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Abstract

We initiate the study of fairness among classes of agents in online bipartite matching where
there is a given set of offline vertices (aka agents) and another set of vertices (aka items)
that arrive online and must be matched irrevocably upon arrival. In this setting, agents
are partitioned into classes and the matching is required to be fair with respect to the
classes. We adapt popular fairness notions (e.g. envy-freeness, proportionality, and max-
imin share) and their relaxations to this setting and study deterministic algorithms for
matching indivisible items (leading to integral matchings) and for matching divisible items
(leading to fractional matchings). For matching indivisible items, we propose an adaptive-
priority-based algorithm, Match-and-Shift, prove that it achieves 1/2-approximation of
both class envy-freeness up to one item and class maximin share fairness, and show that
each guarantee is tight. For matching divisible items, we design a water-filling-based al-
gorithm, Equal-Filling, that achieves (1 − 1/e)-approximation of class envy-freeness and
class proportionality; we prove 1 − 1/e to be tight for class proportionality and establish a
3/4 upper bound on class envy-freeness. Finally, we discuss several challenges in designing
randomized algorithms that achieve reasonable fairness approximation ratios. Nonetheless,
we build upon Equal-Filling to design a randomized algorithm for matching indivisible
items, Equal-Filling-OCS, which achieves 0.593-approximation of class proportionality.
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1. Introduction

The one-sided matching problem is a fundamental subject within economics and compu-
tation that deals with the matching of a set of items to a set of agents. Its primary objective
is to ensure desirable normative properties such as economic efficiency and fairness. The
advent of Internet economics along with the introduction of novel marketplaces has posed

?A preliminary version of this article has appeared in the proceedings of the 37th AAAI Conference on
Artificial Intelligence (AAAI 2023) [24].
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new challenges in designing desirable solutions for which, as noted by Moulin [42], “we need
division rules that are both transparent and agreeable, in other words, fair.” A wide array of
these applications are inherently online, that is, items (or goods) arrive in an online fashion,
and need to be matched immediately and irrevocably to the participating agents: consider
the examples of allocating advertisement slots to Internet advertisers [41], assigning packets
to output ports in switch routing [3], distributing food donations among nonprofit charitable
organizations [36], and matching riders to drivers in ridesharing platforms [6].

Over the past few decades, a large body of literature—within the field of online algo-
rithm design—is devoted to the study of online bipartite matching problems. Their primary
goal is to satisfy some notion of economic efficiency—e.g. maximizing the size of the final
matching—with no knowledge of which items will arrive in the future and in what order.
Algorithms designed for this problem are judged by their competitive ratio, which is the
worst-case approximation ratio of the size of the matching produced to the maximum possi-
ble size in hindsight. It is well known that the best deterministic algorithm can only achieve
a 1/2-approximation of this efficiency goal, e.g., by using a greedy algorithm to get a maximal
matching. Notably, the seminal work of Karp et al. [33] provides a randomized algorithm
called Ranking with the best possible (1− 1/e)-approximation.

While the literature offers online algorithms with optimal efficiency guarantees, little
work has been done in ensuring that these algorithms treat agents, or rather, classes of agents
fairly. Consider the example of a food bank that wishes to distribute the donated items
among nonprofit organizations and homeless shelters. The perishable food items donated
to the food bank must be assigned upon their arrival. How should an online matching
algorithm distribute these donations to the nonprofits and shelters in such a manner that
the communities they serve are treated equitably?

Class fairness. We initiate the study of class fairness in online matching, where a set of
items arriving online must be assigned to agents who are partitioned into known classes and
each agent can receive at most one item, with the goal of achieving fairness among classes.
Agents either like an item (value 1) or don’t like it (value 0). We adapt classical notions from
the fair division literature that typically apply to individual agents—such as envy-freeness
(EF), proportionality (Prop), and maximin share guarantee (MMS)—to classes of agents.
Our extensions ensure that different classes are treated fairly, regardless of their sizes (e.g.,
in the food bank example above, different communities are treated equally, even if some
have many more organizations serving them).

In the standard fair division model, the impossibility of achieving envy-freeness has moti-
vated relaxations such as envy-freeness up to one item (EF1), which can be guaranteed [37].
When applied to classes, our class envy-freeness up to one item (CEF1) requires that envy
of any class towards another class to be eliminated after the removal of at most one item
that is matched to an agent within the envied class. When all items are available up front,
it is known that CEF1 can be achieved without unnecessarily throwing away items [9].1 Can
it still be achieved in the online setting?

1We later formalize the latter restriction as non-wastefulness (NW). This is required because CEF1, on
its own, can be achieved vacuously via an empty matching by throwing away all the items.
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Figure 1: An adversarial instance where CEF1 cannot be achieved together with non-wastefulness.

Impossibility of CEF1 in online matching. First, note that “class-awareness” is nec-
essary for any algorithm; otherwise an algorithm that is blind to the class information may
violate CEF1 by assigning two arriving items to the same class, when there is another class
that likes both items. Unfortunately, a slightly larger example shows that even class-aware
online algorithms cannot always achieve CEF1.

Example 1. Consider the example in Figure 1, in which six agents are partitioned into two
classes N1 = {a1, a2, a3} and N2 = {b1, b2, b3}. The value of each class for a matching is the
sum of the values that its agents receive (we formally define the valuations in Section 2).
Four items arrive sequentially in the order (o1, o2, o3, o4). An edge indicates that an agent
likes an item; thick edges indicate the matching. Assume that we do not wish to throw away
any item as long as there is an unmatched agent who likes it. For i ∈ {1, 2, 3}, item oi is
liked by agents ai and bi. The first item o1 can be matched to either a1 or b1; without loss
of generality, suppose it is matched to a1 ∈ N1. When o2 arrives, it must be matched to
b2 ∈ N2 in order to satisfy CEF1. The third item o3 can again be matched to either of a3
and b3; without loss of generality, suppose it is matched to b3 ∈ N2. Now, o4 arrives, and
it is liked only by a1 (who is already matched) and b1 (who is unmatched). The algorithm
must assign it to b1 due to non-wastefulness, which leaves class N1 envious of class N2, even
if we ignore any one of the items assigned to N2. Note that since each agent receives at most
one item, every individual agent’s envy towards another individual agent can be eliminated
by the removal of one item.

Given this impossibility, we seek online matching algorithms that achieve the fairness
notions approximately, often in conjunction with approximate efficiency guarantees. We aim
to answer the following theoretical questions:

Can we design deterministic algorithms for matching indivisible or divisible items
that achieve approximate class fairness while adhering to efficiency requirements?
And, can we surpass their guarantees by using randomization?

1.1. Our Results

Our first contribution (Section 2) is developing a detailed mathematical framework in
which we adapt classical fairness concepts to online matching. We consider two types of
online matching models, one with indivisible items, wherein an item must be matched in its
entirety to a single agent, and one with divisible items, wherein an item may be fractionally
divided between multiple agents.
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Indivisible Divisible
Fairness Algorithm Upper Bound Fairness Algorithm Upper Bound
α-CEF1 + NW 1/2 (Alg. 1) 1/2 α-CEF + NW 1− 1

e
(Alg. 2) 3/4

α-CMMS 1/2 (Alg. 1) 1/2 α-CPROP 1− 1
e

(Alg. 2) 1− 1
e

α-USW 1/2 (Alg. 1) 1/2 α-USW 1/2 (Alg. 2) 1− 1
e

Table 1: The summary of our results on deterministic algorithms for matching indivisible and divisible
items. Each algorithm achieves its three guarantees simultaneously, while the upper bound holds for any
algorithm, separately for each guarantee.

For both settings, we design online algorithms that achieve approximate fairness and
efficiency guarantees, and also provide upper bounds on the approximations that can be
achieved by any online algorithm. Our algorithms satisfy non-wastefulness, which implies 1/2-
approximation of the optimal utilitarian social welfare (USW); the utilitarian social welfare,
i.e., the sum of agent utilities, is effectively the size of the matching. Specifically, we make
the following contributions (summarized in Table 1):

• Indivisible matching: For indivisible items, we develop a deterministic algorithm,
Match-and-Shift, that simultaneously achieves non-wastefulness, 1/2-CEF1, 1/2-
CMMS, and 1/2-USW (Theorem 1). The algorithm uses an adaptive priority queue
over classes, in which a class is shifted to the end of the queue immediately upon
receiving an item. Further, we prove that no deterministic algorithm can achieve any
of α-CEF1 (subject to non-wastefulness), α-CMMS, or α-USW, for any α > 1/2 (The-
orem 2), establishing our algorithm to be simultaneously optimal for each guarantee.

• Divisible matching: For divisible items, we improve the above bounds via a different
algorithm, Equal-Filling. This algorithm divides items equally between the classes,
but uses water-filling to divide the portion of an item assigned to a class between the
agents in that class. This algorithm simultaneously achieves non-wastefulness, (1−1/e)-
CEF, (1−1/e)-CPROP, and 1/2-USW (Theorem 3). Further, no deterministic algorithm
can achieve α-CEF for any α > 3/4, or α-USW for any α > 1−1/e, and (1−1/e)-CPROP
is tight (Theorem 4).

• Randomized algorithms: Finally, we propose a randomized algorithm, Equal-
Filling-OCS, for matching indivisible algorithms that breaks the 1/2 barrier. We run
a variant of Equal-Filling to obtain a guiding divisible matching, and round it into
an indivisible matching using a technique called online correlated selection (OCS). We
prove that it is simultaneously 0.593-CPROP and 1/2-USW (Theorem 5).

1.2. Related Work

In this section, we provide an extended review of the related literature on online matching,
fair division, and fairness issues in online matching.
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Online matching. We refer readers to Mehta [40] for a survey of the vast literature on
online matching, and summarize some results that are the most related to this paper. The
Ranking algorithm of Karp et al. [33] assigns each item in its entirety; in our model,
this corresponds to a randomized algorithm for matching indivisible items that achieves
(1 − 1/e)-USW. The case of divisible items is often called fractional online matching in
the matching literature.2 For this, Kalyanasundaram and Pruhs [31] gave a deterministic
(1 − 1/e)-competitive algorithm, which achieves (1 − 1/e)-USW in our framework; different
papers refer to this algorithm as Balance, Water-filling, or Water-level. The Ranking
algorithm and its analysis were generalized to the vertex-weighted case by Aggarwal et al.
[1]. Feldman et al. [20] introduced the free disposal model of edge-weighted online matching
and gave a (1−1/e)-competitive algorithm for divisible items. The series of works by Fahrbach
et al. [19], Shin and An [46], Gao et al. [21], and Blanc and Charikar [11] led to the state-
of-the-art 0.536-competitive algorithm for edge-weighted online matching with indivisible
items. These works developed a new technique called online correlated selection which we
also use in this paper.

