constant, and the phase ends
when this set strictly grows. Note that there can be at most n such phases. We show that each phase
lasts for poly(n,m,K) steps.

Consider a phase of the execution during which exactly r players have non-zero utility. Consider
a step t in this phase (except the step marking the end of the phase in which |Zt+1| > |Zt|). We
show that in step t, ∏

k∈Zt vk(At+1
k )∏

k∈Zt vk(At
k)

> 1 +
1

K2
.

Suppose good g is transferred from player j to player i in step t. Note that we must have vi(g) >
0. Further, because Zt+1 = Zt and vi(At+1

i ) ≥ vi(g) > 0 (hence i ∈ Zt+1), we must have i ∈ Zt.
Regarding player j, we take two cases.

1. j /∈ Zt: In this case, the transfer does not change the utility of any player in Zt other than
player i, and increases the utility of player i by at least 1. Noting that the utility of player i
cannot be higher than K, we get∏

k∈Zt vk(At+1
k )∏

k∈Zt vk(At
k)

=
vi(A

t+1
i )

vi(At
i)
≥ K

K − 1
> 1 +

1

K2
.

2. j ∈ Zt: In this case, the transfer must strictly increase the product of utilities of i and j by at
least 1. Noting that the product of utilities of i and j cannot be higher than K2, we get∏

k∈Zt vk(At+1
k )∏

k∈Zt vk(At
k)

=
vi(A

t+1
i ) · vj(At+1

j )

vi(At
i) · vj(At

j)
≥ K2

K2 − 1
> 1 +

1

K2
.

Hence, in each step of the phase, the product of utilities of the r players with non-zero utility
must increase by a factor greater than 1 + 1/K2. Since this product is at least 1 and can be at most
Kr, we get that the number of steps in this phase must be less than log(Kr)/ log(1 + 1/K2). Using
the fact that log(1 + x) ≥ 2x/(x+ 2) for x ≥ 0, we get that the number of steps in the phase must
be O(rK2 logK) = O(nK2 logK).
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Since there are at most n steps, we get that the total number of steps in the algorithm are
O(n2K2 logK).

Corollary 6. An allocation satisfying both GF1A and GF1B can be computed in pseudo-polynomial
time.

Whether an allocation satisfying GF1A or GF1B can be computed in polynomial time remains
an interesting open question. We are able to show that the problem of verifying whether a given
allocation satisfies GF1A or GF1B is strongly coNP-hard. The proofs are deferred to the appendix.

Theorem 7. It is strongly coNP-hard to determine whether an allocation A satisfies GF1A.

Theorem 8. It is strongly coNP-hard to determine whether an allocation A satisfies GF1B.

Finally, we note that when all players have identical valuations, a locally Nash-optimal allocation
can be computed in polynomial time. This is because, by Lemma 2, local Nash-optimality is equiv-
alent to EFX, which can be achieved by sorting the goods from largest to smallest, and allocating
them one-by-one, always to an agent with the least utility [5].

6 Simulations
In this section, we investigate the performance of the local search algorithm in practice, in terms
of both its running time and the quality of the allocation it returns. Specifically, we measure the
number of steps it takes to converge, how frequently it returns a Pareto optimal allocation, and how
frequently it returns a globally Nash optimal, also known as max Nash welfare allocation [10]; the
last number is guaranteed to be weakly lower than the former since all max Nash welfare allocations
are Pareto optimal.

We first experiment with a dataset of fair division instances obtained from Spliddit.org, a not-
for-profit website that allows its users to employ fair division algorithms for every-day problems,
including allocation of (possibly indivisible) goods. The dataset contains 2754 division instances
in which all goods are indivisible. These instances contain as many as 15 players (2.6 on average)
and 93 goods (5.7 on average). The algorithm currently deployed on Spliddit computes a max Nash
welfare (and thus also locally Nash-optimal) allocation [10].

On this dataset, local search takes only 6.0 steps on average, and the maximum on any instance
is 91. In over 88% of the instances, the algorithm returns a Pareto optimal allocation, while in over
68% of the instances, it returns a max Nash welfare allocation.

Since typical Spliddit instances are relatively small, we next explore the algorithm’s performance
on larger simulated instances. We vary the number of players (n) from 3 to 10. For each n in this
range, we vary the number of goods (m) from n to 5n in increments of n. To explore the effect
of the magnitude of player valuations on the running time, we additionally vary a parameter K
controlling this magnitude from 100 to 1000 in increments of 100. For each combination of n, m,
and K, we generate 1000 instances in which the valuation vi of each player i is sampled i.i.d. from
the uniform distribution over all integral valuations that sum to K (i.e., uniformly at random subject
to vi(M) = K).

