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ABSTRACT
The past decade has witnessed a rapid growth of research on fair-

ness in machine learning. In contrast, fairness has been formally

studied for almost a century in microeconomics in the context of

resource allocation, during which many general-purpose notions

of fairness have been proposed. This paper explore the applicability

of two such notions — envy-freeness and equitability — in machine

learning. We propose novel relaxations of these fairness notions

which apply to groups rather than individuals, and are compelling

in a broad range of settings. Our approach provides a unifying

framework by incorporating several recently proposed fairness

definitions as special cases. We provide generalization bounds for

our approach, and theoretically and experimentally evaluate the

tradeoff between loss minimization and our fairness guarantees.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Applied
computing → Economics.
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1 INTRODUCTION
Machine learning algorithms are now ubiquitously used to au-

tomate decisions which affect human lives (e.g. deciding credit

ratings, filtering resumes of job applicants, or making decisions

regarding bails or loan applications). Their proliferation raises con-

cerns that these algorithms might amplify human biases or in-

troduce new sources of unfairness [6]. Such concerns have led

to a recent explosion in research on fairness in machine learn-

ing [10, 14, 17, 22, 27, 28].

While yielding insights on how to make algorithms fairer, it

has also led to plethora of fairness definitions [32], many of which

are incompatible [14, 27]. There is a general lack of consensus on

which is the right definition, and this choice is often application-

dependent [25]. Further, most popular definitions such as statistical

parity [10, 17] and equalized odds [22] only apply to restrictive

binary settings (e.g. where a loan application can be either approved
or rejected); there are few definitions or general frameworks for

considering fairness across a broad range of settings [24].

While fairness in machine learning is a recent phenomenon,

fairness has been formally studied in microeconomics (especially

in fair resource allocation) since almost a century [37]. Initiated by

studying the canonical cake-cutting setting, it has since focused on

proposing general-purpose definitions such as proportionality [37],

envy-freeness [19], equitability, the core [41], and Rawlsian egali-

tarian fairness [34], which apply to a broad range of settings. For

example, the core is not only applicable in cake-cutting [41], but also

in participatory budgeting [18], housing markets [36], matching

markets [20], public goods allocation [18], and even clustering [13].

Recently, a number of papers emerged using these definitions to

design fair machine learning algorithms [5, 40, 43]. One central fair-

ness notion adopted by them all is envy-freeness, which mandates

that no individual should envy another individual. Formally, this is

written as ∀i, j : ui (oi ) ≥ ui (oj ), where ui is the utility function of

individual i and oi is the outcome experienced by her.

Envy-freeness is compelling because it is simple, intuitive, and re-

quires no information beyond individuals’ utility functions, which

can be easily learned easily from their actions [4, 12]; this is in

contrast to definitions like individual fairness [17], which requires

access to a task-specific similarity metric between people. However,

it has a significant drawback. While it can be exactly satisfied in

classic resource allocation settings like cake-cutting [38] or rent

division [39], it is often too stringent for many machine learning

applications. For example, in binary settings with only two out-

comes where all individuals prefer the same outcome (e.g. prefer

receiving a loan/bail than not receiving it), envy-freeness would re-

quire that all individuals receive the same outcome. In applications

like targeted advertising where people have heterogeneous prefer-

ences, envy-freeness is less restrictive, but only when randomized

assignments are allowed [5].

Almost all of this discussion applies to another key fairness defi-

nition, equitability, which is formally stated as ∀i, j : ui (oi ) = uj (oj ).
That is, all individuals must have the same utility for their own

outcome. To illustrate its distinction from envy-freeness, consider a

hypothetical setting where individual 1 has utility 1 for outcome A
but 0 for outcome B, while individual 2 has utility 1 for B but 0 for

A. Assigning outcome B to both individuals is envy-free (indeed,

individual 1 does not envy individual 2 as they both receive the

same outcome), but not equitable (individual 1 receives utility 0

whereas individual 2 receives utility 1).

The research question we address in this paper is: Are there relax-
ations of envy-freeness and equitability which are more appropriate
for machine learning settings?

1.1 Our Contributions
We propose novel relaxations of envy-freeness and equitability in

style of classical group fairness notions in machine learning. We

are interested in ensuring fairness between a pair of groups (G, Ĝ),
where groups are defined as arbitrary subsets of individuals. A

classifier is group envy-free for this pair of groups if, on average,

individuals in G have no less utility for their own classification

outcome than for the outcomes of individuals in Ĝ . For the classifier
to be group equitable for this pair of groups, the average utility of

individuals in G for their own outcome should equal the average

utility of individuals in Ĝ for their own outcome.

Section 4 shows that both these notions capture several prior fair-

ness notions such as statistical parity, equal opportunity, equalized



odds, and equalized financial impact, as special cases, and extend

them beyond binary classification. For equalized odds, Hardt et al.

[22] show that a non-discriminatory classifier can be post-processed

to satisfy equalized odds without access to feature vectors. We show

such post-processing is not generally possible in our setting without

access to utility functions (which depend on feature vectors).

Section 5 provides generalization error bounds for both our

fairness notions using Rademacher complexity. We show that that

classifiers that provide good fairness guarantees on polynomially

large training set can also provide good fairness guarantees on the

population, even when the pairs of groups for which fairness is

sought is exponential.

In Section 6, we show that in the worst case, fairness and loss

minimization are not very compatible: simply minimizing the em-

pirical loss without any regards to group envy-freeness or group

equitability can quite unfair, whereas imposing either fairness re-

quirement can significantly increase the loss of the classifier.

Section 7 qualifies these observations by performing simula-

tions in the targeted advertising setting. First, we derive efficient

methods for training classifiers with low violations of group envy-

freeness and group equitability constraints. Next, we observe that

our method provides a good tradeoff between empirical risk min-

imization (which has very low loss but highly unfair) and trivial

methods for achieving fairness (which is highly fair, but has very

high loss). We also observe that empirically, group envy-freeness is

much less imposing than group equitability or (individual) envy-

freeness, indicating it may be better suited for practical applications.

1.2 Related Work
Envy-freeness in machine learning. Closely related to ours is

the work of Balcan et al. [5], who consider envy-free classifiers in

targeted advertising context. As described above, envy-freeness is

a stringent constraint for machine learning; we also empirically

observe this in our experiments (Section 7). Further, envy-freeness

places a constraint for every pair of individuals, thus generating an

extremely large number of constraints.

Envy-freeness with decoupled classifiers. Zafar et al. [43]
and Ustun et al. [40] also adapt envy-freeness to the machine learn-

ing context. Though they define a notion of envy-freeness among

groups that is similar to our group envy-freeness notion, there is

a key difference. They work with group-conditional or decoupled

classifiers, where the principal trains a potentially different classi-

fier hG for each groupG . Then, it is said that groupG does not envy

group Ĝ if Ex∼G u(x,hĜ (x) − u(x,hG (x)) ≤ 0. That is, on average,

an individual x from groupG should prefer the outcome of hG on x
than the outcome of hĜ on x . We argue that this can allow the prin-

cipal to satisfy the fairness requirement without actually being fair

to groups. For example, consider a scenario in which all individuals

prefer class 1 over class 0. The principal trains (hG ,hĜ ) such that

hG assigns class 0 to everyone in groupG , whereas hĜ assigns class

1 to everyone in group Ĝ . When both groups are equally deserving

of class 1, this is clearly unfair. However, hĜ may be a classifier

which, when applied on any individual x from group G, detects
membership inG using the feature vector and returns class 0 in that

case. Then, these decoupled classifiers will satisfy envy-freeness

according to the definitions of Ustun et al. [40], Zafar et al. [43].

In contrast, note that we require that individuals in group G not

prefer the classification given to individuals in group Ĝ (and not

just the classification that would be given to them if the classifier

for group Ĝ were used for them). Hence, these unfair classifiers

would significantly violate our group envy-freeness notion. We also

note that auditing for fairness is much more difficult under their

notion than ours. Checking group envy-freeness under our notion

simply requires knowing the classification outcomes, which is often

public information, whereas checking it under their notion requires

access to the actual classifiers, which are often kept private [25].