The literature also considers stochastic models of online matching problems to break the
1− 1/e barrier. Mahdian and Yan [39] and Karande et al. [32] showed that the competitive
ratio of Ranking is between 0.696 and 0.727 if online vertices arrive by a random order.
Huang et al. [29] introduced a variant of Ranking that breaks the 1− 1/e barrier in vertex-
weighted online matching under random-order arrivals; the ratio was further improved to
0.668 [30]. If items are drawn from a distribution known to the algorithm, it is called
online stochastic matching [20]. The best known competitive ratios for unweighted and
vertex-weighted online stochastic matching are 0.711 and 0.700, respectively [28].

Fair division. There is a rich body of literature on fair allocation of indivisible or divisible
items. A common assumption in most fair division studies is that there is no constraint on
how many items each agent can receive, and agents receive increasing value when receiving
more items.

In this literature, envy-freeness and proportionality (and approximations thereof) have
been used as the primary criteria of fairness. For divisible items, an allocation satisfying
both envy-freeness and an economic efficiency notion called Pareto optimality is known
to exist [47] and can be computed via convex programming when agents have additive
valuations [18]. For indivisible items, two relaxations of envy-freeness are commonly studied:
envy-freeness up to one item (EF1) [37] and maximin share fairness (MMS) [14]. An EF1
allocation is guaranteed to exist with monotone valuations [37], and can be achieved together
with Pareto optimality when agents have additive valuations [16]. On the other hand, MMS
allocations are not guaranteed to exist, even for additive valuations, though constant factor
approximation algorithms [22, 35, 23] and ordinal approximations [25, 26] exist and can be
computed in polynomial time.

2It is closely related to another model called online b-matching in which each offline agent may be matched
up to b times. Since the algorithms and analyses are usually interchangeable in these two models, we phrase
both models as the case of divisible items.
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Our problem can be seen as a fair division problem by considering each class to be a
meta-agent; the value of this meta-agent for a bundle of items is the maximum total value
obtained by matching the items to the agents in the class, which induces OXS valuations [43]
(these are not additive). Benabbou et al. [8] studied a model similar to ours in the offline
setting, and observed that the EF1 algorithm of Lipton et al. [37] may result in a wasteful
allocation; nevertheless, they showed that an allocation satisfying EF1 and non-wastefulness
exists and can be computed in polynomial time. Subsequent papers [9, 4, 7] considered a
more general class of submodular valuations with dichotomous marginals and proved that
EF1 and optimal USW can be achieved together; Barman and Verma [7] proved a similar
result for MMS and optimal USW.

Fairness in online matching. Our paper is also related to the growing line of work on online
fair division [2, 10, 5, 50, 48], but a majority of this work focuses on additive valuations,
and hence, their techniques do not apply to our matching setting. Several recent papers are
concerned with group fairness in online matching [38, 44]. Ma et al. [38] studied a stochastic
setting wherein the agents arrive online (as opposed to the items in our model), following
an independent Poisson process with known homogeneous rate; the objective is to maximize
the minimum ratio of the number of agents served to the number of agents in each group.
Sankar et al. [44] studied an online matching problem where the items arrive online. Here,
the items are grouped into classes (as opposed to the agents in our model), and each agent
specifies capacity constraints, which they referred to as group fairness constraints, restricting
the number of items from each class that can be assigned to the agent. Due to these crucial
differences between their models and ours, their techniques and results do not overlap with
ours.

2. Model

For t ∈ N, define [t] = {1, . . . , t}. First, let us introduce an offline version of our model
and the solution concepts we seek. Later, we will discuss the online model and algorithms
in that model.

Consider a bipartite graph G = (N,M,E), where N represents a set of vertices called
agents, M a set of vertices called items, and E the set of edges. We say that agent a likes
item o if a is adjacent to o, i.e., (a, o) ∈ E. The set of agents N is partitioned into k known
classes N1, . . . , Nk so that Ni∩Nj = ∅ for all i 6= j and ∪ki=1Ni = N . For simplicity, we refer
to class Ni simply as class i.

Matching. We consider the cases of divisible items (where each item can be matched to
multiple agents fractionally) and indivisible items (where each item must be matched to a
single agent integrally). A (divisible) matching is a matrix X = (xa,o)a∈N,o∈M ∈ [0, 1]N×M

satisfying
∑

a∈N xa,o 6 1 for each item o ∈ M , and
∑

o∈M xa,o 6 1 for each agent a ∈ N .
We say that matching X is indivisible if xa,o ∈ {0, 1} for each agent a ∈ N and item o ∈M .
Given a matching X, we say that agent a is saturated if

∑
o∈M xa,o = 1, and item o is fully

assigned if
∑

a∈N xa,o = 1.
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For a matching X, we write Y (X) = (
∑

a∈Ni
xa,o)i∈[k],o∈M as the matrix containing

the total fraction of each item assigned to agents in each class. Let Yi(X) denote the
row of Y (X) corresponding to class i. For an indivisible matching X, we may abuse
the notation and use Yi(X) to refer to the set of items matched to agents in class i, i.e.,
{o ∈M | xa,o = 1 for some a ∈ Ni}. We may omit the argument X from Y (X) and Yi(X)
if it is clear from the context.

Class valuations. The value derived by agent a from matchingX is Va(X) =
∑

o∈M :(a,o)∈E xa,o.
We define the value of class i from matching X as the utilitarian social welfare of the agents
in class i under matching X, denoted Vi(X) =

∑
a∈Ni

Va(X).
In order to define fairness at the level of classes, we need to also define how much

hypothetical value agents in class i could derive from the items matched to agents in another
class j. However, it is not obvious how one should define this value because it depends on
how the items matched to agents in Nj would be matched to agents in Ni in this hypothetical
scenario. Following [8], we use the following optimistic valuations.

Given a vector y = (yo)o∈M ∈ [0, 1]M representing fractions of different items, the op-
timistic valuation V ∗i (y) of class i for y is the size of the maximum fractional matching
between the agents of Ni and y; namely, V ∗i (y) is given by the optimal value of the follow-
ing LP:

max
∑

a∈Ni

∑
o∈M :(a,o)∈E xa,o

s.t.
∑

a∈Ni
xa,o 6 yo ∀o ∈M,∑

o∈M xa,o 6 1 ∀a ∈ Ni,

xa,o > 0 ∀a ∈ Ni, o ∈M.

For S ⊆ M , let eS ∈ {0, 1}M denote the incidence vector such that eSo = 1 if o ∈ S and
eSo = 0 otherwise; we may write V ∗i (eS) as V ∗i (S) for ease of notation. For an integral vector
y, it is known that there is an integral optimal solution to the above LP (see, e.g., Section
5 of [34]); thus, V ∗i (S) coincides with the maximum size of an integral matching between S
and the agents in Ni.

2.1. Solution Concepts

We consider classical fairness notions from the fair division literature and extend these
notions to ensure fairness between classes of agents.
(Approximate) class envy-freeness. Envy-freeness between individual agents demands
that every agent values the resources allocated to her at least as much as she values the
resources allocated to another agent. When applied to classes, we compare the value Vi(X)
derived by class i for its matched items with class i’s optimistic valuation for the items
matched to another class j, i.e. V ∗i (Yj(X)). Note that this results in a strong class envy-
freeness notion: even if, hypothetically, class i were to be matched to the items currently
matched to class j under X in an optimal manner, they would still not be any happier
overall.
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Definition 1 (Class envy-freeness). A matching X is α-class envy-free (α-CEF) if for all
classes i, j ∈ [k], Vi(X) > α · V ∗i (Yj(X)). When α = 1, we simply refer to it as class
envy-freeness (CEF).

It is impossible to achieve α-CEF with an indivisible matching for any α > 0 in general,
e.g., consider when one desirable item has to be allocated among two classes. Hence, we
consider the following relaxation of CEF for integral matchings.

Definition 2 (Class envy-freeness up to one item). An integral matching X is α-class envy-
free up to one item (α-CEF1) if for every pair of classes i, j ∈ [k], either Yj(X) = ∅ or there
exists an item o ∈ Yj(X) such that Vi(X) > α · V ∗i (Yj(X) \ {o}). When α = 1, we simply
refer to it as class envy-freeness up to one item (CEF1).

We remark that CEF1 is called type-wise EF1 (TEF1) by [8]; we use the terminology
“class” instead of “type” because letting agents of the same “type” have different incident
edges may be confusing.

(Approximate) class proportionality and maximin share fairness. Another classical
fairness concept is proportionality. In the traditional fair division model where agent valu-
ations are additive, proportionality is typically stated as requiring that each agent receives
value that is at least 1/n-th of her value for the set of all items, where n is the number
of agents. This can be equivalently viewed as demanding that each agent receives at least
the maximum value she can receive from the worst bundle among all fractional partitions
of the items into n bundles. We use the latter version as the appropriate definition of
proportionality in our model. We define the proportional share of class i as

propi = max
X∈X

min
j∈[k]

V ∗i (Yj(X)),

where X is the set of (divisible) matchings of the set of items M to the set of agents N .

Definition 3 (Class proportionality). We say that matching X is α-class proportional (α-
CPROP) if for every class i ∈ [k], Vi(X) > α · propi. When α = 1, we simply refer to it as
class proportionality (CPROP).

As in the case with class envy-freeness, class proportionality is impossible to guarantee
via indivisible matchings. Nevertheless, we can naturally relax the notion of proportionality
by only taking into account indivisible matchings in the definition of proportional share
above. Formally, the maximin share of class i is defined as

mmsi = max
X∈I

min
j∈[k]

V ∗i (Yj(X)),

where I is the set of indivisible matchings of the set of items M to the set of agents N .

Definition 4 (Class maximin share fairness). We say that matching X is α-class maximin
share fair (α-CMMS) if for every class i ∈ [k], Vi(X) > α · mmsi. When α = 1, we simply
refer to it as class maximin share fairness (CMMS).
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Efficiency. We consider two notions of efficiency. Non-wastefulness demands each item to
be fully assigned, unless all the agents who like it are saturated.