In Figure 4, we examine the effect of varying K. We note that it does not significantly affect the
average number of steps until convergence (left figure), or the percentage of instances in which the
algorithm finds a Pareto optimal or max Nash welfare allocation (right figure). For the remainder of
this section, we report our findings for K = 500.

Figures 5a and 5b respectively show that the average number of steps until convergence appears
to increase linearly with m (fixing n = 5) and increase linearly with n (fixing m = 3n). For
the largest synthetic instances that we examined (n = 10,m = 50 and K = 1000), local search
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Figure 4: Running time (number of steps) and solution quality of local search varying K with n = 5
and m = 15.

terminated in 220 steps on average. Instances of this size are close to the maximum size that the max
Nash welfare algorithm can reliably handle, while they remain trivial for the local search algorithm.

Figures 5c and 5d show the percentage of instances in which the local search algorithm produces
a Pareto optimal or max Nash welfare allocation, as a function of m (with n = 5) and n (with
m = 3n), respectively. In Figure 5c, notice that when m = n = 5, only a very small percentage of
allocations returned by local search are max Nash welfare allocations, or even Pareto optimal. This is
because in almost all cases whenm = n, any allocation in which every player receives a single good
is locally Nash optimal, and local search might terminate at an arbitrary allocation of this form.
However, with m = 2n = 10, local search returns a max Nash welfare allocation in nearly 60%
of the instances, and almost always achieves Pareto optimality. Increasing m further only slightly
improves performance.

Examining Figure 5d reveals a different story for the performance as a function of n. With n = 3,
local search usually finds a Pareto optimal allocation and finds a max Nash welfare allocation in
nearly 80% of the instances. As n increases, the allocation remains likely to be Pareto optimal, but
quickly becomes unlikely to be globally Nash optimal.

We remark that for every combination of n, m ≥ 2n, and K in our simulations, local search
returns a Pareto optimal allocation in at least 85% of the instances.

7 Discussion
Our work opens up several avenues for future research on fair allocation and takes steps towards
addressing existing open questions that go beyond group fairness.

Fairness with respect to fixed groups of players. We consider fairness guarantees that hold si-
multaneously for every pair of groups. In some applications, we may care only about fixed partitions
of players into groups, for example, based on gender or race. An interesting open question is whether
it is possible to provide stronger guarantees if we ask for fairness only with respect to fixed groups
(potentially in conjunction with an individual fairness notion such as EF1). For instance, is it possi-
ble to provide “up to one good” guarantees with the removal of a single good overall, as opposed to
a single good per player?

Strong envy-freeness up to one good. In the definition of GF1B, sets S and T are chosen before
the selection of the good gj for each player j ∈ T . However, the proof of Theorem 3 establishes that
locally Nash optimal allocations satisfy a slightly stronger version of the definition in which a single
good gj for each player j is chosen in advance (independent of sets S and T ). We call this property
strong GF1B.
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(a) Number of steps for various m
with n = 5.

(b) Number of steps for various n
with m = 3n.

(c) % of max Nash welfare or
Pareto opt. allocations, n = 5.

(d) % of max Nash welfare or
Pareto opt. allocations, m = 3n.

Figure 5: Running time (number of steps) and solution quality of the local search algorithm on
synthetic data.

Definition 10 (Strong group fairness up to one good (before)). An allocation A satisfies strong
GF1B if, for every j ∈ N such that Aj 6= ∅, there exists a good gj ∈ Aj such that for every non-
empty S, T ⊆ N for which there exists a partition (Ci)i∈S of ∪j∈TAj with vi(Ci) > 0 for all i ∈ S,
and every partition (Bi)i∈S of ∪j∈TAj \ ∪j∈T :Aj 6=∅{gj}, (|S|/|T |) · (vi(Bi))i∈S does not Pareto
dominate (vi(Ai))i∈S .

When restricting to sets S and T with |S| = |T | = 1, the original GF1B definition yields envy-
freeness up to one good, while strong GF1B yields a slightly stronger property.

Definition 11 (Strong envy-freeness up to one good (s-EF1)). An allocation A is s-EF1 if for each
j ∈ N such that Aj 6= ∅ there exists a good gj ∈ Aj such that for all i ∈ N , vi(Ai) ≥ vi(Aj − gj).

It follows that every locally Nash optimal allocation satisfies s-EF1. It is easy to check that the
allocations produced by the round robin algorithm and the algorithm of Barman et al. [4], which are
both known to satisfy EF1, also satisfy the stronger s-EF1.