Welfare-equalizing fairness. Concurrently to (and indepen-

dently of) our work, Ben-Porat et al. [8] propose welfare-equalizing

fairness, which coincides with our group equitability notion. They

also argue that this subsumes classic fairness notions like statistical

parity, equal opportunity, and equalized odds like we do for both

group envy-freeness and group equitability in Section 4. However,

their main focus is observing that equalized odds may harm even

the disadvantaged group when utilities are not considered [24],

whereas this cannot happen under group equitability, lending it

further credibility. They also identify the structure of optimal group

equitable classifiers in a certain context. Although one of our no-

tions coincides with their proposal, our contribution is entirely

different. We provide generalization error bounds for our fairness

notions, and theoretically and empirically evaluatethe tradeoff be-

tween loss minimization and fairness, which they do not do.

Fair division. Envy-freeness originated in microeconomics lit-

erature on fair allocation of resources [19]. In that context, envy-

freeness is easy to achieve either exactly [41] or approximately [9,

11, 29]. Hence, the literature has focused on group-level notions of

fairness which strengthen (i.e. logically imply) envy-freeness, such

as group envy-freeness [7] or group fairness [15]. These should

not be confused with our notion of group envy-freeness, which is

a relaxation of individual envy-freeness. We term it group envy-

freeness because in machine learning, notions that relax individual-

level fairness to groups are referred to as group fairness notions,

and there are no notions that strengthen individual fairness because

individual fairness is already severely restrictive.

In classical fair division, fairness notions which average utilities

across individuals are usually not considered as individual utilities

can be on different scales (or expressed in different units). Interper-

sonal comparisons of utilities is thus avoided [30]; an exception to

this is the work of Aleksandrov and Walsh [2]. In machine learning

contexts, however, utility can often be interpreted in terms of the

probability of receiving the preferred outcome [43] or financial

impact [33], and thus can be on the same scale.

We also remark that there is significant potential of importing

further ideas from this literature. For example, the recent work of

Gölz et al. [21] considers the implications of requiring monotonicity

axioms from fair division in the classification context, and show that

some axioms are easy to guarantee in conjunction with equalized

odds, while others are effectively incompatible.

Generalization. In proving generalization of our notions, we

use the Rademacher complexity framework, but tie it to the Natara-

jan dimension of the family of multiclass classifiers. Balcan et al. [5]

also used the Natarajan dimension when analyzing generalization

of envy-freeness. However, they only establish that a large fraction
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of constraints will be approximately satisfied with high probability,

whereas in our setting, all constraints are approximately satisfied

with high probability.
1
We also note that our approach can provide

fairness across exponentially many pairs of groups with polynomi-

ally many training data points, similarly to other approaches in the

literature [23, 26].

2 PRELIMINARIES
For a natural number k ∈ N, define [k] = {1, . . . ,k}. For a setT , let
∆(T ) denote the set of all distributions over T .

We are interested in a classification setting where the task is to

learn to classify individuals into appropriate classes. Typically, an

individual is represented by a feature vector x ∈ X ⊆ Rm , which is

accessible to the classifier. In some classification settings, there is

also side information (e.g. a ground truth label y∗ for each individ-

ual), which, while not available to the classifier, could be used as

part of training. To capture this general setting, we represent indi-

viduals by the extended feature vector x+ ≜ (x,y∗) ∈ X+, where y∗

is any side information. We use this abstract notation to convey the

fact that our definitions and framework apply to machine learning

settings with a ground truth (e.g. the loan or bail setting) as well

as those without (e.g. the targeted ad setting). Let PX+
denote a

distribution over individuals.

Let there be a finite set of classes (a.k.a. labels) Y = [d]. Note
that throughout the paper, we consider multiclass classifiers. As

before, let PY ∈ ∆(Y) denote a distribution over classes.

Classifiers: A deterministic classifier hd : X → Y assigns a class

to each individual. A randomized classifier hr : X → ∆(Y) assigns

a distribution over classes to each individual. We use H to denote

a family of classifiers. For a family H of deterministic classifiers,

we use ∆k (H) to denote the family of randomized classifiers which

can be expressed as a mixture over k deterministic classifiers from

H , i.e., ∆k (H) is the set of all hr such that hr =
∑k
t=1 η

thtd for

some h1d , . . . ,h
k
d ∈ H and η1, . . . ,ηk ∈ [0, 1] with

∑k
t=1 η

t = 1.

Loss functions: A loss function is a function ℓ : X+ × Y → [0, 1],

where ℓ(x+,y) return the loss in predicting label y for individual

x+.2 For a randomized prediction PY
, we extend the loss function

and define ℓ(x+,PY ) = Ey∼PY [ℓ(x+,y)].

Given a loss function ℓ and a finite dataset S ⊆ X+, the empirical

risk of a classifier h is given by RS (h) =
1

|S | ·
∑
x+i ∈S

ℓ(x+i ,h(xi )).

The classifier which minimizes this empirical risk is termed the

empirical risk minimizer (ERM). The expected loss of the classifier

on the population, defined by a distribution PX+
over individuals,

is R(h) = Ex+∼PX+ [ℓ(x+,h(x))].

Utility: A utility function is given by u : X+ × Y → [0, 1], where

u(x+,y) encodes the utility of individual x+ being assigned class

y.3 We assume that individual utilities are normalized: for each

x+ ∈ X+,
∑
y∈Y u(x+,y) = 1. Again, with a slight abuse of notation,

we define u(x+,PY ) = Ey∼PY [u(x+,y)].

1
This is because in an infinite population, envy-freeness imposes infinitely many

constraints, whereas our approach imposes finitely many constraints.

2
The loss must be bounded, but the restriction to [0, 1] is without loss of generality.

3
Once again, the utility must be bounded, but the restriction to [0, 1] is without loss
of generality.

Note that we allow the utility function of an individual repre-

sented by x+ to depend on the side information (such as a ground

truth label for the individual). That said, we assume that utility

function of an individual only depends on features captured by x+.
In practice, two individuals with identical x+ may have slightly

different utilities, but our results hold approximately if a close ap-

proximation of their individuals’ utility functions can be found

which depend only on x+.

3 GROUP ENVY-FREENESS AND GROUP
EQUITABILITY

Our main conceptual contribution in this work is to propose two

group fairness notions for machine learning, inspired by the litera-

ture on fair division. For this, we first define the notion of groups.

Groups: Unlike much prior literature on fairness in machine learn-

ing where groups are defined based on certain sensitive attribute
(e.g. race, gender, ethnicity, etc.), our framework allows groups to be

defined arbitrarily. A group of individualsG is identified by a subset

of extended feature vectors, i.e., G ⊆ X+. Our fairness guarantees

apply to pairs of groups. Let G denote a set of pairs of groups; we

want to ensure fairness across all pairs of groups (G, Ĝ) ∈ G. We

are now ready to define our group fairness notions.

Group envy-freeness: In the fair division literature, envy-freeness
is a notion of individual fairness, which requires that no individual

should envy any other individual. This was adapted to the classifi-

cation context by Balcan et al. [5], and formally translates to the

following: a classifier h is envy-free if ∀x+, x̂+ ∈ X+ : u(x+,h(x)) ≥
u(x+,h(x̂)). Another way of viewing the envy-freeness is that the

envy of any individual for any other individual is non-negative:

u(x+,h(x̂))−u(x+,h(x)) ≤ 0,∀x+, x̂+ ∈ X+. As argued in the intro-

duction, this is a very stringent requirement in most applications.