Definition 5 (Non-wastefulness). We say that matching X is non-wasteful (NW) if there
is no pair of agent a and item o such that (i) o is allocated to a (i.e., xa,o > 0) but a does not
like o, or (ii) a likes o, a is not saturated (i.e.,

∑
o′∈M xa,o′ < 1), and o is not fully assigned

(i.e.,
∑

a′∈N xa′,o < 1).

A more quantitative notion of efficiency is the utilitarian social welfare, which, in our
context, is the size of the (divisible) matching. Note that this is the classical objective that
the literature on online matching optimizes, in the absence of any fairness constraints.

Definition 6 (Utilitarian social welfare). The utilitarian social welfare (USW) of a matching
X is given by usw(X) =

∑
a∈N

∑
o∈M :(a,o)∈E xa,o. We say that a divisible (resp., indivisible)

matching X is α-USW if usw(X) > α ·usw(X∗) for all divisible (resp., indivisible) matchings
X∗. When α = 1, we refer to X as the USW-optimal matching.

The following is a known relation between non-wasteful and maximum matchings in both
divisible and indivisible cases.

Proposition 1. Every non-wasteful (divisible or indivisible) matching is 1/2-USW.

Proof. Let X∗ be a matching maximizing the utilitarian social welfare. Without loss of
generality, we can pick X∗ to be integral.3 Let X be any non-wasteful (divisible or indi-
visible) matching. By non-wastefulness, for every (a, o) ∈ E, we have

∑
o′∈M xa,o′ = 1 or∑

a′∈N xa′,o = 1. Then, we have

usw(X∗) =
∑

(a,o)∈E:x∗a,o=1

1

6
∑

(a,o)∈E:x∗a,o=1

(∑
o′∈M

xa,o′ +
∑
a′∈N

xa′,o

)

6
∑
a∈N

∑
o′∈M

xa,o′ +
∑
o∈M

∑
a′∈N

xa′,o = 2 · usw(X),

where the second transition holds because X is non-wasteful, and the third transition holds
because X∗ is an indivisible matching (i.e., if x∗a,o = 1, x∗a′,o′ = 1, and (a, o) 6= (a′, o′), then
a 6= a′ and o 6= o′). This proves that X is 1/2-USW.

Let us illustrate the above concepts of fairness and efficiency using examples.

3To see this, note that maximizing the utilitarian social welfare is equivalent to the LP that maximizes∑
a∈N

∑
o∈M :(a,o)∈E xa,o under X ∈ P := {X ∈ [0, 1]M |

∑
a∈N xa,o 6 1, ∀o ∈ M and

∑
o∈M xa,o 6

1, ∀a ∈ N }. Since the matrix defining the constraints is totally unimodular, there is an integral matching
that maximizes the utilitarian social welfare.
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Figure 2: Class envy-freeness (CEF), non-wastefulness (NW), and utilitarian social welfare approximation
(USW): an empty matching is CEF1 but wasteful; wiggly lines show a CEF1 and NW matching; thick lines
indicate a CEF1 and 1-USW matching.

Example 2. Consider the example given in Figure 2, where there are four items (o1, o2, o3,
and o4), agents a1 and a2 belong to one class, and agents b1 and b2 belong to another class.
An edge between an agent and an item indicates that the agent likes the item; thick and
wiggly lines indicate matchings. An empty matching is class envy-free (CEF) but wasteful.
The wiggly lines show a CEF1 and non-wasteful matching. Finally, thick lines show a
matching that achieves CEF1 along with optimal utilitarian social welfare.

2.2. Online Model

Let us now introduce our online model. In this model, the items in M arrive one-by-one
in an arbitrary order. We refer to the step in which item o ∈M arrives as step o.

When item o arrives, all agents reveal whether or not they like the item. In other words,
the edges incident to item o are revealed in graph G. At this point, an online algorithm must
make an immediate and irrevocable decision to “match” the item to the agents in N , i.e.,
set the values of (xa,o)a∈N . We consider algorithms which set these values deterministically.

For the algorithms we design, we prove that they achieve the desired guarantees (approx-
imate CEF, CEF1, CPROP, CMMS, USW, or non-wastefulness) at every step. However, a
key property of our algorithms is that they do not need to know in advance the number of
items that will arrive, which means that proving the desired guarantees at the end implies
that they hold at every step. In contrast, our upper bounds (impossibility results) will hold
even if the desired guarantees are required to hold only at the end.

Definition 7. For α ∈ (0, 1], a deterministic online algorithm for matching divisible or
indivisible items is α-CEF (resp., α-CEF1, α-CPROP, α-CMMS, α-USW, or NW) if it
produces an α-CEF (resp., α-CEF1, α-CPROP, α-CMMS, α-USW, or NW) matching when
all items have arrived.

Because CMMS and CPROP place only a lower bound on the utility of every agent,
there is no tension between them and non-wastefulness. Any algorithm achieving an ap-
proximation of these notions can be made non-wasteful without losing the said fairness
approximation.

Proposition 2. For α ∈ (0, 1], if there is a deterministic online algorithm satisfying α-
CMMS (resp., α-CPROP), then there is a non-wasteful deterministic online algorithm sat-
isfying α-CMMS (resp., α-CPROP). This holds for matching both divisible and indivisible
items.

10



Proof. Let us first consider indivisible items. Let A be any deterministic online algorithm
that may be wasteful. Consider a non-wasteful version of it, denoted as A′, that works as
follows. It runs A in the background and treats A’s output as an advice. Importantly, A
keeps its own internal state and is oblivious to the actual matching decisions made by A′.
For an item o, suppose that A matches o to agent a. Algorithm A′ would follow A’s advice
and match o to a if a is not yet matched, and would otherwise match o to any unmatched
agent who likes item o.

By definition, A′ is non-wasteful. Further, we can prove by induction over the steps that
the set of agents matched by A′ is a superset of the set of agents matched by A. Since
CMMS is a monotone property (i.e., increasing agent values preserves its approximation),
A′ achieves at least as good an approximation of CMMS as A does.

For divisible items, the same proof works for CPROP, except A′ now gives a fraction of
o to each agent a that is the minimum of the fraction of o matched to a under the advice
given by A and the remaining capacity of a in the current matching maintained by A′.

3. Deterministic Algorithms for Indivisible Items

We start by focusing on deterministic algorithms for matching indivisible items. We
study possible approximations of two fairness concepts, CEF1 and CMMS, along with ef-
ficiency guarantees in terms of non-wastefulness and the utilitarian social welfare. When
matching indivisible items, CEF1 may seem trivial to achieve: only match an item to some
agent in some class if this preserves CEF1, and discard the item otherwise. However, this
algorithm may ‘waste’ too many items and lose significant efficiency.4 Example 1 illustrated
that CEF1 and non-wastefulness are incompatible in the online setting.5 In this light, for
arbitrary classes, it is natural to ask what approximation of CEF1 can be achieved subject
to non-wastefulness.

3.1. Algorithm Match-and-Shift

One way to achieve approximate CEF1 is to ensure a balanced treatment of all classes
by providing them approximately equal ‘opportunity’ for receiving an item. This approach
is inspired by the well-studied Round-Robin algorithm in fair division [16] and its widely-
adopted cousin, Draft, that is used in sports for selecting players [12, 13] or assigning courses
to college students [15].

However, running such algorithms näıvely in our online setting, where not all items are
available upfront, can be problematic: if we do a round-robin over classes, a class can be
disadvantaged if the item arriving in its turn is not liked by any unmatched agent in the
class. Further, non-wastefulness requires that any arriving item be matched as long as there
is an unsaturated agent who likes it, even if this agent does not belong to the class whose

4In fact, discarding all items—an empty matching—is vacuously class envy-free.
5In Appendix A.1, we show that this incompatibility holds even after weakening the CEF1 requirement

to account for ‘pessimistic’ valuations, i.e, when each class evaluates the items matched to another class
through a minimum-cardinality maximal matching.
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ALGORITHM 1: Match-and-Shift

1 Fix a priority ordering over classes, π = (π1, . . . , πk)
2 when item o ∈M arrives do
3 for i = 1 to k do
4 Let Nπi,o be the set of unmatched agents a ∈ Nπi such that (a, o) ∈ E
5 if Nπi,o 6= ∅ then
6 Arbitrarily match o to an agent in Nπi,o

7 π ← (π1, . . . , πi−1, πi+1, . . . , πk, πi)
8 break

turn it is. Keeping these observations in mind, we design Match-and-Shift (Algorithm 1),
which provides equal treatment to the different classes while achieving non-wastefulness.

Algorithm description. Fix an arbitrary priority ordering π = (π1, π2, . . . , πk) over the k
classes, where π1 is the class with the highest priority. Upon arrival of each item, pick the
first class Nπi in the priority ordering that contains an unmatched agent who likes the item.
Match the item to any unmatched agent—there may be several such agents—in Nπi who
likes the item. Update the priority ordering π by moving class πi to the end.

The following theorem establishes approximate fairness and efficiency guarantees of
Match-and-Shift; later, in Theorem 2, we prove that these guarantees are tight.

Theorem 1. For deterministic matching of indivisible items, Match-and-Shift (Algo-
rithm 1) satisfies non-wastefulness, 1/2-CEF1, 1/2-CMMS, and 1/2-USW.

Proof. Let X be the matching returned by the algorithm.

NW & 1/2-USW. Non-wastefulness of X follows immediately from the description of the
algorithm: at each step, the arriving item is matched to an agent who likes it whenever such
an agent exists. Because X is non-wasteful, due to Proposition 1 it also satisfies 1/2-USW.
Now, we turn our attention to the fairness guarantees. Recall that for each i ∈ [k], Yi
denotes the set of items matched to agents in class i. Fix any class i. Let t = |Yi| denote
the number of items matched to the agents in class i under X. Due to non-wastefulness, we
have Vi(X) = t.
1/2-CEF1. Consider any class j ∈ [k] \ {i}. Let Y ∗j ⊆ Yj be the set of items matched to
class j that are liked by at least one unmatched agent in class i. The claim immediately
holds when Y ∗j = ∅: in this case, the optimistic value of class i for Yj is V ∗i (Yj) 6 t = Vi(X),
implying that X satisfies CEF for i. Thus, we assume that at least one item in Yj is liked
by at least one unmatched agent of class i.

By construction of the algorithm, we have |Y ∗j | 6 t+ 1. This is because every time class
j receives an item in Y ∗j (that is liked by an agent in class i who remains unmatched till
the end, and, therefore, is unmatched at the time of the item’s arrival), class j must have
a higher priority than class i. Hence, the algorithm must match an item to class i before it
can match another item in Y ∗j to class j. Thus, |Y ∗j | 6 1 + |Yi| = t + 1. Fix an arbitrary
item o ∈ Y ∗j ⊆ Yj. We claim that V ∗i (Yj \ {o}) 6 2t, which establishes the 1/2-CEF1 claim.