Locally Nash-optimal allocations and approximate market equilibria. When goods are divis-
ible, it is known that globally Nash optimal allocations coincide with strong competitive equilibria
with equal incomes [25], where (informally) each good is assigned a price, each player is given one
unit of fake money (equal incomes), and each player purchasing her highest valued bundle of goods
that she can afford perfectly partitions the set of goods (competitive equilibrium).

With indivisible goods, such an allocation may not exist. A recent line of work [8, 3, 4] proposes
relaxations in which the competitive equilibrium condition is retained, but the equal incomes condi-
tion is relaxed to almost equal incomes. The relaxation due to Barman et al. [4] is guaranteed to be
satisfiable, and leads to allocations that are envy-free up to one good and Pareto optimal. However,
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Caragiannis et al. [10] posed the open question of whether such relaxations retain any connection to
the Nash welfare function.

In the appendix, we explore a relaxation that is very different from the relaxation due to Barman
et al. [4]. We retain exactly equal incomes, and instead relax the competitive equilibrium condition:
each player now purchases an almost optimal bundle of goods that she can afford. Our relaxation
loses Pareto optimality while theirs guarantees it. However, our relaxation satisfies both GF1A and
GF1B, while theirs can be shown to satisfy only GF1B and violate GF1A. Additionally, we recover
an equivalence between approximate market equilibria and local Nash optimality, partially answer-
ing the open question by Caragiannis et al. [10].
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A Omitted Proofs

A.1 Second Part of the Proof of Theorem 3
We showed in the main body that any locally Nash optimal allocation satisfies GF1A. Here we show
the same for GF1B. Let A be a locally Nash optimal allocation.

Suppose for contradiction that A does not satisfy GF1B. Let (S, T ) be a pair of groups for which
the GF1B constraint is violated, and choose such a pair with the minimum |T |. Note that this implies
|Aj | ≥ 2 for all j ∈ T . This is because if |Aj | ≤ 1 for some j ∈ T , then (S, T − j) is also witness
to a violation of GF1B.

We now show that vi(Ai) > 0 for all i ∈ S. To see this, suppose otherwise. Then there exists an
i ∈ S with vi(Ai) = 0. Because there exists Ci ⊆ ∪j∈TAj with vi(Ci) > vi(Ai) = 0, there must
exist a good g ∈ Aj for some j ∈ T such that vi(g) > 0. Because |Aj | ≥ 2 and A is non-wasteful,
vj(Aj−g) > 0. Therefore, we could strictly increase the product of utilities of players i and j (from
zero to a positive value) by transferring g from player j to i.

We have established that vi(Ai) > 0 for all i ∈ S. For all j ∈ T , let g∗j ∈ arg maxg∈Aj
vj(g).

Because |Aj | ≥ 2 and A is non-wasteful, vj(Aj − g∗j ) > 0 for all j ∈ T . With a little algebraic
simplification, we can rewrite the final condition from Definition 6 as

vi(Ai) · vj(g) ≥ vi(g) · vj(Aj − g).

Then for all i ∈ S, j ∈ T , and g ∈ Aj − g∗j , we have

vi(g)

vi(Ai)
≤ vj(g)

vj(Aj − g)
≤ vj(g)

vj(Aj − g∗j )
,

where the second transition follows from the choice of g∗j . Summing over all i ∈ S, j ∈ T , and
g ∈ Aj − g∗j , we obtain ∑

i∈S

vi(Bi)

vi(Ai)
≤ |T |.

Since the partitionB violates the constraint, (|S|/|T |)·(vi(Bi))i∈S Pareto dominates (vi(Ai))i∈S ,
and so vi(Bi)/vi(Ai) ≥ |T |/|S| for each i ∈ S with at least one inequality strict. This implies that∑

i∈S vi(Bi)/vi(Ai) > |T |, a contradiction.

A.2 Proof of Theorem 8
We present the proof of Theorem 8 before the proof of Theorem 7, since the former illustrates many
of the key ideas in the latter. Our reductions rely on the complexity of redistributing goods to provide
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Pareto improvements, rather than checking the fairness conditions for many pairs of groups, although
there may exist other reductions that achieve hardness through the sheer number of constraints.

We reduce from the 3-Partition problem: Given a multiset N of 3m numbers n1, . . . , n3m lying
strictly between 1/4 and 1/2, can N be partitioned into m triplets N1, . . . Nm such that the sum of
the members of each triplet is 1?