For example, in the loan/bail domain, this requires either granting

all loan/bail applications or denying them all.
4
For the targeted

advertisement domain, this translates to showing each individual

her most preferred ad out of all ads shown to anyone.
5

We propose a group-level relaxation of this constraint, following

a similar relaxation proposed byAleksandrov andWalsh [2]. Instead

of mandating each individual prefer their outcome to anyone else’s,

we require that the average preference (i.e. utility) of individuals in a

group for their outcome be higher than their average preference for

outcomes given to another group. Formally, given a pair of groups

G, Ĝ ⊆ X+, a dataset S ⊆ X+, and ϵ ≥ 0, we say that classifier h is

empirically ϵ-group-envy-free on (G, Ĝ) with respect to S if

1

|SG | · |SĜ |

∑
x+∈SG ,x̂+∈S Ĝ

u(x+,h(x̂)) − u(x+,h(x)) ≤ ϵ, (1)

where SG = S ∩ G and SĜ = S ∩ Ĝ represent restrictions of S

to groups G and Ĝ, respectively. We refer to the maximum
6
of

the difference on LHS and 0 as the empirical group envy of G for

Ĝ on S . When ϵ = 0, we simply refer to this as empirical group

4
This assumes every individual prefers receiving loan/bail to not receiving it. For

randomized classifier, this would translate to granting loan/bail to each individual

with exactly equal probability.

5
The requirement becomes a bit less stringent for randomized classifiers, as observed

by Balcan et al. [5].

6
We do this because negative envy is not specifically desired.
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envy-freeness. Note that while we want the group envy to be non-

negative (or minimally positive), having large negative group envy

is not necessarily desirable. Also, like envy-freeness, group envy-

freeness is not symmetric: group envy-freeness on (G, Ĝ) does not

imply group envy-freneess on (Ĝ,G). In fact, as we argue in Sec-

tion 8, in certain applications it may be desirable to impose asym-

metric group envy-freeness constraints.

The population version is simply given by the expectation over

a distribution of individuals PX+
: we say that classifier h is popu-

lation ϵ-group-envy-free on (G, Ĝ) if

E
[
u(x+,h(x̂)) − u(x+,h(x))

�� x+ ∈ G, x̂+ ∈ Ĝ
]
≤ ϵ .

Again, when ϵ = 0, we simply refer to this as population group-

envy-freeness.

Our goal is to ensure that this style of group fairness is main-

tained across a set of pairs of groups G. We say that h is empirically

(resp. population) ϵ-group-envy-free on G with respect to S (resp.

PX+
) if it is ϵ-group-envy-free on (G, Ĝ) with respect to S (resp.

PX+
) for all (G, Ĝ) ∈ G.

Group equitability: In the classical fair division literature, eq-

uitability requires that all agents have identical utility for their

outcomes. This translates to the following definition in our classifi-

cation context: a classifier h is equitable if ∀x+, x̂+ : u(x+,h(x)) =
u(x̂+,h(x̂)). Unfortunately, this too is a stringent requirement in

machine learning contexts similarly to envy-freeness.

We relax this to a group setting by requiring the average utility of

individuals in a group for their outcome be equal across all groups.

Formally, given a pair of groupsG, Ĝ ⊆ X+, a dataset S ⊆ X+, and

ϵ ≥ 0, we say that classifier h is empirically ϵ-group-equitable on

(G, Ĝ) with respect to S if������ 1

|SG |

∑
x+∈SG

u(x+,h(x)) −
1

|SĜ |

∑
x̂+∈S Ĝ

u(x̂+,h(x̂))

������ ≤ ϵ . (2)

We refer to this difference as the empirical group equitability vio-

lation between G and Ĝ on S . When ϵ = 0, we simply refer to this

as empirical group equitability. Given a distribution of individuals

PX+
, we say that classifier h is population ϵ-group-equitable on

(G, Ĝ) if���E [
u(x+,h(x))

�� x+ ∈ G
]
− E

[
u(x̂+,h(x̂))

�� x̂+ ∈ Ĝ
] ��� ≤ ϵ .

Again, when ϵ = 0, we simply refer to this as population group-

equitability.

Given a set of pairs of groups G, we say that h is empirically

(resp. population) ϵ-group-equitable on G with respect to S (resp.

PX+
) if it is ϵ-group-equitable on (G, Ĝ) with respect to S (resp.

PX+
) for all (G, Ĝ) ∈ G. Lastly, we note that unlike group envy free,

group equitability is symmetric: group equitable on (G, Ĝ) implies

group equitable on (Ĝ,G).

4 CLASSICAL FAIRNESS NOTIONS AS
SPECIAL CASES

In this section, we discuss the connection of group envy-freeness

and group equitability to several classical notions of fairness pro-

posed in the fair machine learning literature.

4.1 Statistical Parity, Equal Opportunity, and
Equalized Odds

First, we show that three popular group fairness notions for binary

classification — statistical parity, equal opportunity, and equalized

odds — are special cases of our definitions. Thus, our definitions pro-

vide a unifying framework for viewing classical definitions under

one umbrella and generalizing them to multiclass classification.

Recall the binary classification framework. Each individual x also

has a ground truth labely∗. Recall thatyx denotes the class assigned

to the individual. When the individual is sampled from population,

we use X , Y ∗
, and Y to denote the corresponding random variables.

In this setting, there is a positive class (sayy = 1), which is preferred

by all individuals. For example, this may correspond to receiving a

loan or bail. Given a pair of groups (G, Ĝ), the three aforementioned

notions of fairness — which treat both groups symmetrically — are

defined as follows.

• Statistical parity demands an equal probability of getting a

positive classification, regardless of group identity: Pr[Y =

1|X ∈ G] = Pr[Y = 1|X ∈ Ĝ].
• Equal opportunity is similar to statistical parity, except that

we now condition on both group identity and positive ground

truth class: Pr[Y = 1|X ∈ G,Y ∗ = 1] = Pr[Y = 1|X ∈

Ĝ,Y ∗ = 1].

• Equalized odds is similar to equal opportunity, except that we

seek fairness across both positive and negative ground truth

classes: Pr[Y = 1|X ∈ G,Y ∗ = a] = Pr[Y = 1|X ∈ Ĝ,Y ∗ = a]
for all a ∈ {0, 1}.

Theorem 1. Given a pair of groups (G, Ĝ), there is a set G of
pairs of groups and individual utility functions such that group envy-
freeness and group equitability with respect to G coincide with statisti-
cal parity with respect to (G, Ĝ). The same holds for equal opportunity
and equalized odds.

Proof. Let all individuals have utility 1 for the preferred class,

and 0 for the less preferred one. That is, u(x+, 1) = 1 and u(x+, 0) =
0. Then, for a random class Y , we have u(x+,Y ) = Pr[Y = 1]. For a

pair of groups (G, Ĝ), a classifier h is group envy-free with respect

to (G, Ĝ) if

E
[
Pr[h(x̂) = 1] − Pr[h(x) = 1]

�� x+ ∈ G, x̂+ ∈ Ĝ
]
≤ 0

⇔ Pr[Y = 1|X ∈ Ĝ] ≤ Pr[Y = 1|X ∈ G].

Hence, the classifier is group envy-free with respect to both (G, Ĝ)

and (Ĝ,G) if and only if Pr[Y = 1|X ∈ Ĝ] = Pr[Y = 1|X ∈ G],
which is the condition for the classifier to satisfy statistical parity

with respect to (G, Ĝ). Hence, G =
{
(G, Ĝ), (Ĝ,G)

}
suffices.

It is easy to see that for equitability, simply G = (G, Ĝ) suffices

as equitability is already a symmetric condition.