12



Note that the t matched agents in class i can derive a maximum total utility of t from these
items. Further, the total utility that the unmatched agents in class i can derive from these
items is upper bounded by |Y ∗j \ {o} | 6 t. Hence, V ∗i (Yj \ {o}) 6 2t.
1/2-CMMS. Assume for contradiction that t = Vi(X) < (1/2) · mmsi. Because mmsi is an
integer, this implies 2t + 1 6 mmsi. Let (S1, S2, . . . , Sk) be a maximin partition of the
items for class i such that V ∗i (Sj) > mmsi for every j ∈ [k]. By our assumption, we have
V ∗i (Sj) > 2t + 1 for every j ∈ [k]. For each j ∈ [k], we let S∗j denote the set of items in Sj
that are liked by at least one unmatched agent in class i. Note that V ∗i (Sj) 6 t+ |S∗j |: the
t matched agents in class i can derive total utility at most t, and the unmatched agents can
derive total utility at most |S∗j |.

Recall that |Yi| = t and we have already established |Y ∗j | 6 t+1 for every class j ∈ [k]\{i}.
Further, by non-wastefulness, none of the unmatched agents of class i likes any item in
M \

⋃
h∈[k] Yh. Thus, we have |

⋃
j∈[k] S

∗
j | 6 |Yi∪ (

⋃
j∈[k]\{i} Y

∗
j )| 6 t+ (k− 1)(t+ 1), meaning

that there exists some h ∈ [k] such that |S∗h| 6 t. Thus, we have V ∗i (Sh) 6 2t < 2t + 1, a
contradiction.

Before we turn to proving these guarantees to be the best possible in our online setting,
we remark that in the offline setting, it is known that (exact) CEF1 and NW can be achieved
simultaneously [8]. However, whether they can be achieved together with α-CMMS, for any
α > 0, is an interesting open question.

3.2. Impossibility Results

In this section, we show that each of the fairness and efficiency guarantees achieved by
Match-and-Shift (Theorem 1) is tight; no deterministic online algorithm for matching
indivisible items can achieve a better approximation. Note that our CEF1 upper bound is
subject to non-wastefulness because an algorithm can trivially achieve CEF1 by throwing
away every item. The constructions are based on creating instances in which a subset of
agents in one class gets saturated early on, rendering the class envious of another class at
the end since all the remaining items can only be matched to the agents in that other class.

Theorem 2. No deterministic online algorithm for matching indivisible items can achieve
any of the following guarantees:

• α-CEF1 for any α > 1/2 and non-wastefulness,

• α-CMMS for any α > 1/2,

• α-USW for any α > 1/2.

Proof. We argue each impossibility result separately.

CEF1 and NW. Consider Example 1 in the introduction. Specifically, there are two classes
N1 = {a1, a2, a3} and N2 = {b1, b2, b3}. For 1 6 i 6 3, the i-th item oi is liked by ai and bi.
Consider any deterministic online algorithm satisfying non-wastefulness. If the algorithm
assigns all three items to the same class, it is only 0-CEF1. Otherwise, assume without loss
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of generality that 2 items go to class 2. Let the next item be only liked by the matched
agent in class 1 and the unmatched agent in class 2, as in Figure 1. The algorithm (without
loss of generality) ends up matching Y2 = {o2, o3, o4} to class 2 and Y1 = {o1} to class 1.
One can check that V ∗1 (Y2 \ {o}) = 2 for any o ∈ Y2, whereas V1(X) = 1, implying that the
algorithm cannot achieve α-CEF1 for any α > 1/2.

CMMS. We will prove that no deterministic online algorithm satisfying non-wastefulness
can achieve α-CMMS for any α > 1/2. Proposition 2 implies that no deterministic algorithm,
regardless of whether it satisfies non-wastefulness, can guarantee α-CMMS for any α > 1/2.

Since we have assumed non-wastefulness, we can repeat the construction used above for
the CEF1 upper bound. Consider the same example again, and consider the partition the
items into (Ỹ1 = {o1, o2} , Ỹ2 = {o3, o4}). Note that V ∗1 (Ỹ1) = V ∗1 (Ỹ2) = 2, implying that the
maximin share of class 1 is mms1 > 2. Since the value derived by class 1 is V1(X) = 1, we
see that the algorithm cannot achieve α-CMMS for any α > 1/2.

USW. Note that the USW guarantee does not depend on the class structure; hence, the well-
known upper bound of 1/2 on the approximation of a maximum matching by any deterministic
algorithm carries over to our model, and implies the desired 1/2-USW upper bound.

Following Theorem 2, a natural question is whether there is any way to circumvent
this impossibility result. We show that two such approaches do not work, demonstrating
robustness of Theorem 2.

Remark 1 (Reshuffling items within each class cannot help.). One idea is to only require the
online algorithm to match each item to a class, and allow every class to optimally distribute
the items matched to it among its members at the end. This effectively increases the utility
of class i from Vi(X) to V ∗i (Yi). However, in Example 1 used for the CEF1 and CMMS
upper bounds in the proof above, the matching produced already assigns items optimally
within each class (i.e., satisfies Vi(X) = V ∗i (Yi) for each class i). Hence, reshuffling items at
the end cannot improve the value any further. This shows that we must use randomization
when deciding which class should receive an item in order to achieve a better approximation.

Remark 2. Another natural direction is to weaken the requirements in Theorem 2. In our
online setting, there is a weakening of our α-CMMS guarantee that also makes sense. Instead
of computing the MMS values by partitioning the set of all items, we can first observe the
matching X produced by an algorithm and then compute the MMS values by having each
class partition only the set of items allocated under X. This produces smaller (or equal)
values, making this CMMS with respect to allocated items a weaker requirement than our
CMMS with respect to all items.

Match-and-Shift achieves a 1/2-approximation of the stronger requirement. In con-
trast, the proof of Theorem 2 shows that no non-wasteful6 algorithm can achieve (1/2 + ε)-
approximation of even the weaker requirement, for any ε > 0, because all items are allocated
in our construction.

6Seeking the weaker requirement makes sense only with non-wastefulness since the empty matching
vacuously satisfies it.
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ALGORITHM 2: Equal-Filling

1 Initialize X = (xa,o)a∈N,o∈M so that xa,o = 0 for every agent a and item o
2 Initialize Y = (yi,o)i∈[k],o∈M so that yi,o = 0 for every class i and item o

3 when item o ∈M arrives do
4 /*class-phase*/
5 Let Ni,o denote the set of neighbours of item o in class i, i.e.,

Ni,o = {a ∈ Ni : (a, o) ∈ E}
6 Define the demand of each class i ∈ [k] as di,o =

∑
a∈Ni,o

(1−
∑

o′∈M xa,o′)

7 Find the largest βo 6 1 satisfying
∑

i∈[k] min{βo, di,o} 6 1

8 Set yi,o = min{βo, di,o} for each i ∈ [k]
9 for i = 1 to k do

10 /*individual-phase*/
11 Find the largest γi,o 6 1 satisfying

∑
j∈Ni,o

max
{
γi,o −

∑
o′∈M xa,o′ , 0

}
6 yi,o

12 Set xa,o = max
{
γi,o −

∑
o′∈M xa,o′ , 0

}
for all a ∈ Ni,o

4. Deterministic Algorithms for Divisible Items

We now turn our attention to online matching of divisible items. First, we design an
algorithm that simultaneously achieves non-wastefulness, (1 − 1/e)-CEF, (1 − 1/e)-CPROP,
and 1/2-USW. Later, we prove upper bounds on the approximation ratio of each guarantee
that hold for any algorithm.

4.1. Algorithm Equal-Filling

We propose an algorithm, Equal-Filling (presented as Algorithm 2), that divides items
equally at the class level and performs water-filling to further divide the items assigned to
each class between the agents in that class. Recall that our model has a capacity constraint:∑

o∈M xa,o 6 1 for each agent a. Agent a is saturated if
∑

o∈M xa,o = 1, and unsaturated
otherwise.

When item o arrives, Equal-Filling continuously splits the item equally among classes
with at least one unsaturated agent who likes the item.7 At the end of this process, each
class either receives the same fraction βo of the item, or has all of its agents who like item
o saturated. This computation is performed in Line 8 of Algorithm 2. Then, to divide the
fraction of item o assigned to each class i within its members, we conduct water-filling among
the members who like o, which continuously prioritizes agents with the lowest utility. At
the end of this process, each member who likes item o either receives the same final utility
γi,o or is saturated. This computation is performed in Line 12 of Algorithm 2.

Theorem 3. For deterministic matching of divisible items, Equal-Filling (Algorithm 2)
satisfies non-wastefulness, (1− 1/e)-CEF, (1− 1/e)-CPROP, and 1/2-USW.

7We do not yet need to know how the fraction of item o assigned to a class is divided between its members;
we can simply keep track of the total remaining capacity of the agents in the class who like the item.
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Figure 3: The illustrative picture of auxiliary function f(θ) for a class i with n agents, sorted in ascending
order of their values for the allocation. Each agent i corresponds to a rectangle defined by interval [0, θi]

on the x-axis, and interval [n− i, n− i+ 1] on the y-axis.
∫ θ
0
f(z) dz and

∑
a∈Ni

min(θ,
∑
o∈M xa,o) are two

different ways to express the shaded area. The former integrates the height over interval [0, θ] on the x-axis,
while the latter sums the width over [0, n] on the y-axis.

Proof. We prove that Equal-Filling satisfies each of the desirable properties.

NW. Non-wastefulness follows by the algorithm’s definition.
1/2-USW. This is implied by non-wastefulness (Proposition 1).

(1 − 1/e)-CEF. Consider two arbitrary classes i and j. We want to prove that class i’s
value for its matching is at least 1− 1

e
times its optimistic value for class j’s matching, i.e.,

Vi(X) > (1− 1/e) · V ∗i (Yj).
For θ ∈ [0, 1], let f(θ) denote the number of agents in class i who have value (“water

level”) at least θ each under X. Let Ni(θ) be the set of these f(θ) agents and N i(θ) =

Ni \ Ni(θ). One can check that for any θ ∈ [0, 1],
∫ θ
0
f(z) dz =

∑
a∈Ni

min(θ,
∑

o∈M xa,o).
See Figure 3.