Given an instance of 3-Partition, construct a group fair division instance and allocation A as
follows. There are m players s1, . . . , sm. Each player si receives a single good gi that they value at
m + 1 − ε. Player sj has valuation 0 for good gi whenever j 6= i. An additional player s∗ receives
a single good that they value at m+ 1, and all other players value at 0. Finally, there exists a player
t that receives all of the following goods: 3m goods corresponding to each element of N , that are
valued at ni by player t and each player sj , and 0 by player s∗, as well as two goods g1∗, g

2
∗ that are

valued 1/2 by player t and each player sj and 1 by player s∗.
We show that there exists a solution to the 3-Partition instance if and only if the corresponding

allocation violates GF1B.
First, suppose that there exists a solution (Ni)i∈[m] to the 3-Partition problem. Consider sets of

players S = {s∗, s1, . . . , sm} and T = {t}. To see that these sets are witness to a violation of GF1B,
suppose that good g2∗ is removed from t’s bundle and the remaining goods repartitioned among S.
Consider the following partitioning (Bi)i∈S of At\{g2∗}: Bsi = Ni for all i ∈ [m] (and therefore
each si receives utility 1), and Bs∗ = {g1∗} (and therefore player s∗ receives utility 1). For each
i ∈ [m], we have

(|S|/|T |) · vsi(Bsi) = m+ 1 > m+ 1− ε = vsi(Asi)

and for s∗ we have
(|S|/|T |) · vs∗(Bs∗) = m+ 1 = vsi(Asi).

If, rather than removing g2∗ we remove some good ni, we can replace ni with g2∗ in the partition B,
which increases vsi(Bsi) for the relevant player si. Therefore, allocation A violates GF1B.

Next, suppose there does not exist a solution to the 3-Partition instance. We show that the corre-
sponding allocation A satisfies GF1B. First, note that if there exists a violation of GF1B, then there
must exist a violation in which T = {t} (because all other players are only allocated a single good,
so would contribute nothing after removal of that good, and smaller |T | lowers the utility threshold
required to violate GF1B).

We now consider all possible makeups of the coalition S. First, suppose that s∗ 6∈ S. After
removing good g2∗ from At, the remaining goods can be partitioned among S, providing a total
utility of m+ 1

2 . It must be the case that at least one member of S has

(|S|/|T |) · (vi(Bi)) ≤ (|S|/|T |) · (m+
1

2
)/|S|

= m+
1

2
< m+ 1− ε ≤ vi(Ai),

since each i is either one of the si players, with utility m+ 1− ε, or player t, with utility m+ 1.
Next, suppose that s∗ ∈ S and |S| < m + 1. Then we can remove g2∗ from At, so that the only

good that can be allocated to s∗ in the partition B is g1∗. But now we have that

(|S|/|T |) · vs∗(Bs∗) < m+ 1 = vs∗(As∗),

so no such S can be witness to a violation of GF1B.
Next, suppose that s∗ ∈ S and |S| = m + 1. Again, suppose that we remove g2∗ from At

and allocate g1∗ to s∗ in the partition B. We now have that the remaining 3m items from At that
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correspond to elements from the set N must be distributed among the other m players in S. Since
there does not exist a solution to the 3-Partition instance, there must exist one such player i that
receives utility strictly less than 1 in the repartition B. For this player,

(|S|/|T |) · vi(Bi) < m+ 1.

Provided that ε is chosen sufficiently small, we can ensure that (|S|/|T |) · vi(Bi) < m + 1 − ε ≤
vi(Ai), since i is either one of the si players with utility m+ 1− ε, or player t with utility m+ 1.

Finally, if s∗ ∈ S and |S| = m + 2 then we have the same argument except that the 3m items
from At corresponding to elements from N must be divided among m+ 1 players. Therefore, some
player i receives utility at most m

m+1 . For this player,

(|S|/|T |) · vi(Bi) ≤ (m+ 2)
m

m+ 1
< m+ 1,

and, by the same argument as before, this is sufficient.
Therefore, allocation A satisfies GF1B if, and only if, the 3-Partition instance does not have a

solution. It is easy to check that this is a pseudo-polynomial reduction [15], thus proving strong
coNP-hardness.

A.3 Proof of Theorem 7
We reduce from the 3-Partition problem: Given a multiset N of 3m numbers n1, . . . , n3m lying
strictly between 1/4 and 1/2, can N be partitioned into m triplets N1, . . . Nm such that the sum of
the members of each triplet is 1?

This proof is similar to the proof of Theorem 8, except that it takes more work to establish that
the only possible violations of GF1A are those with T = {t}. This is because players with only a
single good obviously cannot contribute to a GF1B violation as part of T (since that one good is
removed before the goods are redistributed), but this is not so obvious for GF1A.