Finally, equal opportunity with respect to (G, Ĝ) is simply statisti-

cal paritywith respect to (G1, Ĝ1), whereGa = G∩
{
x+ ∈ X+ : y∗ = a

}
,

a ∈ {0, 1}. Hence, given the above proof, this can be obtained

as group envy-freeness with respect to G = {(G1, Ĝ1), (Ĝ1,G1)}

and group equitability with respect to G = {(G1, Ĝ1)}. Similarly,

equalized odds with respect to (G, Ĝ) is simply statistical parity

4



with respect to both (G1, Ĝ1) and (G0, Ĝ0), which is group envy-

freeness with respect to G = {(G1, Ĝ1), (Ĝ1,G1), (G0, Ĝ0), (Ĝ0,G0)}

and group equitability with respect to G = {(G1, Ĝ1), (G0, Ĝ0)}. □

While we provide a proof for equivalence of the population

versions of these notions, it is easy to see that the equivalence also

holds for the empirical versions defined on a training set. Similarly,

our definitions can also capture statistical parity, equal opportunity,

or equalized odds with respect to multiple pairs of groups.

The fact that these three classical fairness definitions are sub-

sumed by group envy-freeness and group equitability has two key

implications. First, our framework provides a methodical approach

to extend these fairness definitions from binary classification to

multi-class classification. Second, our generalization guarantee

from Section 5 using the Rademacher complexity provides a single

generalization proof for all three classic fairness definitions. This is

similar to the approach and generalization proof of Agarwal et al.

[1]; however, their framework is limited to binary classification.

4.2 Equalized Financial Impact
Sometimes, even in binary classification, simply equalizing error

rates across subpopulations defined by sensitive attributes (and pos-

sibly the ground truth classes) may not be sufficient. Ramnarayan

[33] considers the loan setting, and argues that the financial impact

of an error made by the classifier (i.e. where the outcome differs

from the ground truth label) may vary across individuals within

a group depending on their wealth, and proposes equalizing the

financial impact rather than error rates across the protected groups.

This is similar to the harm-reduction approach of Altman et al. [3].

Formally, let b(x+) denote some measure of wealth of an individ-

ual represented by x+, and letψ (b(x+)) denote the financial impact

when individual x+ receives a loan. Ramnarayan [33] assumes that

b(x+) is simply one of the features; however, our approach allows

b to be any function of the features. Then, a classifier satisfies

equalized financial impact with respect to a pair of groups (G, Ĝ) if

E[Pr[Y = 0] ·ψ (b(X ))|X ∈ G,Y ∗ = 1] = E[Pr[Y = 0] ·ψ (b(X ))|X ∈

Ĝ,Y ∗ = 1]. Similarly to Theorem 1, it is easy to see that this is also

a special case of group envy-freeness and group equitability, where

ψ defines the utility functions.

Theorem 2. Given a pair of groups (G, Ĝ), there is a set G of
pairs of groups and utility functions of individuals such that group
envy-freeness and group equitability with respect to G coincide with
equalized financial impact with respect to (G, Ĝ).

4.3 Impossibility of Post-Processing
Hardt et al. [22] show that given any (possibly discriminatory)

binary classifier, one can derive from it a binary classifier satis-

fying equalized odds (or equal opportunity) using a simple post-

processing step. This post-processing step does not require access

to any feature vector information from the training data except

for group membership and ground truth labels. It achieves fairness

by simply taking an appropriate convex combination of the given

classifier, its inverse (which flips the prediction on each individual),

and trivial constant classifiers.

While such post-processing is clearly desirable, we show that

when we move beyond the binary classification setting, we can-

not hope to post-process an arbitrary given classifier and achieve

fairness. For example, if we start from the empirical risk minimizer

(ERM) which is obtained without accessing utilities, and perform

a post-processing step which also does not access utilities, then

any classifier derived is ultimately obtained without accessing utili-

ties. We show that such classifiers can only guarantee group envy-

freeness or group equitability in trivial cases. For these results, we

assume that group membership is exclusive, i.e., we want to ensure

fairness with respect to a pair of groups (G, Ĝ) where G ∩ Ĝ = ∅;

note that we do not generally require this in our framework, al-

though this is a common use case.

Theorem 3. Suppose h is a (possibly randomized) classifier ob-
tained without access to utilities, (G, Ĝ) is a pair of groups with
G ∩ Ĝ = ∅, and S is a finite set of individuals. Then:

(1) h is guaranteed to be empirically group envy-free on S with
respect to (G, Ĝ) if and only if h(x) is identical for all x+ ∈ SG ,
given by the following equation:

Pr[h(x) = c] =
1

|SĜ |
·

∑
x̂+∈S Ĝ

Pr[h(x̂) = c], ∀x+ ∈ SG , c ∈ Y.

(2) h is guaranteed to be empirically group equitable on S with
respect to (G, Ĝ) if and only if for all x+ ∈ SG and x̂+ ∈ SĜ ,
we have that h(x) = h(x̂) = U(Y), where U(Y) represents
the uniform distribution over the set of classes Y.

Proof. Let us first consider group envy-freeness. For any h
satisfying the equation given in part (1), we can see that the average

empirical envy of any x+ ∈ SG towards Ĝ is

1

|SĜ |
·

∑
x̂+∈S Ĝ

u(x+,h(x̂) − u(x+,h(x))

=
1

|SĜ |
·

∑
x̂+∈S Ĝ

∑
c ∈Y

u(x+, c) · (Pr[h(x̂) = c] − Pr[h(x) = c])

=
∑
c ∈Y

u(x+, c) ·
©«©« 1

|SĜ |
·

∑
x̂+∈S Ĝ

Pr[h(x̂) = c]
ª®¬ − Pr[h(x) = c]

ª®¬ = 0,

where the last equality uses the condition in part (1). Since this

holds for all x+ ∈ SG , clearly h is empirically group envy-free with

respect to (G, Ĝ).
To see the converse, suppose for contradiction that there exists

x+i ∈ SG violating the condition in part (1). Then, there exists ci ∈ Y

such that Pr[h(xi ) = ci ] <
1

|S Ĝ |
·
∑
x̂+∈S Ĝ Pr[h(x̂) = ci ]. Since h

was constructed without access to utility functions, the underlying

utilities could have been such that u(x+i , ci ) = 1, u(x+i , c) = 0 for all

c ∈ Y \ {ci }, and u(x
+, c) = 1/|Y| for all x+ ∈ SG \

{
x+i

}
, c ∈ Y.

Then, the group envy of G towards Ĝ is

1

|SG | · |SĜ |
·

∑
x+∈SG ,x̂+∈S Ĝ

u(x+,h(x̂) − u(x+,h(x))

=
1

|SG | · |SĜ |
·

∑
x̂+∈S Ĝ

u(x+i ,h(x̂) − u(x+i ,h(xi ))

5



=
1

|SG | · |SĜ |
·

∑
x̂+∈S Ĝ

(Pr[h(x̂) = ci ] − Pr[h(xi ) = ci ])

=
1

|SG |
·

(∑
x̂+∈S Ĝ Pr[h(x̂) = ci ]

|SĜ |
− Pr[h(xi ) = ci ]

)
> 0,

where the first transition follows from the fact that u(x+,PY ) =

1/d for every x+ ∈ SG \
{
x+i

}
and every classification PY

, and the

last transition follows from the way x+i was constructed.

For group equitability, note that the condition in part (2) is very

strong. If h satisfies this condition, then u(x+,h(x)) = u(x̂+,h(x̂)) =
1/d , where d = |Y|. Hence, group equitability is trivially satisfied.

We now show that this is also necessary. For each x+i ∈ SG , define

tmin

i = argminc Pr[h(xi ) = c]. For each x̂+j ∈ SĜ , define t̂max

j =

argmaxc Pr[h(x̂ j ) = c]. Note that for each x+i ∈ SG , Pr[h(xi ) =

tmin

i ] ≤ 1/d , and for each x̂+j ∈ SĜ , Pr[h(x̂ j ) = t̂max

j ] ≥ 1/d .