Let us now rewrite both Vi(X) and V ∗i (Yj) in terms of f(y). Plugging in θ = 1 above,
we see that the total value of the agents in class i is given by

Vi(X) =

∫ 1

0

f(z) dz.

Next, fix an arbitrary θ ∈ (0, 1]. In order to upper bound V ∗i (Yj), we consider the value
derived from Yj by the agents in Ni(θ) and those in N i(θ).

Since agents in N i(θ) remain unsaturated till the end, for every item o liked by any such
agent, the fraction yi,o of the item given to class i must be at least as much as the fraction
yj,o of it given to class j. Further, the portion given to class i must be assigned to agents
who, at the time of the assignment, had value less than θ. Hence, the total fraction of items
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given to class j that are liked by at least one agent in N i(θ), is upper bounded by the total
fraction of all items allocated to some agent in class i when its value was less than θ. The
number of agents in class i who got any allocation at value 0 6 z < θ is f(z) by definition.

Thus, the total fraction of item allocated to class i at value at most θ is
∫ θ
0
f(z) dz. As

discussed, this upper bounds the contribution of the agents in N i(θ) to V ∗i (Yj)
Further, note that the f(θ) agents in Ni(θ) contribute at most 1 each to V ∗i (Yj). Com-

bining with the last observation, the optimistic value of class i for the items assigned to class
j satisfies

V ∗i (Yj) 6
∫ θ

0

f(z) dz + f(θ), ∀0 < θ 6 1.

Multiplying the above inequality by eθ−1 and integrating over θ ∈ (0, 1], we get:(
1− 1

e

)
V ∗i (Yj)

=

∫ 1

θ=0

eθ−1 V ∗i (Yj) dθ

6
∫ 1

θ=0

eθ−1
(∫ θ

z=0

f(z) dz + f(θ)

)
dθ

=

∫ 1

z=0

f(z)

(∫ 1

θ=z

eθ−1 dθ

)
dz +

∫ 1

θ=0

eθ−1f(θ) dθ

=

∫ 1

z=0

(
1− ez−1

)
f(z) dz +

∫ 1

z=0

ez−1f(z) dz

=

∫ 1

z=0

f(z) dz = Vi(X),

where the third transition follows from breaking the integral over the two terms and ex-
changing the order of integrals in the first part; and during the fourth transition, we rename
the index from θ to z in the second part.

(1− 1/e)-CPROP. Consider an arbitrary class i. We want to prove that class i’s value for
the matching is at least 1 − 1/e times its proportional share, i.e., Vi(X) > (1 − 1/e) · propi.
Consider an arbitrary divisible partition of the items Ỹ , consisting of non-negative vectors
Ỹi = (ỹi,o)o∈M for i ∈ [k] satisfying

∑
i∈[k] ỹi,o = 1 for each o ∈M . It suffices to prove that:

k · Vi(X) >

(
1− 1

e

)
·
∑
j∈[k]

V ∗i (Ỹj).

Recall that f(θ) denotes the number of agents in class i who have value at least θ under
X, Ni(θ) is the set of these f(θ) agents, and N i(θ) = Ni \Ni(θ). Fix an arbitrary θ ∈ (0, 1].

Since the agents in N i(θ) remain unsaturated till the end, for each item o liked by at
least one such agent, the algorithm gives yi,o > 1/k fraction of the item to class i (but not
necessarily to the agents in N i(θ)). Further, as argued above, this portion of the item must

17



be assigned to the agents in the class who, at the time of the assignment, have value less
than θ. Hence, the total number of items liked by at least one agent in N i(θ), which is an

upper bound on the contribution of these agents to
∑

j∈[k] V
∗
i (Ỹj), is at most k

∫ θ
0
f(z) dz.

Also, each of f(θ) many agents in Ni(θ) can contribute a value of at most 1 to V ∗i (Ỹj)

for each j ∈ [k]. Hence, the total contribution of these agents to
∑

j∈[k] V
∗
i (Ỹj) is at most

k · f(θ).
Combining the two observations, we get that∑

j∈[k]

V ∗i (Ỹj) 6 k ·
(∫ θ

0

f(z)dz + f(θ)

)
, ∀0 < θ 6 1.

Multiplying the inequality by eθ−1, integrating over θ ∈ [0, 1], and following the same
steps as in the (1− 1/e)-CEF proof above, we have:(

1− 1

e

)
·
∑
j∈[k]

V ∗i (Ỹj) 6 k ·
∫ 1

0

f(z) dz = k · Vi(X),

as needed.

4.2. Impossibility Results

Our goal in this section is to provide upper bounds on the fairness and efficiency guaran-
tees that hold for any deterministic online algorithm for matching divisible items. We prove
that the (1 − 1/e)-CPROP guarantee achieved by Equal-Filling is tight, and establish a
weaker upper bound on CEF and USW.

Theorem 4. No deterministic online algorithm for matching divisible items can achieve
any of the following guarantees:

• α-CEF for any α > 3/4 and non-wastefulness,

• α-CPROP for any α > 1− 1/e,

• α-USW for any α > 1− 1/e.

Proof. We argue each impossibility separately.

CEF and NW. Consider any deterministic online algorithm that satisfies non-wastefulness.
Consider an instance that consists of two classes, N1 = {a1, a2, a3} and N2 = {b1, b2, b3},
and four items o1, o2, o3, o4 arriving in that order. We denote by X the matching that will
be produced by the algorithm on this instance.

Agents a1, a2, b1, and b2 like the first two items o1 and o2. By non-wastefulness, the
algorithm must fully divide o1 and o2 between {a1, a2, b1, b2}. Without loss of generality,
suppose that the total fraction of these items assigned to class N1 is at least the total fraction
assigned to class N2, i.e.,

∑
a∈N1

∑
o∈{o1,o2} xa,o >

∑
b∈N2

∑
o∈{o1,o2} xb,o. Further, we assume,

without loss of generality, that agent b1 obtains at least as much total fraction of these items
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as agent b2, i.e.,
∑

o∈{o1,o2} xb1,o >
∑

o∈{o1,o2} xb2,o. Finally, all agents of class N1 as well as
agent b1 like the remaining two items o3 and o4; agents b2 and b3 do not like them. We will
prove that V2(X) 6 (3/4) · V ∗2 (Y1).

First, we show that V2(X) 6 3/2. Observe that the value derived by b2 under X is at
most 1/2. This holds because the total fraction of o1 and o2 assigned to b2 is at most 1/2
by the assumptions above, and the agent does not like items o3 and o4. Further, agent
b3 does not like any of the items. Thus, the total value class N2 can achieve under X is
V2(X) 6 1 + 1/2 = 3/2.

Next, we show that V ∗2 (Y1) > 2. Note that N1 must receive a total fraction of at least
1 from each of {o1, o2} and {o3, o4}. Since b2 likes every item in {o1, o2} and b1 likes every
item in {o3, o4}, class N2 can optimistically derive a total value of at least 2 by assigning
Y1,o1 and Y1,o2 fractions of o1 and o2 to b2 (capped by 1), and Y1,o3 and Y1,o4 fractions of o3
and o4 to b1 (capped by 1).

This shows that the algorithm does not achieve α-CEF for any α > 3/4.

USW. Note that the utilitarian social welfare is simply the size of the (divisible) matching,
which is independent of the class information. Hence, the 1 − 1/e upper bound on USW
follows from the classical 1− 1/e upper bound on the competitive ratio of any online divisible
matching algorithm; see, e.g., the work of Kalyanasundaram and Pruhs [31].

CPROP. Consider an instance of a single class. In this case, the proportional share of the
class coincides with the value usw(X∗) of a USW-optimal matching X∗. Thus, the 1 − 1/e
upper bound on CPROP approximation follows from the 1 − 1/e upper bound on USW
approximation.

Remark 3. Similar to Remark 2, one may wonder what we can say about a weaker notion
of proportionality with respect to only the allocated items, i.e., if the proportional share of
each class is defined on the divisible matchings of the allocated items (instead of all items).
In Proposition 10, we show that the upper bound of 1− 1/e continues to hold even for this
weaker version. However, unlike in the case of indivisible items, this does not follow from
the proof above (which considers an instance with a single class, for which, trivially, the
weaker version is exactly satisfied). The proof of this proposition is much more intricate.

While Equal-Filling achieves the optimal 1− 1/e approximation of CPROP, its guar-
antees with respect to CEF and USW identified in Theorem 3 are weaker than the upper
bounds in Theorem 4. One might wonder if this is simply because our analysis in Theorem 3
is loose. We show that this is not the case. Hence, future work must focus either on proving
better upper bounds, or on designing new algorithms which might surpass Equal-Filling.

Proposition 3. Equal-Filling does not achieve any of the following guarantees:

• α-CEF for any constant α > 1− 1/e,

• α-CPROP for any constant α > 1− 1/e,

• α-USW for any constant α > 1/2.

19



Proof. The fact that Algorithm 2 cannot achieve α-CPROP for α > 1 − 1/e immediately
follows from Theorem 4.

For each of the fairness or efficiency guarantees, we provide an instance for which Algo-
rithm 2 cannot achieve the corresponding bound.

CEF. Suppose towards a contradiction that Equal-Filling achieves α-CEF for some
constant α > 1− 1/e. Let n be a positive integer such that α > 1

2
(1− 1/e) + 5

2n
. This means

that α · 2n > n · (1− 1/e) + 5.
Consider the following instance with two classesN1 = {a1, a2, . . . , an} andN2 = {a′1, a′2, . . . , a′2n}.

There are 2n items o1, o
′
1, o2, o

′
2, . . . , on, o

′
n. There are n rounds: in round t ∈ [n], item ot

arrives, followed immediately by item o′t. Each agent a′i (i ∈ [2n]) likes every item. Each
agent ai (i ∈ [n]) likes the items ot and o′t with t = 1, 2, . . . , i; namely, agent a1 likes the
items o1, o

′
1, agent a2 likes items o1, o

′
1, o2, o

′
2, and so on.