Given an instance of 3-Partition, construct a group fair division instance and allocation A as
follows. There are m players s1, . . . , sm. Each player si receives a single good gi that they value
at 2(m + 1)3 + m + 1 − (m + 1)2. Player sj has valuation 0 for good gi whenever j 6= i. An
additional player s∗ receives a single good that they value at m− ε, and all other players value at 0.
Finally, there exists a player t that receives all of the following goods. 3m goods corresponding to
each element of N , that are valued at ni by player t and each player sj , and 0 by player s∗, as well
as a set X = {x1, . . . , x2m} of 2m goods that are valued at (m + 1)2 by player t and each player
si, and 0 by player s∗. Finally, there is a single good g∗ that is valued 2(m+ 1)2 + 1 by player t and
each player si and 1 by player s∗.

We show that there exists a solution to the 3-Partition instance if and only if the corresponding
allocation violates GF1A.

First, suppose that there exists a solution (Ni)i∈[m] to the 3-Partition problem. Consider sets of
players S = {s∗, s1, . . . , sm} and T = {t}. To see that these sets are witness to a violation of
GF1A, consider partition (Bi)i∈S of At that sets Bs∗ = {g∗} and Bsi = {x2i−1, x2i}∪Ni for each
i ∈ [m]. We have

(|S|/|T |) · vs∗(Bs∗) = m+ 1 > m− ε+ 1 = vs∗(As∗ + g∗)

and

(|S|/|T |) · vsi(Bsi) = (m+ 1)(2(m+ 1)2 + 1)

= 2(m+ 1)3 +m+ 1

≥ vsi(Asi + gi),
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where the final inequality holds for all gi ∈ Bsi . Therefore, allocation A violates GF1B.
Next, suppose there does not exist a solution to the 3-Partition instance. We show that the corre-

sponding allocation A satisfies GF1A. To show that no sets S, T are witness to a violation of GF1A,
let us consider what form such S and T could take. Note that it must be the case that t ∈ T , because
no other player has goods valued by anyone except himself.

If it is the case that |S| ≥ |T | and GF1A is violated, we can remove any player T ∩ S 3 i 6= t
from both T and S and GF1A will still be violated. To see this, note that player i’s removal strictly
increases |S|/|T |, and weakly increases vj(Bj) for all j 6= i (because player i’s contribution to
∪j∈TAj is not positively valued by anyone except i). For the same reasons, we can remove any
player T\S 3 i 6= t from T , and GF1A will still be violated. Thus, if there exists a violation of
GF1A with |S| ≥ |T |, there also exists a violation with T = {t}.

Next, suppose that there is a violation of GF1A in which |S| < |T |. Once again, we can remove
any player T\S 3 i 6= t from T , and GF1A will still be violated. After repeating this process, if
there remains a GF1A violation with |S| < |T | then it must be the case that T = S ∪ {t}. If s∗ ∈ S
and g∗ 6∈ Bs∗ , then (|S|/|T |) · vs∗(Bs∗) < vs∗(As∗). If s∗ ∈ S and g∗ ∈ Bs∗ , then

(|S|/|T |) · vs∗(Bs∗) < vs∗(Bs∗) ≤ m− ε+ 1 = vs∗(As∗ + gs∗).

This contradicts that sets S and T are witness to a GF1A violation.
Any violation of GF1A with |S| < |T |must therefore have s∗ 6∈ S and t 6∈ S. That is, S contains

exactly k ≤ m of the si players. We will show that no violation of GF1A is possible in this case.
Consider some partition (Bi)i∈S of ∪j∈TAj . If there exists i such that Bsi contains neither g∗ nor
any xj good, then

(|S|/|T |) · vsi(Bsi) ≤
k

k + 1
(vsi(Asi) +m)

≤ m

m+ 1

(
2(m+ 1)3 +m+ 1− (m+ 1)2 +m

)
= 2m(m+ 1)2 +m−m(m+ 1) +

m2

m+ 1

< 2m(m+ 1)2 +m−m(m+ 1) +m

= 2m3 + 3m2 + 3m

< 2m3 + 5m2 + 5m+ 2

= 2(m+ 1)3 +m+ 1− (m+ 1)2

= vsi(Asi),

so this partition does not produce a violation of GF1A. It therefore must be the case that for all
si ∈ S, Bsi contains g∗ or at least one good xj . By considering the total utility available to players
in S from the set of goods ∪j∈TAj , we have

min
si∈S

(|S|/|T |) · vsi(Bsi) ≤
k

k + 1

(
2(m+ 1)3 +m+ 1− (m+ 1)2 +

2(m+ 1)3 +m+ 1

k

)
=

k

k + 1

(
2(m+ 1)3 +m+ 1− (m+ 1)2

)
+

2(m+ 1)3 +m+ 1

k + 1

= 2(m+ 1)3 +m+ 1− k

k + 1
(m+ 1)2

< 2(m+ 1)3 +m+ 1

≤ vsi(Asi + gsi)
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where gsi ∈ Bsi is either some good xj or g∗. Therefore, this partition does not produce a violation
of GF1A either, so sets S and T are not witness to a violation.