Now, consider the following utilities: ∀x+i ∈ SG : u(x+i , t
min

i ) = 1

and u(x+i , c) = 0 for all c , tmin

i , and ∀x̂+j ∈ SĜ , u(x̂+j , t̂
max

j ) = 1

and u(x̂+j , c) = 0 for all c , t̂max

j . Under these utilities, it is easy to

check that h is empirically group equitable on S with respect to

(G, Ĝ) if and only if (1/|SG |) ·
∑
x+i ∈S

G Pr[h(xi ) = tmin

i ] = (1/|SĜ |) ·∑
x̂+j ∈S

Ĝ Pr[h(x̂ j ) = t̂max

j ]. However, this requires Pr[h(xi ) = tmin

i ] =

Pr[h(x̂ j ) = t̂max

j ] = 1/d for each x+i ∈ SG , x̂+j ∈ SĜ . By the defini-

tions of tmin

i and t̂max

j , we get that h(xi ) = h(x̂ j ) = U(Y) for all

x+i ∈ SG , x̂+j ∈ SĜ , as desired. □

Note that if we require the classifier h to be empirically group

envy-free on S with respect to both (G, Ĝ) and (Ĝ,G) (to make

the requirement symmetric between the groups), then we obtain

that h(x) = h(x̂) must hold for all x+ ∈ SG , x̂+ ∈ SĜ . Though
less strict than the requirement for group equitability, it is still

too restrictive in practice. Hence, post-processing cannot produce

reasonable classifiers in our more general setting, without accessing

individual utilities. We remark that even in the binary classification

setting with homogeneous preferences, it has been observed that

any post-processing which does not access the features can be very

suboptimal in performance [42].

5 GENERALIZATION
Our learning problem seeks a classifier that has low empirical risk

and satisfies (or minimally violates) group envy-freeness or group

equitability constraints on the training data. However, this classifier

is then used to classify all individuals in the population. Hence, it is

crucial that our fairness definitions generalize well. That is, we seek

to establish that classifiers which are approximately fair on training

data are also approximately fair on the population according to

our fairness definitions. For this purpose, we use the Rademacher

complexity approach.

Let G denote a finite set of pairs of groups. Let us denote the kth

pair be denoted by (Gk ,1,Gk ,2).
7
Let bk denote the corresponding

membership function: for a pair of individuals z = (x+
1
, x+

2
), we

have the indicator bk (z) ≜ bk (x
+
1
, x+

2
) = 1[x+

1
∈ Gk ,1∧x+

2
∈ Gk ,2].

7
In this section, we switch from (G , Ĝ) to (Gk ,1,Gk ,2) for notational convenience.

Let B =
{
b1, . . . ,b |G |

}
denote the family of membership functions,

with |B| = |G|. Let PX+×X+
denote any joint distribution over

pairs of individuals, and let S denote a finite training set of iid pairs

zi = (x+i ,1, x
+
i ,2) sampled from this joint distribution and |S | = n.8

Let us now define empirical and population violations of group

envy-freeness and group equitability constraints in this framework.

For this, we need the following quantities. For a,b ∈ {1, 2}, i ∈

{1, . . . , |G|}, and classifier h, let

U S
ab (h,bk ) =

1

|S |

∑
(x+

1
,x+

2
)∈S u(x

+
a ,h(xb )) · bk (x

+
1
, x+

2
),

Uab (h,bk ) = E(x+
1
,x+

2
)∼PX+×X+

[
u(x+a ,h(xb )) · bk (x

+
1
, x+

2
)
]
.

Note that U S
12
(h,bk ) (resp. U12(h,bk )) effectively measures the av-

erage (resp. expected) utility of an individual in group Gk ,1 for

the classification given to an individual in group Gk ,2. Similarly,

U S
11
(h,bk ) andU

S
22
(h,bk ) (resp.U11(h,bk ) andU22(h,bk )) effectively

measure the average (resp. expected) utility of individuals in groups

Gk ,1 and Gk ,2.

We can now define the empirical and population group envy-

freeness and group equitability violations in terms of these quan-

tities. Hereinafter, we focus on group envy-freeness. The defini-

tions and proofs for group equitability are almost identical. Let the

empirical and population group envy be defined as V S (h,bk ) =
U S
12
(h,bk ) −U S

11
(h,bk ) and V (h,bk ) = U12(h,bk ) −U11(h,bk ).

9
To

establish generalization, our goal is to show that given a suffi-

ciently large training dataset S , with high probability, the difference

|V S (h,bk ) −V (h,bk )| is small for all h and all bk .
We first introduce two necessary definitions.

Definition 1. For a function class F containing functions map-
ping X+ × X+ → R and a set S = {z1, . . . , zm }, the Rademacher
complexity is R(F ◦ S) = Eσ ∈{−1,+1}n

[
supf ∈F

∑n
i=1 σi · f (zi )

]
,

where σ = (σ1, . . . ,σm ) and each σi is an independent random vari-
able with Pr[σi = 1] = Pr[σi = −1] = 1/2. For simplicity of notation,
we omit S and simply denote this as R(F ).

Definition 2. A set S = {z1, . . . , zm } is multi-class shattered by
a function class F , if there exist two functions f1 and f2 such that: (1)
∀z ∈ S, f1(z) , f2(z) and (2) for every B ⊆ S , there exists a function
f ∈ F such that f (z) = f1(z) for all z ∈ B and f (z) = f2(z) for all
z ∈ S \ B. The Natarajan dimension of F is the cardinality of the
largest set of points that can be multi-class shattered by F .

Let H be a family of deterministic classifiers and recall that

∆k (H) contains all randomized classifiers that are mixtures of k
classifiers from H . To obtain generalization, we need to bound the

Rademacher complexity of

{д : д(x+
1
, x+

2
) = u(x+a ,h(xb )) · bk (x

+
1
, x+

2
),h ∈ ∆k (H),bk ∈ B}.

8
When the training data consists of n individuals sampled iid from a distribution PX+

,

we can simply pair up individuals to create a dataset consisting of n/2 pairs sampled

iid from the product distribution PX+ × PX+
.

9
Note that inU S

12
−U S

11
, the denominator of both terms is |S |, and in the numerator,

we measure the envy for every z with bk (z) = 1 and ignore the term corresponding

to every z with bk (z) = 0. Hence, this difference is proportional to the group envy

that Gk ,1 has towards Gk ,2 . For group equitability, we would need to consider both

U S
11
(h, bk ) − U S

22
(h, bk ) and U S

22
(h, bk ) − U S

11
(h, bk ) for bounding the empirical

violation, and the two similar quantities for bounding the population violation.
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Our approach is as follows. First, in Lemma 1, we eliminate the

dependence on bk in the product u(x+a ,h(xb )) · bk (x
+
1
, x+

2
). Next, in

Lemma 2, we eliminate the dependence on both u and the random-

ized nature of h ∈ ∆k (H), and express our bound directly in terms

of R(H). Combining these results, in Theorem 4, we prove our

generalization bound in terms of |G| andR(H). Finally, we observe

in Theorem 5 that function classes with low Natarajan dimension

have low Rademacher complexity. In particular, we show that linear

one-vs-all classifiers generalize well. We begin with the first result.

Lemma 1. Given a function class F containing functions mapping
X+ × X+ → R and a binary function b : X+ × X+ → {0, 1}, define
Fb = { fb : fb (z) = f (z) · b(z), f ∈ F }. Then R(Fb ) ≤ R(F ).

Proof. For each σ , let f ∗σ ∈ F be where supf ∈F
∑
i σi f (zi )b(zi )

is attained (if the supremum is not attained, we can take a sequence

of f ∗σ that converge to the supremum) and define σ where σ i = σi
if b(zi ) = 1 and σ i = 0 otherwise. Then, we can write

R(Fb ) = Eσ
[∑

i σi f
∗
σ (zi )b(zi )

]
= Eσ

[∑
i :b(zi )=1 σi f

∗
σ (zi )

]
= Eσ

[∑
i :b(zi )=1 σi f

∗
σ (zi )

]
= Eσ

[∑
i σi f

∗
σ (zi )

]
≤ Eσ

[
supf ∈F

∑
i σi f (zi )

]
= R(F ),

where the third transition holds because supf ∈F
∑
i σi f (zi )b(zi ) =

supf ∈F
∑
i :b(zi )=1 σi f (zi ) only depends on the values of σi where

b(zi ) = 1, and the fourth transition holds because the expected

value of the term corresponding to each i with b(zi ) = 0 is 0 (this is

because σi takes values +1 and −1 with probability 1/2 each, while

fσ does not change). □

Using Lemma 1, we are now express our desired Rademacher

complexity directly in terms of the complexity ofH , eliminating

the dependence on utilities, group membership functions, and ran-

domization over deterministic classifiers. However, classifiers from

H act on individuals, whereas training set S consists of pairs of in-

dividuals. Hence, we defineHb = {hb : hb (x1, x2) = h(xb );h ∈ H},

where b ∈ {1, 2}. Now, R(Hb ) ≜ R(Hb ◦ S) is well-defined.