Note that since N2 has 2n agents who like all 2n items, for each item, there is at least one
agent in N2 who is not saturated and likes that item. Thus, until the agents in N1 who like
ot and o′t are fully saturated, the equal-filling algorithm splits the item into halves among
the two classes. The algorithm assigns the amount 1

2n
of {ot, o′t} to each agent in N2. On

the other hand, it assigns the amount 1
n−(t−1) of ot and o′t to each agent i of class N1 with

i > t; for example, agent a1 receives 1
n

of {o1, o′1}; agent a2 receives 1
n

of {o1, o′1} and 1
n−1 of

{o2, o′2}; agent a3 receives 1
n

of {o1, o′1}, 1
n−1 of {o2, o′2}, and 1

n−2 of {o3, o′3}; and so on.
Let X denote the matching returned by Algorithm 2. We will establish that V1(X) 6

(1− 1/e)V ∗1 (Y2). First, it is not difficult to see that under X, class N2 is assigned to exactly
1 for each item set of {ot, o′t} (t ∈ [n]). Thus, V ∗1 (Y2) > n. Now, let t∗ = n− dn

e
e. It can be

easily checked by the integral test that
∑t∗

t=1
1

n+1−t is between 1− 5
n

and 1. Thus, after the
algorithm assigns ot∗+5, o

′
t∗+5, the set N1,ot becomes empty, i.e., there is no agent in N1 who

is not saturated and likes new items ot, o
′
t for t > t∗ + 5. Thus, the value V1(X) derived by

class N1 from X is at most t∗ + 5. However, this means that

V1(X) 6 t∗ + 5 < (1− 1

e
)n+ 5 < α · 2n 6 α · V ∗1 (Y2),

a contradiction.

USW. Suppose towards a contradiction that Equal-Filling achieves α-USW for some
constant α > 1

2
. Let n be a positive integer such that α > 1

2
+ 1

2(n+1)
. This means that

α · 2n > n+ n
n+1

.
Consider n + 1 classes: There are n classes Nj, each of which consists of a single agent

cj for j = 1, 2, . . . , n. The last class Nn+1 consists of n agents {a1, a2, . . . , an}. There are
2n items: n red items r1, r2, . . . , rn and n blue items b1, b2, . . . , bn. Each red item is liked by
every agent. Each blue item bi is liked by the single agent ci in Ni. Now the instance admits
a perfect matching of size 2n that matches every agent ci for i ∈ [n] to the blue item bi and
the remaining n agents in Nn+1 arbitrarily to the remaining n red items.

Now suppose that the items arrive in the order of r1, r2, . . . , rn, b1, b2, . . . , bn. For each
red item ri (i ∈ [n]), the equal-filling algorithm assigns an equal amount 1

n+1
of fractions

among the n+ 1 classes. Thus, after the algorithms matches the last red item rn, the total
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amount of fractions each class Ni for i ∈ [n + 1] has received is n
n+1

. For each blue item bi
(i ∈ [n]), the equal-filling algorithm assigns an amount of 1

n+1
to the agent ci in Ni since ci

is the only agent who likes the blue item bi but has already been saturated up to n
n+1

. Thus,
the utilitarian social welfare of the resulting matching X is given as follows:

n∑
i=1

Vi(X) + Vn+1(X) =
n∑
i=1

1 +
n

n+ 1
= n+

n

n+ 1
.

By the choice of n, we have n+ n
n+1

< α ·2n, meaning that Equal-Filling does not achieve
α-USW. Thus, we obtain a contradiction.

5. Randomized Algorithms for Indivisible Items

In this section, we explore randomized algorithms and analyze their expected fairness
guarantees. The fairness notions defined in Section 2 can be naturally extended to those for
randomized algorithms as follows.

Definition 8. For α ∈ (0, 1], a randomized online algorithm for matching indivisible items
is

• α-CEF if, when all items have arrived, it produces a matching X such that for every
pair of classes i, j ∈ [k], E[Vi(X)] > α · E[V ∗i (Yj(X))]8;

• α-CPROP if, when all items have arrived, it produces a matching X such that for
every class i ∈ [k], E[Vi(X)] > α · propi; and

• α-USW if, when all items have arrived, it produces a matchingX such that E[usw(X)] >
α · usw(X∗), where X∗ is a matching with the highest utilitarian social welfare and
E[usw(X)] =

∑
a∈N

∑
o∈M :(a,o)∈E E[xa,o].

Recall from Section 3 that for indivisible items, no deterministic online algorithm can
achieve α-CMMS for any α > 1/2. When moving to randomized algorithms, one can naturally
hope to approximate CPROP instead of CMMS because the value to a class is evaluated in
expectation. However, a priori it is not clear whether a randomized algorithm can achieve
α-CPROP for any α > 1/2.

By applying a recently introduced rounding technique, called Online Correlated Selection
(OCS) [19], to the divisible matching given by Equal-Filling (Algorithm 2), we are able
to design a randomized algorithm for indivisible items that achieves 0.593-CPROP.

We start by introducing a recent result about OCS that forms the backbone of our
approach.

8X is a random variable that corresponds to a matching returned by the algorithm, and thus, the
expectation is over the randomness of the algorithm.
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Lemma 1 (c.f., Gao et al. 21). There is a polynomial-time online algorithm which works
as follows. In each step, it takes as input a non-negative vector (x̃a,o)a∈N for some o ∈ M
satisfying

∑
a∈N x̃a,o 6 1 and selects an agent a with positive x̃a,o. Further, by the end, each

agent a is selected at least once with probability at least:

p(x̃a) = 1− exp
(
−x̃a − 1

2
· x̃2a − 4−2

√
3

3
· x̃3a
)
,

where x̃a =
∑

o∈M x̃a,o.

Technically, such an algorithm is called (multi-way) semi-OCS instead of OCS. But the
nomenclature is unimportant for our application, so we will call it OCS for brevity, and
refer interested readers to the works of Fahrbach et al. [19] and Gao et al. [21] for a detailed
comparison.

How good is the guarantee in Lemma 1? For comparison, consider the simpler in-
dependent randomized rounding algorithm, which, upon receiving the vector (x̃a,o)a∈N ,
selects each agent a with probability x̃a,o, independently of the rounding outcomes in
the previous steps. By the end, each agent a is selected at least once with probability
1 −

∏
o∈M(1 − x̃a,o) > 1 − exp(−

∑
o∈M x̃a,o) = 1 − exp(−x̃a). Readers can verify that

using this weaker bound in the proof of Theorem 5 only yields 1/2-CPROP. The improved
guarantee in Lemma 1 is critical for achieving an approximation better than 1/2.

Our algorithm, Equal-Filling-OCS (presented as Algorithm 3), runs a variant of

Equal-Filling in the background to get a guiding divisible matching X̃ = (x̃a,o)a∈N,o∈M .
The only difference is that unlike Equal-Filling, this variant does not cap the value (total
fraction of all items) assigned to an agent at 1. This is because the algorithm will perform
rounding to compute an indivisible matching, and by Lemma 1, the probability that an
agent a is matched depends on the value x̃a of the agent in the divisible matching in such a
manner that even reaching a value of 1 would not guarantee being matched with certainty.

Upon receiving a new item o, the algorithm first continues running this variant of Equal-
Filling to obtain the guiding division (x̃a,o)a∈N (Lines 5-12), and then lets OCS select an
agent a∗ accordingly (Line 14). If the selected agent a∗ is not yet matched, the algorithm
matches item o to this agent. If a∗ is already matched, the algorithm matches item o to
an arbitrary unmatched agent who likes it, and discards the item if there is no such agent
(Line 15).

Theorem 5. For randomized matching of indivisible items, Equal-Filling-OCS (Algo-
rithm 3) satisfies non-wastefulness, 0.593-CPROP, and 1/2-USW.

Proof. Non-wastefulness is clear from Line 15 of Algorithm 3. Proposition 1 implies 1/2-
USW. Hence, we focus on the interesting 0.593-CPROP guarantee.

Fix an arbitrary class i. The first part of the analysis bounds the proportional value
of class i using the guiding divisible matching X̃. This part is almost verbatim to its
counterpart in the proof of Theorem 3, except we do not bound the value threshold θ by 1.
We include this part to be self-contained.
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ALGORITHM 3: Equal-Filling-OCS

1 Initialize an empty indivisible matching X = (xa,o)a∈N,o∈M

2 Initialize an empty divisible matching X̃ = (x̃a,o)a∈N,o∈M

3 Maintain a class-level divisible matching Ỹ = (ỹi,o = 0)i∈[k],o∈M such that

yi,o =
∑

a∈Ni
x̃a,o

4 when item o ∈M arrives do

5 /*class-phase divisible matching*/
6 For each class i, let Ni,o be the set of agents in class i who like item o
7 Let ko be the number of classes i such that Ni,o 6= ∅
8 Let ỹi,o = 1

ko
for each of these ko classes

9 /*individual-phase divisible matching*/
10 for each class i with yi,o > 0 do
11 Find γo such that

∑
a∈Ni,o

max(γo − x̃a, 0) = ỹi,o

12 Let x̃a,o = max(γo − x̃a, 0) for all a ∈ Ni,o

13 /*indivisible matching rounded by OCS*/
14 Send (x̃a,o)a∈N to the OCS in Lemma 1 and let it select an agent a∗

15 Match o to a∗ if a∗ is not yet matched, and to an arbitrary unmatched neighbor (if
any) otherwise

For θ > 0, let f(θ) denote the number of agents in class i who have value at least θ under

X̃. Let Ni(θ) denote the set of these f(θ) agents, and let N i(θ) = Ni \Ni(θ).
Fix any θ > 0. For each item o liked by at least one agent in N i(θ), Algorithm 3 assigns

a fraction ỹi,o > 1/ko to class i in the guiding divisible matching (but not necessarily to the
agents in N i(θ)). Further, any agent in Ni receiving a positive share of item o must have
value less than θ right after receiving it. Hence, the total number of items liked by at least
one agent in N i(θ) is at most k

∫ θ
0
f(z) dz.

On the other hand, the total value that agents in Ni(θ) can obtain from any set of items
is at most f(θ) (at most 1 per agent).

Therefore, for any divisible partition of the items, denoted by non-negative vectors Ŷi =
(ŷi,o)o∈M for i ∈ [k] such that

∑
i∈[k] Ŷi,o = 1 for each o ∈M , we have:

∑
j∈[k]

V ∗i (Ŷj) 6 k ·
(∫ θ

0

f(z) dz + f(θ)

)
, ∀θ > 0.