Combining the above arguments, we have that the only T for which we have not excluded a
GF1A violation is T = {t}. It remains for us to rule out violations of this form.

To that end, suppose that s∗ ∈ S. Fix a partition (Bi)i∈S . Note that if g∗ 6∈ Bs∗ , then

(|S|/|T |) · vs∗(Bs∗) = 0 < vs∗(As∗),

so set S and partition (Bi)i∈S do not constitute a violation of GF1A. Therefore, it must be the case
that g∗ ∈ Bs∗ .

If |S| ≤ m, then

(|S|/|T |) · vs∗(Bs∗) ≤ m < m+ 1− ε = vs∗(As∗ + g∗),

so GF1A is not violated.
If |S| = m + 1, then partition (Bi)i∈S divides At − g∗ (or some strict subset thereof) among

S \ {s∗} (because g∗ ∈ Bs∗ ). Note that the only way to divide At − g∗ so that all i ∈ S\{s∗} get
equal utility is to give each player an equal number of xi goods, plus utility of exactly 1 from goods
in N . If two players receive an unequal number of xi goods, then one receives at least (m + 1)2

more utility than the other, which cannot be made up for even by allocating the other player all of
the goods corresponding to N (which sum to only m). Because there is no solution to the 3-Partition
instance, there must exist some player i ∈ S \ {s∗} with

(|S|/|T |) · vi(Bi) < (m+ 1)
2m(m+ 1)2 +m

m
= 2(m+ 1)3 +m+ 1 = vt(At) = vsj (Asj + gsj ).

The final equality assumes that we can set gsj to be one of the xk goods, which is possible as long as
Bsj contains at least one of these goods. Were this not the case, we would have (|S|/|T |)vsj (Bsj ) ≤
m(m+ 1) < vsj (Asj ).

If |S| = m+ 2 then we can make a similar argument. There must exist some player i ∈ S \ {s∗}
with

(|S|/|T |) · vi(Bi) ≤ (m+ 2)
2m(m+ 1)2 +m

m+ 1

= (m+ 2)(2m(m+ 1)) +
m(m+ 2)

m+ 1

< 2(m+ 1)3 +m+ 1

= vt(At) = vsj (Asj + gsj ),

where, again, gsj is one of the xk goods.
The only remaining case is that of s∗ 6∈ S. The total utility to be divided amongst players in S is

2(m+ 1)3 +m+ 1. There are two cases. Either this utility gets distributed equally across all agents
in S, in which case we have

(|S|/|T |) · vi(Bi) = (|S|/|T |)2(m+ 1)3 +m+ 1

|S|
= 2(m+ 1)3 +m+ 1

= vt(At) ≤ vsj (Asj + gsj ),

for all i ∈ S, or the utility is distributed unequally in which case there is a strict inequality for at
least one i ∈ S. In either case, (|S|/|T |) · (vi(Bi))i∈S does not Pareto dominate (vi(Ai + gi))i∈S .

We have now completely ruled out the existence of a GF1A violation. Therefore, when there is
no solution to the 3-Partition instance, GF1A is satisfied. It is easy to check that this is a pseudo-
polynomial reduction [15], thus proving strong coNP-hardness.
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B Market Interpretation of Local Nash Optimality
We first introduce some additional notation. A price measure is a function p : M → R+. For
Z ⊆ M , we abuse the notation and define p(Z) ,

∑
g∈Z p(g); in particular, p(∅) = 0. Given a

non-wasteful allocation A, its standard price measure p is given by p(g) = vi(g)/vi(Ai) for all
i ∈ N and g ∈ Ai. Note that this is well-defined because if g ∈ Ai under a non-wasteful allocation
A, then we must have vi(g) > 0, and thus vi(Ai) > 0.

We observe that with a little algebraic simplification, we can rewrite the final condition from
Definition 6 in the following way.

vi(Ai + g) · vj(g) ≥ vi(g) · vj(Aj), (1)

Definition 12 (CEEI1). We say that a pair (A, p) of allocationA and price measure p is a competitive
equilibrium with equal incomes up to one good (CEEI1) if

• p(g) > 0 for all g ∈M .