Lemma 2. Given a family of deterministic classifiersH , function
bk : X+ × X+ → {0, 1}, and a,b ∈ {1, 2}, define

F = { f : f (x+
1
, x+

2
) = u(x+a ,hp (xb )) · bk (x

+
1
, x+

2
);h ∈ ∆k (H)}.

Then, R(F ) ≤ R(Hb ).

Proof. LetF1 =
{
f : f (x+

1
, x+

2
) = u(x+a ,h(xb )) : h ∈ ∆k (H)

}
. By

Lemma 1, we have thatR(F ) ≤ R(F1). For amixtureh =
∑k
t=1 η

thtd ,

note that u(x+a ,h(xb )) =
∑k
t=1 η

tu(x+a ,h
t
d (xb )), which is in the

convex hull of

{
u(x+a ,hd (xb )) : hd ∈ H

}
. Because the Rademacher

complexity of the convex hull of a set is equal to that of the set [35],

R(F1) = Eσ

[
suphd ∈H

∑
i σi · u(x

+
i ,a,hd (xi ,b )

]
. (3)

Recall that hd : X → [d]. To apply the contraction lemma [35], we

need u to be Lipschitz continuous in its second argument. For this,

we extend u to a surrogate u as follows. For all y ∈ [1,d],

u(x+i ,a , y) = u(x
+
i ,a , ⌊y ⌋) +

(
u(x+i ,a , ⌈y ⌉) − u(x+i ,a , ⌊y ⌋)

)
(y − ⌊y ⌋) . (4)

Note that u is 1-Lipschitz in its second argument (because utilities

sum to 1),
10

and matches u when y ∈ [d]. As such, we can replace

u with u in Equation (3), and applying the contraction lemma [35],

obtain: R(F1) ≤ Eσ

[
suphd ∈Hd

∑
σihd (xi ,b )

]
= R(Hb ). □

With the help of these two lemmas, we now present the following

generalization theorem:

Theorem 4. Let H be a family of deterministic classifiers, S be
a finite training set such that R(Hb ◦ S) ≤ ϵ/8 for each b ∈ {1, 2},
and δ > 0. If |S | ≥ 512 ln(8|G|/δ )/ϵ2, then with probability at least
1 − δ , we have suph∈∆k (H),bk ∈B |V S (h,bk ) −V (h,bk )| ≤ ϵ .

Proof. By expanding V S
and V , we have

Pr

 sup

h∈∆k (H),bk ∈B
|V S (h, bk ) −V (h, bk ) | ≥ ϵ


= Pr

 sup

h∈∆k (H),
bk ∈B

|U S
12
(h, bk ) −U S

11
(h, bk ) −U12(h, bk ) +U11(h, bk ) | ≥ ϵ


≤

∑
bk ∈B

(
Pr

[
sup

h∈∆k (H)

|U12(h, bk ) −U ∗
12
(h, bk ) | ≥ ϵ/2

]
+ Pr

[
sup

h∈∆k (H)

+ |U ∗
11
(h, bk ) −U11(h, bk )) | ≥ ϵ/2

] )
, (5)

where the last transition follows from the triangle inequality and

the union bound.

Let F =
{
д : д(x+

1
, x+

2
) = u(x+

1
,h(x2)) · bk (x

+
1
, x+

2
),h ∈ ∆k (H)

}
.

From Lemma 2, we have R(F ) ≤ R(H2). Using the standard

generalization bound for Rademacher complexity [35],

Pr

[
sup

h∈∆k (H)

|U S
12
(h,bk ) −U12(h,bk )| ≥ ϵ/2

]
≤ 4e

−
|S |
2

(
ϵ−4R(F)

8

)
2

≤ 4e
−

|S |
2

(
ϵ−4R(H

2
)

8

)
2

≤ 4e−
|S |
2
( ϵ
16
)
2

,

where the last inequality holds because we are given R(H2) ≤ ϵ/8.
The same argument applies to the second term in Equation (5).

Hence, the probability in Equation (5) is at most 8|G| · e−|S |ϵ
2/512

.

Setting this to δ and solving for |S | completes the proof. □

Theorem 4 implies that regardless of the classifier trained, with

high probability, the difference between group envy-freeness (or

group equitability) violation between training and test will be small.

Finally, note that Theorem 4 requires |S | to be large enough such

that R(Hb ◦ S) ≤ ϵ/8 for each b ∈ {1, 2}. Hence, for small |S |
to suffice, we also seek a family of deterministic classifiersH for

which the Rademacher complexity quickly vanishes as |S | grows.
We show that the family of linear one-vs-all classifiers that we use

in our experiments has this property.

10
If we examined the proof of Rademacher calculuswith Lipschitz continuous functions,

we notice that it would only access the value of u at integral values of y . Hence, such
an extension is technically not required. However, we construct it to use the Lipschitz

continuity result as a black-box.
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Theorem 5. Let H be the family of linear one-vs-all classifiers
given by H = {h ®w : h ®w (x) = argmaxy∈[d ]w

T
y x ; wy ∈ Rm }. If

|S | ≥ 4096d3m ln(6dm/ϵ )
ϵ 2 , then R(Hb ◦ S) ≤ ϵ/8 for each b ∈ {1, 2}.

Proof. It is well-known that the Natarajan dimension ofH is at

mostmd [35]. Using the version of Sauer’s lemma for Natarajan di-

mension [35], we get that the number of possible labelings of S is at

most |S |mdd2md
. Fix b ∈ {1, 2}. Then, | |(hb (z1), . . . ,hb (z |S |))| |2 ≤

d
√
|S |. Hence, using Massart’s lemma [35], we get R(Hb ) ≤

2d
|S | ·√

|S |md log (|S |d). Using simple algebra, it can be checked that our

lower bound on |S | is sufficient to get R(Hb ) ≤ ϵ/8. □

Combining Theorems 4 and 5, we get that when learning a

mixture of linear one-vs-all classifiers, training set of size |S | =

O

(
ln( |G |/δ )+d3m ln(dm/ϵ )

ϵ 2

)
suffices to get generalization error bound

of ϵ with respect to G with probability at least 1 − δ .
Note that our sample complexity scales logarithmically with |G|,

which allows achieving fairness with respect to exponentially many

pairs of groups with only polynomial training sample size. This is

reminiscent of similar results due to Kearns et al. [26] and Hébert-

Johnson et al. [23]. Note that we do not place any assumptions

on the groups (e.g. that they be defined based on certain sensitive

attributes) or pairs of groups (e.g. that they be disjoint) involved in

our constraints.

6 TRADEOFF BETWEEN LOSS AND FAIRNESS
This section considers the tradeoff between achieving fairness and

minimizing the loss. We analytically show that in the worst case,

imposing fairness can significantly increase loss, but conversely, if

we ignore fairness and simply minimize loss, it can lead to highly

unfair solutions. Without loss of generality, we assume loss to be

bounded in [0, 1] in this section. We also assume that there is a set

of mutually exclusive groups, and group envy-freeness and group

equitability constraints are enforced for every pair of groups.