This implies that the proportional share of i is bounded by:

propi 6
∫ θ

0

f(z) dz + f(θ), ∀θ > 0. (1)

Next, we lower bound the expected value of class i for the randomized indivisible match-
ing X. OCS ensures that for each agent a in class i, its probability of being matched is at
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least p(x̃a). Hence, the expected value of class i for X is:

E[Vi(X)] >
∑
a∈Ni

p(x̃a) (Lemma 1)

= −
∫ ∞
0

p(θ) df(θ) (definition of f(θ))

=

∫ ∞
0

p′(θ)f(θ) dθ . (integration by parts, p(0) = f(∞) = 0)

Multiplying inequality (1) by non-negative coefficients c(θ) (to be determined later), and
integrating over θ > 0 gives that:

propi ·
∫ ∞
0

c(θ) dθ

6
∫ ∞
0

c(θ)

(∫ θ

0

f(z) dz + f(θ)

)
dθ

=

∫ ∞
0

c(θ)

∫ θ

0

f(z) dz dθ +

∫ ∞
0

c(θ)f(θ) dθ

=

∫ ∞
0

(∫ ∞
z

c(θ) dθ + c(z)

)
f(z) dz,

where, during the last transition, we exchange the order of integrals in the first part and
change the index from θ to z in the second part.

We choose c(θ) = −eθ
∫∞
θ
p′′(y)e−y dy, so that

∫∞
z
c(θ) dθ + c(z) = p′(z) for all z > 0.

Hence, we get that:

propi ·
∫ ∞
0

c(θ) dθ 6
∫ ∞
0

p′(z)f(z) dz 6 E[Vi(X)] .

The theorem then follows by numerically calculating the integral:∫ ∞
0

c(θ) dθ ≈ 0.5936 > 0.593.

This concludes the proof of the theorem.

In the next subsection, we briefly discuss other randomized algorithms and their obsta-
cles in achieving better than 1/2 approximation to CPROP. We also present a randomized
algorithm based on the classical Ranking algorithm, which achieves (1− 1/e)-CEF. While it
achieves this guarantee non-vacuously (i.e., it does not simply return the empty matching),
it still violates non-wastefulness. It would be interesting to analyze its efficiency.
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5.1. Discussion on Other Randomized Algorithms

Readers familiar with the online matching literature may wonder why can’t we use the
Ranking algorithm of Karp et al. [33] to decide how to match items within each class,
and combine it with some fair class-level matching approach. While we believe this is an
interesting direction for future research, there is a concrete technical difficulty in analyzing
such algorithms. Naturally, the class-level matching must take into account which agents
are already matched to previous items. This means that the realization of randomness used
by Ranking within some class i will influence what items are allocated to the class!

How about applying Ranking directly, ignoring how agents are partitioned into classes?
While this approach circumvents the above challenge, it fails on two classes with lopsided
sizes. In the extreme, consider a class with only one agent, and another class with n � 1
agents, and only one item. The second class will get the item with probability n

n+1
while

the first class gets it only with probability 1
n+1

.
Finally, we observe that it is necessary to have randomness in both the class-level match-

ing and the individual-level matching, in order to exploit the power of randomized algo-
rithms.

Proposition 4. If an algorithm assigns deterministically at the class-level, it is at best
1
2
-CPROP.

Proof. Consider two classes N1 = {a1, a2, a3} and N2 = {b1, b2, b3}. For 1 6 i 6 3, the i-th
item is liked by ai and bi. If the algorithm assigns all three items to the same class, it is only
0-CPROP. Otherwise, assume without loss of generality that 2 items go to class 2. Let the
next item be only liked by the matched agent in class 1 and the unmatched agent in class
2, as in Figure 1. The algorithm is then at best 1

2
-CPROP.

Proposition 5. If an algorithm assigns deterministically within each class, it is at best
1
2
-CPROP.

Proof. It becomes apparent when we consider a single class. The proposition then reduces
to the fact that deterministic online matching algorithms are at best 1

2
-competitive. We can

extend this hard instance to k classes by making k copies of the class and each item.

5.2. Discussion on Randomized Algorithms and CEF

As discussed in the last subsection, if the the class-level matching depends on which
agents are already matched, i.e., if it is adaptive to the realization of randomness in the agent-
level matching, then the realization of randomness in an online algorithm, e.g., Ranking,
within each class would affect what items get assigned to the class. How about using a class-
level matching algorithm that is oblivious to the randomness in the agent-level matching?
Although such algorithms must violate non-wastefulness in general, we find an algorithm
that isn’t blatantly wasteful and looks interesting enough to be a stepping stone towards
stronger algorithms in future works.

We call this algorithm Equal-Ranking. For each item, it randomly assigns the item
to a class with at least one agent who likes the item. Within each class, it runs a separate
Ranking algorithm to match items to agents therein.
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Proposition 6. Given an online indivisible instance, Equal-Ranking guarantees (1−1/e)-
CEF.

Proof. Consider any class i and any other class j. Let yi = (yio)o∈M ∈ {0, 1}M be the vector
that represents the subset of items assigned to i by Equal-Ranking at the class-level,
regardless of whether such items can be matched to each agent who likes them. Define yj
similarly. Note that both yi and yj are random variables that depend on the class-level
random assignments of items. Finally, let X = (xao)a∈N,o∈M ∈ {0, 1}N×M be the matrix
that represents the matching by Equal-Ranking. We seek to prove that:

E[Vi(X)] > (1− 1/e)E[V ∗i (yj)] .

Conditioned on the subset of items assigned to i, i.e., yi, the Ranking algorithm ensures
that (see, e.g., Karp et al. [33]):

E
[
Vi(X) | yi

]
> (1− 1/e)V ∗i (yi) .

It remains to show that:
E[V ∗i (yi)] > E[V ∗i (yj)] .

Define ŷj be such that ŷjo = yjo if class i has at least one agent who likes item o, and
ŷjo = 0 otherwise. By definition V ∗i (yj) = V ∗i (ŷj) and therefore it suffices to prove:

E[V ∗i (yi)] > E[V ∗i (ŷj)] .

Note that for any item o, Equal-Ranking ensures that the probability that yio = 1 is
greater than or equal to the probability that ŷjo = 0. Further, the assignment of items at the
class-level are independent. Hence we get that random variable yi stochastically dominates
ŷj. The above inequality now follows by the monotonicity of V ∗i .

6. Conclusion and Future Directions

Our work introduces the novel framework of class fairness in online matching. We derive
bounds on approximate fairness and efficiency guarantees that deterministic and randomized
online algorithms can achieve in this framework for matching divisible and indivisible items,
and leave open a number of exciting open questions. For example, can a deterministic
algorithm for matching divisible items achieve a CEF approximation together with non-
wastefulness better than 1 − 1/e? (We conjecture the answer to be no.) Can it achieve
any reasonable CEF or CPROP approximation together with a USW approximation better
than 1/2 (ideally, 1 − 1/e)? Can a randomized algorithm for matching indivisible items
achieve any reasonable CEF approximation together with either non-wastefulness or a USW
approximation?

More broadly, our basic framework paves the road for interesting extensions. For ex-
ample, one can allow agents to have non-binary values for the items, consider class fairness
notions that give more importance to bigger classes, consider both agents and items arriving
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online [27], study weaker adversarial models, or consider stochastic instead of adversarial
arrivals.

Furthermore, in our model, we assume that each agent belongs to exactly one class.
However, in practice, individuals may belong to multiple categories, such as gender and
ethnic groups. It would be interesting to explore fairness notions similar to ours when
agents are allowed to be part of multiple groups.
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Appendix

Appendix A. Omitted Material from Section 3

Appendix A.1. Pessimal class envy-freeness

One may wonder whether relaxing the way each class measures its hypothetical value
for a set of items could help alleviating the incompatibility between class envy-freeness and
non-wastefulness. We show that even if each class considers a pessimistic value for a set
of items (in other words, considers worst-case scenario for matching the items), the clash
between envy-freeness and non-wastefulness persists.

Given a vector y = (yo)o∈M ∈ {0, 1}M representing a set of items, the pessimistic valua-
tion V 	i (y) of class i for y is the value of a minimum-cardinality maximal matching between
the agents of Ni and the set { o ∈M | yo = 1 }. This problem has shown to be NP-hard for
graphs with maximum degree 3 and k-regular bipartite graphs for k > 3 [17, 49].

We compare the value Vi(X) derived by class i from matching X with class i’s pessimistic
valuation for the items matched to another class j, i.e. V 	i (Yj(X)).

Definition 9 (Pessimal class envy-freeness). A matching X is α-pessimal class envy-free
(α-PEF) if for every pair of classes i, j ∈ [k], Vi(X) > α · V 	i (Yj(X)). When α = 1, we
simply refer to it as pessimal class envy-freeness (PEF).

Similar to its optimistic counterpart, CEF, a PEF matching may not always exist. There-
fore, we consider the following relaxation of PEF for integral matchings.

Definition 10 (Pessimal class envy-freeness up to one item). An integral matching X is
α-pessimal class envy-free up to one item (α-PEF1) if for every pair of classes i, j ∈ [k],
either Yj(X) = ∅ or there exists an item o ∈ Yj(X) such that Vi(X) > α · V 	i (Yj(X) \ {o}).
When α = 1, we simply refer to it as class envy-freeness up to one item (PEF1).

It is easy to verify that PEF1 is weaker than CEF1. Intuitively, a class values its
matching compared to the items assigned to another class if it has a pessimistic view of the
items arrival and matched items, should the items were exchanged. Clearly, a CEF matching
is also PEF, and similarly CEF1 implies PEF1.

Example 3. In the example given in Figure A.4, there are two classes N1 = {a1, a2} and
N2 = {b1, b2}. The bold edges indicate the matched items. This matching is not CEF,
since class N1 envies class N2 should it able to optimally match items o1 and o3 within
its members. However, the same matching is PEF because class N1 considers a pessimal
matching of the same items, that is o1 and o3, where item o1 is matched to a1 upon its
arrival, and thus, o3 remains unmatched (Since there is no edge from a2 to o3).

The following proposition strengthens our previous results on the incompatibility between
non-wastefulness and CEF1 by showing that non-wastefulness remains incompatible with a
weaker fairness notion of PEF1.

Proposition 7. No deterministic algorithm for matching indivisible items can guarantee
non-wastefulness and PEF1.
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o1
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Figure A.4: An allocation that is PEF but not CEF. The red group pessimally considers the worst-case
matching of items o1 and o3 with the value of 1.
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Figure A.5: A CEF1+NW matching that does not imply any approximation for CMMS.

Proof. Consider the example given in Figure 1. It is easy to verify that the matching is
non-wasteful. However, in this scenario the pessimal value of class N1 for the items assigned
to the class N2 is 3, implying that the matching is not PEF1.

Appendix A.2. Relationships Between CEF1 and CMMS

For fair division with additive valuations, Segal-Halevi and Suksompong [45] proved that,
subject to allocating every item, EF1 is equivalent to MMS. In contrast, in our model neither
implies even an approximation of the other.