• A is non-wasteful (∀i ∈ N, g ∈M : g ∈ Ai ⇒ vi(g) > 0).

• CE1: For all i ∈ N and Z ⊆M with Z 6= ∅,

– if Z ⊆ Ai then vi(Ai) ≥ vi(Z)/p(Z),

– else there exists a good g ∈ Z \Ai such that vi(Ai + g) ≥ vi(Z)/p(Z).

• EI: For all i ∈ N , Ai = ∅ or p(Ai) = 1.

Lemma 9. If (A, p) is CEEI1, then p is the standard price measure of A.

Proof. Fix i ∈ N such that Ai 6= ∅. Due to non-wastefulness, we have vi(Ai) > 0. For all g ∈ Ai,
the CE1 condition with Z = {g} requires that vi(Ai) ≥ vi(g)/p(g), i.e., p(g) ≥ vi(g)/vi(Ai).
Summing over all g ∈ Ai, we get p(Ai) ≥ vi(Ai)/vi(Ai) = 1. However, the EI condition requires
that this must be an equality. Hence, we have p(g) = vi(g)/vi(Ai) for all i ∈ N and g ∈ Ai.

Theorem 10. (A, p) is CEEI1 if and only if A is a locally Nash-optimal allocation, and p is its
standard price measure.

Proof. Let us first prove the “if” direction. Let A be a locally Nash-optimal allocation and p be its
standard price measure. Fix i ∈ N . For all g ∈ Ai, we have vi(Ai) · p(g) = vi(g) by definition of a
standard price measure. Summing over g ∈ Z ⊆ Ai, we get vi(Ai) · p(Z) = vi(Z), which satisfies
the first part of the CE1 condition.

Further, for all j ∈ N \{i} and g ∈ Aj , substituting p(g) = vj(g)/vj(Aj) in Equation (1) yields
vi(Ai+g)·p(g) ≥ vi(g). FixZ ⊆M such thatZ\Ai 6= ∅, and let g∗ ∈ arg maxg∈Z\Ai

vi(g). Then,
we have vi(Ai + g∗) · p(g) ≥ vi(Ai + g) · p(g) ≥ vi(g) for all g ∈ Z \Ai and vi(Ai + g∗) · p(g) ≥
vi(Ai) · p(g) = vi(g) for all g ∈ Z ∩Ai. Summing over g ∈ Z yields vi(Ai + g∗) · p(Z) ≥ vi(Z),
as desired.

For the converse, let (A, p) be CEEI1. Lemma 9 shows that pmust be the standard price measure
of A. Fix i, j ∈ N and g ∈ Aj . In the CE1 condition, taking Z = {g} yields vi(Ai + g) ≥
vi(g)/p(g). Substituting p(g) = vj(g)/vj(Aj) and observing that A is non-wasteful by definition of
CEEI1, we obtain Equation (1). Hence, A is a locally Nash-optimal allocation.
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C Removing a Single Good Overall
One might wonder if we can remove just a single good, instead of |S| or |T | goods. As we argued
in Section 3, this is impossible if we want to prevent S from being able to find a Pareto improving
allocation using T ’s goods (minus a single good).

However, the question becomes more interesting if we relax preventing Pareto improvements to
preventing only strict improvements, where every player is strictly better off. The relevant variation
of the GF1A definition is as follows.

Definition 13. An allocationA satisfies Strict-Improvement-GF1A if for every non-empty S, T ⊆ N
and every partition (Bi)i∈S of ∪j∈TAj , there exists a player j ∈ S and a good g∗ ∈ Bj such that
(|S|/|T |) · (vi(Bi))i∈S does not strictly dominate (vi(Ai + gi))i∈S , where Ai + gi = Ai for all
i 6= j.

It turns out that this variant is implied by our standard version of GF1A. If (|S|/|T |)·(vi(Bi))i∈S
does not Pareto dominate (vi(Ai + gi))i∈S , there must exist some j ∈ S for whom (|S|/|T |) ·
vj(Bj) ≤ vj(Aj + gj). It now suffices to let j and g∗ be the single player/good combination that is
chosen to prevent a strict improvement.

What about the “before” variant? The relevant property is the following:

Definition 14. An allocation A satisfies Strict-Improvement-GF1B if for every non-empty S, T ⊆
N , there exists a good g∗ ∈ ∪j∈TAj such that for every partition (Bi)i∈S of (∪j∈TAj) − g∗,
(|S|/|T |) · (vi(Bi))i∈S does not strictly dominate (vi(Ai))i∈S .