6.1 Unfairness of Loss Minimization
First, we analyze the worst-case violation of group envy-freeness

and group equitability that vanilla ERM can produce. Specifically,

wethERM denote the ERM classifier. Then, we are interested in total

the violations Tenvy (hERM ) and Teq (hERM ), which are the sum of

empirical group envy-freeness and group equitability violations

defined by Equations (1) and (2)), across all pairs of groups. Note that

the lowest possible values ofTenvy andTeq are 0; due to Theorem 3,

trivial group envy-free and group equitable classifiers always exist.

We show that in the worst case, Tenvy and Teq can be as high as

Θ(д2) for hERM , which is an upper bound for any classifier h.

Theorem 6. Let hERM denote an empirical risk minimizer. Then,
withд ≥ 2 groups, we haveTenvy (hERM ) = Θ(д2) andTeq (hERM ) =

Θ(д2) in the worst case.

Proof. Since there are O(д2) pairwise constraints, and violation
of each constraint is bounded by 1, we have thatTenvy andTeq are

trivially bounded by O(д2) for any classifier.

To show that this bound is tight, we now construct an explicit

instance that achieves it. Let the groups be denoted G1, . . . ,Gд .

Let there be d = 2 classes. Every individual in group Gi where

i ≤ ⌊д/2⌋ has utility 1 for class 1 and 0 for class 2. Let the loss

for such an individual be 1 for class 1 and 0 for class 2. Similarly,

every individual in group Gi where i > д/2 has utility 1 for class 2

and 0 for class 1. Let the loss for such an individual be 1 for class 2

and 0 for class 1. In this instance, it is evident that hERM assigns

class 2 to every individual in groupGi for i ≤ д/2 and class 1 to all

remaining individuals. However, for every (i, j) with i ≤ д/2 and
j > д/2, every individual in group Gi envies every individual in

group G j by 1 and vice-versa. Hence, all such Ω(д2) pairs result in
empirical group envy-freeness violation of 1, yielding the desired

bound.

To show that the bound forTeq is tight, we construct the follow-

ing instance. As before, let there be d = 2 classes and the groups be

denotedG1, . . . ,Gд . For each individual in groupGi , where i ≤ д/2,
let the utility be 0 for class 1 and 1 for class 2. For every individual

in group Gi , where i > д/2, let the utility be 1 for class 1 and 0 for

class 2. For all individuals, let the loss be 0 for class 1 and 1 for class

2. Then, it is evident that hERM will assign class 1 to all individuals,

giving individuals in group Gi utility 1 when i ≤ д/2 and utility 0

when i > д/2. Thus, this results in group equitability violation of 1

for every constraint (Gi ,G j ) where i ≤ д/2 and j > д/2, or Ω(д2)
in total. □

6.2 Inefficiency of Fair Classifiers
We now examine the worst-case increase in loss due to imposition

of group envy-freeness and group equitability constraints. Let S
denote a finite training set with n data points, and ℓS (h) denote
empirical loss of classifier h on S . We are interested in ℓS (h) −
ℓS (hERM ) for group envy-free or group equitable classifier h. The
next result shows that in the worst case, it could be Θ(n), which is

the maximum possible for any classifier h.

Theorem 7. Let hERM denote an empirical risk minimizer with
respect to a training set S of size n. With д ≥ 2 groups, we have that
in the worst case, ℓS (h) − ℓS (hERM ) can be Θ(n) for every group
envy-free or every group equitable classifier h.

Proof. O(n) upper bound is trivial because ℓS is upper bounded

by n.
For group envy-freeness lower bound, consider the following

instance. Let there be d = 2 classes and two groupsG1 andG2, each

consisting of n/2 individuals. For every individual x+ ∈ G1, we

have u(x+, 1) = ℓ(x+, 1) = 1 and u(x+, 2) = ℓ(x+, 2) = 0. For every

individual x+ ∈ G2, we have the opposite: u(x
+, 1) = ℓ(x+, 1) = 0

and u(x+, 2) = ℓ(x+, 2) = 1. For a,b ∈ {1, 2}, let Pa,b denote the

average probability of an individual in group Ga receiving class b.
Then, it is easy to check that for empirical group envy-freeness to

hold with respect to both (G1,G2) and (G2,G1), we need P1,1 ≥ P2,1
and P2,2 ≥ P1,2. Taking the sum and adding P1,1 + P2,2 on both

sides, we get

2 · (P1,1 + P2,2) ≥ P1,1 + P1,2 + P2,1 + P2,2 = 2 ⇒ P1,1 + P2,2 ≥ 1.

Note that the loss of this classifier is (n/2) · (P1,1 + P2,2) ≥ n/2,
whereas hERM achieves zero loss by assigning class 2 to every

individual in G1 and class 1 to every individual in G2.

For group equitability, we take the construction above, and sim-

ply flip the loss for every individual x+ ∈ G2 to ℓ(x
+, 1) = 1 and
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ℓ(x+, 2) = 0. Now, for a classifier to be group equitable, we need

P1,1 = P2,2 = 1 − P2,1. Hence, P1,1 + P2,1 = 1. However, the loss of

the classifier is precisely (n/2) · (P1,1 + P2,1) = n/2, whereas hERM
still achieves zero loss by assigning class 2 to all individuals. This

gives the desired bound. □

7 IMPLEMENTATION AND EXPERIMENTS
We now propose a method for training (almost) group envy-free

and (almost) group equitable classifiers, and use it to empirically

evaluate the tradeoff between our fairness desiderata and loss min-

imization. Our approach follows the convex relaxation approach

proposed by Balcan et al. [5] for building (almost) envy-free classi-

fiers. We emphasize that this approach is not the end-all solution; it

simply illustrates the feasibility of training good classifiers subject

to our fairness guarantees.

Formally, our goal is to learn a mixture

∑k
t=1 η

thtd ∈ ∆k (H)

which minimizes the empirical risk subject to group envy-freeness

or group equitability constraints. Let h = (h1d , . . . ,h
k
d ) ∈ Hk

and

η = (η1, . . . ,ηk ) ∈ ∆k , where ∆k denotes the k-simplex contain-

ing probability distributions over k elements. Section 5 suggests

when using the following familyH of linear one-vs-all multiclass

classifiers, we obtain good generalization due to its low Natarajan

dimension:H =
{
д ®w : д ®w (x) = argmaxy∈[d ]w

T
y x ; wy ∈ Rm

}
.

Given this family, a finite training set S , and a finite set of pairs

of groups G, our learning problem is the following. We only add

one of the two constraints, depending on the fairness desired.

min

h∈Hk

η∈∆k

k∑
t=1

ηt
∑
x+∈S

ℓ(x+, htd (x )) such that ∀(G , Ĝ) ∈ G

1

|SG | |SĜ |

k∑
t=1

ηt
∑

x+∈SG ,x̂+∈SĜ

u(x+, htd (x̂ )) − u(x+, htd (x )) ≤ 0

// for group envy-freeness, or (6)

1

|SG |

k∑
t=1

ηt
∑

x+∈SG
u(x+, htd (x )) =

1

|SĜ |

k∑
t=1

ηt
∑

x̂+∈SĜ

u(x̂+, htd (x̂ ))

// for group equitability.

Convex relaxation of loss andutilities:Note that in Equation (6),
ℓ(x+,htd (x)) and u(x

+,htd (x)) are neither convex nor differentiable

due to the use of argmax in htd . As such, we consider the following
multiclass-SVM-inspired convex relaxation, similarly to Balcan et al.

[5]. Note for any c ∈ [d], ℓ(x+,htd (x)) ≤ ℓ(x
+,htd (x)) +w

T
htd (x )

x −

wT
c x . Thus, we get ℓ(x

+,htd (x)) ≤ maxy∈Y ℓ(x
+,y) +wT

y x −wT
c x ,

which is a convex upper bound on ℓ(x+,htd (x)). We use a similar

convex upper bound on u(x+,htd (x)).