Proposition 8 (CEF1+NW ; CMMS). Given an indivisible instance, a CEF1+NW
matching does not imply any α-CMMS for any α > 0.

Proof. We construct an instance for which a α-CEF1+NW matching with α = 1 gives only
a 0-CMMS approximation.

Suppose there are k classes N1, N2, . . . , Nk. Each Ni for i ∈ [k − 1] consists of k agents.
The last class Nk consists of k − 1 agents a1, a2, . . . , ak−1. There are k(k − 1) items that
are partitioned into k − 1 subsets C1, C2, . . . , Ck−1. For j ∈ [k − 1], Cj consists of k items,
o1j, o2j, . . . , okj, each of which is referred to as a type j item. For each j ∈ [k − 1], every
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agent in class Nj likes every item in Cj. For class Nk, each agent aj for j ∈ [k − 1] likes
every item in Cj. For example, agent a2 likes k items o12, o22, . . . , ok2 but does not like none
of the other items.

Now, consider a matching X that gives no item to class Nk and matches arbitrarily each
of the k items in Cj to one of the k agents in each class Nj for j ∈ [k − 1] (as illustrated
in Figure A.5). Since each of the k(k − 1) items are fully assigned to an agent who likes
it, the matching X is clearly non-wasteful. Further, this matching is CEF1. In fact, all
classes except Nk receive a perfect matching and are not envious of any other class. Also,
for j ∈ [k − 1], there is at most one agent aj in Nk who likes an item in Cj. Thus, class
Nk is not envious for more than one item since V ∗k (Yj) 6 1 for any j ∈ [k − 1]. Thus, the
matching is CEF1.

In contrast, consider a partition (L1, L2, . . . , Lk) of the items where Li = {oi1, oi2, . . . , oik−1}
for each i ∈ [k]. Observe that for each i = 1, 2, . . . , k, each agent aj in Nk likes exactly one
item oij in Li, i.e., Li ∩Cj = {oij} for j ∈ [k− 1]. This means that there is a perfect match-
ing of size k − 1 between Nk and the items of each Li, yielding V ∗1 (Li) > k − 1 for i ∈ [k].
We thus establish that mmsk > k − 1. Given that class N1’s value for X is V1(X) = 0, X
provides 0-CMMS approximation, which proves the claim.

Proposition 9 (CMMS ; CEF1+NW). Given an indivisible instance, a CMMS matching
does not imply α-CEF1 for any α > 0.

Proof. Consider an instance with k classes each with k agents. There are k − 1 items liked
by every agent in each class. A matching that assigns all k − 1 of items to a single class,
say N1, satisfies CMMS. This is because the CMMS value for each class is obtained by
partitioning the k − 1 items into k bundles, yielding mmsi = 0 for i = 1, 2, . . . , k. However,
this matching is not CEF1 (nor any α approximation of it for α > 0) because every class
values the matching assigned to N1 as k − 1 while only receiving 0 valuation.

Appendix B. Omitted Material from Section 4

Appendix B.1. Proportionality with respect to allocated items

Our objective of this section is to show that (1 − 1/e)-bound is tight even for CPROP
with respect to the allocated items. Formally, we define the proportional share of class i
with respect to a set S of items as

propSi = max
X∈X (S)

min
j∈[k]

V ∗i (Yj(X)).

where X (S) is the set of (divisible) matchings of the set of items S to the set of agents N .
For α ∈ (0, 1], we say that matching X is α-class proportional (α-CPROP) with respect to
a set S of items if for every class i ∈ [k], Vi(X) > α · propSi . For α ∈ (0, 1], a deterministic
online algorithm for matching divisible items is α-class proportional (α-CPROP) with respect
to the allocated items if when all items have arrived, it produces a matching that is α-class
proportional with respect to the items that have been fully assigned by the algorithm.
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Proposition 10. No deterministic algorithm for matching divisible items satisfies α-CPROP
with respect to the allocated items for any α > 1− 1/e.

Proof. We will prove that no deterministic online algorithm satisfying non-wastefulness can
achieve α-CPROP with respect to the allocated items for any α > 1 − 1/e. By the proof
of Proposition 2, this implies that no deterministic algorithm can guarantee α-CPROP with
respect to the allocated items for any α > 1− 1/e.

Take any non-wasteful algorithm for divisible item allocation and consider the following
adversarial instance. There are two classes of 3n agents each,

• N1 = {a1, . . . , an, d1, . . . , d2n} and

• N2 = {a′1, . . . , a′n, d′1, . . . , d′2n}.

We call the agents d1, . . . , d2n, d
′
1, . . . , d

′
2n dummy agents. There are 2n items, labeled oi and

o′i for i ∈ [n].
The construction of the instance works in rounds as follows.

• We start with t = 1, R0
1 = {a1, a2, . . . , an}, and R0

2 = {a′1, a′2, . . . , a′n}.

• In round t, items ot arrives, followed immediately by item o′t. Both these items are
liked by agents in Rt−1

1 and Rt−1
2 .

• Let V t(a) denote the value that agent a derives at the end of round t when the
algorithm finishes allocating both items. Find the lowest valuation agent in each
class. WLOG, say at ∈ arg mina∈Rt−1

1
V t(a) and a′t ∈ arg mina′∈Rt−1

2
V t(a′). Set Rt

1 ←
Rt−1

1 \ {at}, Rt
2 ← Rt−1

2 \ {a′t}, and t← t+ 1.

We stop this process after the first round t∗ such that at the end of that round every
agent in Rt∗

1 and every agent in Rt∗
2 is fully saturated.

Without loss of generality, assume that at the end of round t∗, the total value of agents
in N1 is at most the total value of agents in N2, i.e.,

∑
a∈N1

V t∗(a) 6
∑

a′∈N2
V t∗(a′). For

shorthand, let us denote V t(A) =
∑

a∈A V
t(a) for a set of agents A.

Then, the remaining 2(n − t∗) items that arrive are liked by agents in N2 ∪ Rt∗
1 . Note

that by non-wastefulness and by the fact that N2 contains 2n dummy agents, the 2(n− t∗)
items are fully assigned to some agent.

We claim the following properties at the end of round t∗.

• The agents n− t∗ agents in Rt∗
1 and the n− t∗ agents in Rt∗

2 are all fully saturated.

• V t∗(N1) 6 t∗, V t∗(N2) > t∗ − 1.

• t∗ 6 (1− 1/e) · n (in particular, the process will stop after no more than n rounds).

The first claim follows immediately due to the definition of t∗. For the second claim,
note that the total value of both classes after t rounds must be at most 2t since only 2t
items have arrived. Also, the total value of both classes after t rounds must be at least
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2(t − 1); this is because the tth round only happens if some agent in Rt−1
1 ∪ Rt−1

2 was not
fully saturated after t− 1 rounds, and since this agent was part of Rt′

1 ∪Rt′
2 for all t′ 6 t− 1,

non-wastefulness implies that the algorithm must have assigned the 2(t− 1) items from the
first t−1 rounds fully. These two claims, along with the convention that V t∗(N1) 6 V t∗(N2)
implies the second claim.

Before we prove the third claim, we show why these claims imply the desired bound on
the envy ratio. At the end of the algorithm, the total value of class N1 is at most t∗ because
of the second claim and the fact that they do not receive any items from the last 2(n− t∗)
items (as all agents in Rt∗

1 are saturated after round t∗).
In contrast, the proportional fair share propS1 of class N1 with respect to the allocated

items S is at least n − 1. Note that all the items except for ot∗ and o′t∗ are fully assigned.
Thus, M \ {ot∗ , o′t∗} ⊆ S. Further, consider two sets P1 = {o1, . . . , ot∗−1, ot∗+1, . . . , on} and
P2 = {o′1, . . . , o′t∗−1, o′t∗+1, . . . , o

′
n}. From P1, the t∗−1 items o1, o2, . . . , ot∗−1 can be matched

to t∗ − 1 agents a1, a2, . . . , at∗−1 and the remaining n− t∗− items can be matched to n− t∗
agents in Rt∗

1 . Similarly, from P2, t
∗ − 1 items o′1, o

′
2, . . . , o

′
t∗−1 can be matched to t∗ agents

a′1, a
′
2, . . . , a

′
t∗−1 and the remaining n − t∗ items can be matched to n − t∗ agents in Rt∗

1 .
Thus, propS1 > n−1. From the third claim, if V1(X) > α ·propS1 , then (1−1/e)n > α(n−1),
meaning that (1− 1/e) n

n−1 > α.
Finally, we show that t∗ 6 (1− 1/e) · n. To see this, we first show that after t rounds,

V t(N1 \Rt
1) + V t(N2 \Rt

2) 6
2t

n
+

2(t− 1)

n− 1
+ . . .+

2 · 1
n− t+ 1

.

For the base case, note that after the first round, V 1(a1) + V 1(a′1) 6 2/n follows from
the pigeonhole principle. Suppose this claim holds after t− 1 rounds. Then, after round t,
we have

V t(at) + V t(a′t) 6
2t− (V t−1(N1 \Rt−1

1 ) + V t−1(N2 \Rt−1
2 ))

n− t+ 1
.

Adding V t−1(N1 \ Rt−1
1 ) + V t−1(N2 \ Rt−1

2 ) = V t(N1 \ Rt−1
1 ) + V t(N2 \ Rt−1

2 ) to both sides,
we obtain

V t(N1 \Rt
1) + V t(N2 \Rt

2) 6
2t

n− t+ 1
+

n− t
n− t+ 1

· (V t−1(N1 \Rt−1
1 ) + V t−1(N2 \Rt−1

2 )).

Using the induction hypothesis, we get the desired result. Consider the smallest t̂ such
that

2t̂− 2−
(

2t̂

n
+

2(t̂− 1)

n− 1
+ . . .+

2 · 1
n− t̂+ 1

)
> 2(n− t̂).

Note that the process must stop at t∗ 6 t̂. This is because the total value of both classes after
t̂ round is at least 2t̂−2, but the value to the removed agents is at most the expression in the
brackets. Hence, the remaining allocation must have saturated the remaining 2(n− t̂) agents.
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After simple algebra, we can see that the left hand side is equal to 2 ·(n− t̂) ·(Hn−Hn−t̂)−2.
If this is at least 2(n − t̂), then Hn − Hn−t̂ > 1 + 1/(n − t̂). The smallest t̂ when this is
satisfied is roughly (1− 1/e) · n+ o(n).
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