Unfortunately, this property does not hold in general, even when all players have identical val-
uations. Suppose we have five players and 13 identical goods. Three players get three goods each,
two players get two goods each. Let S be the set of two players and T be the set of three. Even after
taking one good from T ’s bundle, the remaining goods can be re-allocated so that each member of S
gets four goods each. Even adjusted by |S|/|T | = 2/3, they both strictly improve on their previous
utility of 2.

When all players have identical valuations and |S| = |T |, the leximin mechanism satisfies this
property. The leximin mechanism finds an allocation A that maximizes mini∈N vi(Ai), and subject
to that condition maximizes the second-lowest utility, and so on.

Theorem 11. When all players have identical valuations, the leximin mechanism satisfies Strict-
Improvement-GF1B restricted to |S| = |T |.

Proof. Let v be the common valuation function. For contradiction, suppose that there exists T ⊆
N such that for all g ∈ ∪j∈TAj , there exists S ⊆ N with |S| = |T | and partition (Bi)i∈S of
(∪j∈TAj) − g, such that v(Bi) > v(Ai) for all i ∈ S. Denote by K the set of all players with
minimum utility under allocation A, K = arg mini∈S∪T v(Ai).

Let g∗ ∈ ∪j∈TAj with v(g∗) > 0 (if no such good exists, any allocation is trivially Strict-
Improvement-GF1B) and consider an allocation C with Ci = Bi for all i ∈ S and Ci = Af(i) for
all i ∈ T \S, where f is a bijection from T \S to S \T . Good g∗ has still not been allocated but we
will do so later, as required. Let Ci = Ai for all i 6∈ S ∪ T (which implies v(Ci) = v(Ai)).

For every i ∈ S, we have that v(Ci) > v(Ai) ≥ mini∈S∪T v(Ai). For every i ∈ T \ S,
we have that v(Ci) = vf(i)(Af(i)), which means that exactly |K ∪ (S \ T )| players from T \ S
have v(Ci) = mini∈S∪T v(Ai), and all others have v(Ci) > mini∈S∪T v(Ai). Therefore, in total,
exactly |K ∩ (S \ T )| ≤ |K| players have v(Ci) = mini∈S∪T v(Ai) and none have v(Ci) <
mini∈S∪T v(Ai). Finally, we can assign good g∗ to some player with v(Ci) = mini∈S∪T v(Ai),
which gives us that the number of players with v(Ci) = mini∈S∪T v(Ai) is strictly less than |K|.
Therefore, allocation C is leximin better than A, a contradiction.
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The case where |S| = |T | and players have unequal valuations is still open. We know that the
globally Nash optimal allocation does not satisfy it. In the example below, it is easy to check that the
Nash optimal allocation is: p1 : {g5}, p2 : {g6}, p3 : {g1, g3}, p4 : {g2, g4}. Irrespective of which
good you remove, there is a way to take goods allocated to p3 and p4, and divide them between p1
and p2 to have a strict improvement.

g1 g2 g3 g4 g5 g6
p1 0.52 0.52 1.01 0 1 0
p2 0.52 0.52 0 1.01 0 1
p3 0.48 0 0.52 0 0 0
p4 0 0.48 0 0.52 0 0

D Weaker Version of GF1B
Recall the weaker version of GF1B discussed in the text following Definition 9. It replaces the
condition that one good must be removed for each player in T with a condition that |T | goods must
be removed from any players in T . Here we provide the formal definition.

Definition 15 (Weak group fairness up to one good, before/w-GF1B). An allocation A is GF1B if
for every non-empty T ⊆ N , there exists GT ⊆ ∪j∈TAj , such that for every S ⊆ N for which
there exists a partition (Ci)i∈S of ∪j∈TAj with vi(Ci) > 0 for all i, for every partition (Bi)i∈S of
∪j∈TAj \GT , (|S|/|T |) · (vi(Bi))i∈S does not Pareto dominate (vi(Ai))i∈S .

Clearly this definition is no stronger than the existing definition as it gives more flexibility about
what goods can be removed. The following example shows that it is strictly weaker.

Figure 6: Allocation that is not GF1B but does satisfy the weaker definition.

To see that the instance in Figure 6 does not satisfy GF1B, consider sets S and T as in the figure.
Even after removing one of the stars and one of the goods valued 3/4, it is possible to rearrange
the remainder of T ’s goods amongst S so that one player gets utility 5/4 and the other gets utility
1. Since |S|/|T | = 1, this violates GF1B. However, if we were allowed to remove both stars, the
remaining goods could not be rearranged amongst S in a way that Pareto-improved the utility of S.
It can be verified that no other sets S, T would be witness to a violation of the weaker definition
either.
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