Training: Our problem is still not entirely convex due to the prod-

uct of mixture probabilities with loss and utilities. To circumvent

this, we use an iterative approach [5] whereby we first fix a de-

fault η and successively train for each htd given previously learned

h1d , . . . ,h
t−1
d , and after learning full h, fix it and train for η. Second,

for tractability, instead of enforcing group envy-freeness or group

equitability as hard constraints, we add a penalty term encoding

these violation and control its effect with a Lagrangian parameter

λ. Let Tenvy and Teq respectively denote total empirical violations

of group envy-freeness and group equitability constraints (Equa-

tions (1) and (2)) across all (G, Ĝ) ∈ G. Then, we add λ ·Tenvy and

λ ·Teq penalty for group envy-freeness and group equitability. This

yields unconstrained optimization problems, which are easier.

7.1 Experiment Design
We consider the targeted advertising domain, where the classes

represent different ads, ℓ(x+,y) represents the loss to the principal

for ad y being shown to individual x+, and u(x+,y) represents the
utility to the individual for setting ad y.

Our simulation setup is similar to that of Balcan et al. [5]. How-

ever, they are interested in measuring how accurate their convex

relaxation approach is, and therefore generate instances where ERM

is guaranteed to be fair. We are instead interested in measuring

how our method compares to ERM, and therefore generate random

instances where ERM is no longer magically guaranteed to be fair.

We set the number of classes to be d = 5. We create a finite

training set S by sampling n iid feature vectors uniformly from

[0, 1]m , wherem = 14. Let Xtrain ∈ [0, 1]n×m denote the matrix of

all feature vectors. We partition the individuals into д equal-sized
groups (default is д = 4) based on the first feature coordinate, and

add group envy-freeness or group equitability constraints for all

pairs of groups. We implement loss and utilities as functions of the

features as follows.
11

First, we sample matrices L andU uniformly

from [0, 1]d×m . Then, for each x+ ∈ S , we set ℓ(x+, [d]) = Lx+ and

u(x+, [d]) = Ux+. Finally, we normalize both u(x+, ·) and ℓ(x+, ·)
to sum to 1 for each x+ ∈ S . Our training set size varies, but in

all our figures, we show the performance on a test set of size 100,

which we generate using the same process.
12

A simulation consists

of random sampling of a training set Xtrain , a test set Xtest , and
matrices L and U . Each data point plotted is the average over 40

simulations, and 90% confidence intervals are shown. We solved our

unconstrained convex optimization problems using CVXPY [16] on

workstations with Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz and

16GB RAM, and parallelized computation across 16 such cores.

We train five classifiers: ERM (which simply minimizes the em-

pirical loss), ERM-Welfare (which minimizes empirical loss minus

λ times the sum of all individual utilities), ERM-GroupEF and ERM-

GroupEQ (unconstrained convex relaxations of optimization prob-

lem (6) with penalty terms for group envy-freeness and group

equitability violations), and ERM-EF (a similar method by Balcan

et al. [5] for envy-freeness). In all methods, we set the Lagrangian

parameter to λ = 10. We omit ERM-EF solution from the bulk of our

experiments because it does not scale well with the training sample

size. We instead show a separate comparison with this solution on

smaller sample sizes.

11
For generalization, it is necessary for loss and utilities to be correlated with features.

12
We confirm that in our experiments, all classifiers used have similar loss, group

envy-freeness violation, and group equitability violation on training and test sets. We

only show the test results for readability.
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Figure 1: Comparing ERM (red) and ERM-Welfare (blue), ERM-GroupEF (green), and ERM-GroupEQ (orange) with varying
training sample size and 4 groups. 90% confidence intervals are shown.

Figure 2: Comparing the same four approaches with varying number of groups and training sample size of 100. 90% confidence
intervals are shown.

Figure 3: Comparing ERM-EF (grey) and ERM-GroupEF (green) with other approaches on loss, group envy, individual envy,
and runtime with varying training sample size and 4 groups. 90% confidence intervals are shown.

7.2 Results of Experiments
We consider three key metrics: loss per individual, total group

envy-freeness violation across all pairs of groups, and total group

equitability violation across all pairs of groups.

Figure 1 shows the performance of ERM, ERM-Welfare, ERM-

Group Envy Free, and ERM-Group Equitable with varying number

of training samples. The number of groups is fixed to be 4. As ex-

pected, ERM attains the lowest loss, but at the cost of significant vio-

lation of group envy-freeness and group equitability. ERM-Welfare

expectedly performs very well in terms of the fairness metrics,
13
,

but at a significant cost in terms of the loss. ERM-GroupEF and ERM-

GroupEQ provide reasonable tradeoffs, with the former achieving at

least ∼ 50% reduction in group envy-freeness violation compared to

13
This is not surprising as it is a relaxation of minimizing loss subject to maximum

welfare. In the targeted advertising context, maximum welfare is attained when each

individual is shown their most preferred ad, which is clearly fair.

ERM and the latter achieving at least ∼ 30% reduction in group eq-

uitability violation compared to ERM. Interestingly, ERM-GroupEF

clearly outperforms ERM-GroupEQ for group envy-freeness, but

the converse effect is less strong in group equitability.

We see a similar story in Figure 2, when we fix the training

sample size to 100 but vary the number of groups. This time, ERM-

GroupEF and ERM-GroupEQ, respectively, achieve at least ∼ 50%

and ∼ 40% reduction in group envy-freeness and group equitability

violations compared to ERM.

Finally, in Figure 3, we compare ERM-EF to ERM-GroupEF. Since

individual envy-freeness is a stricter constraint than group envy-

freeness, as expected, ERM-EF performs better in terms of the

fairness metrics (both group envy-freeness and individual envy-

freeness violations), whereas ERM-GroupEF performs better in

terms of the loss. However, the difference is small, and both solu-

tions perform very similarly. The biggest drawback of ERM-EF is the

10



running time. As we can see, computing ERM-EF takes significantly

longer than computing ERM-GroupEF or ERM-GroupEQ. Indeed,

this is why we did not include ERM-EF in Figures 1 and 2, where

training sample size was larger than what ERM-EF can handle.

8 DISCUSSION
This paper explores the applicability of two prominent fairness no-

tions from the economic literature on fair division — envy-freeness

and equitability — in machine learning. We proposed novel re-

laxations of these definitions in a group setting, unifying several

previously proposed ones under a single framework and extending

them beyond the binary classification setting.

Group envy-freeness, in particular, allows placing asymmetric

constraints.
14
, a feature found in few fairness definitions in the

literature, but one that could be useful in certain applications. For

example, equalized odds demands that Pr[Y = 1|X ∈ G,Y ∗ =

a] ≥ Pr[Y = 1|X ∈ Ĝ,Y ∗ = a] for all a ∈ {0, 1}, capturing the

intuition that individuals in groups G and Ĝ with the same ground

truth label deserve equal treatment. However, individuals with

ground truth label 1 (e.g. individuals likely not to re-offend or

likely to repay a loan) may also deserve treatment that is no worse

than that given to individuals with ground truth label 0. Though it

may emerge naturally from loss minimization, it can be imposed

explicitly through group envy-freeness for appropriately defined

pairs of groups.

Our approach leaves the choice of G, the set of pairs of groups

acrosswhich fairness is desired, to the designer. This allows application-

dependent definitions of protected groups, but also raises an inter-

esting challenge. Consider a multi-class version of the loan setting,

in which there are d different types of loans (thus, d + 1 possible
outcomes including “no loan”). In this case, it makes sense for the

ground truth label to also be a vector Y ∗ ∈ {0, 1}d , where Y ∗
r de-

notes the individual’s ability to repay a loan of type r , if it were
given to the individual. How should one subdivide protected groups

based on vector-valued ground truth labels?

In our view, this work only scratches the surface of exploring how

economic literature on fairness can be applied to machine learning;

despite significant recent progress in this direction [24, 31], there

is much left to explore and future work here can discover novel

challenges for the machine learning community to address.
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