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Abstract

We investigate the power of voting among diverse, randomized software agents.
With teams of computer Go agents in mind, we develop a novel theoretical model
of two-stage noisy voting that builds on recent work in machine learning. This
model allows us to reason about a collection of agents with different biases (de-
termined by the first-stage noise models), which, furthermore, apply randomized
algorithms to evaluate alternatives and produce votes (captured by the second-
stage noise models). We analytically demonstrate that a uniform team, consisting
of multiple instances of any single agent, must make a significant number of mis-
takes, whereas a diverse team converges to perfection as the number of agents
grows. Our experiments, which pit teams of computer Go agents against strong
agents, provide evidence for the effectiveness of voting when agents are diverse.

1 Introduction

Recent years have seen a surge of work at the intersection of social choice and machine learning. In
particular, significant attention has been given to the learnability and applications of noisy preference
models [16, 2, 1, 3, 24]. These models enhance our understanding of voters’ behavior in elections,
and provide a theoretical basis for reasoning about crowdsourcing systems that employ voting to
aggregate opinions [24, 8]. In contrast, this paper presents an application of noisy preference models
to the design of systems of software agents, emphasizing the importance of voting and diversity.

Our starting point is two very recent papers by Marcolino et al. [19, 20], which provide a new
perspective on voting among multiple software agents. Their empirical results focus on Computer
Go programs (see, e.g., [10]), which often use Monte Carlo tree search algorithms [7]. Taking the
team formation point of view, Marcolino et al. establish that a team consisting of multiple (four
to six) different computer Go programs that use plurality voting — each agent giving one point to
a favorite alternative — to decide on each move outperforms a team consisting of multiple copies
of the strongest program (which is better than a single copy because the copies are initialized with
different random seeds). The insight is that even strong agents are likely to make poor choices in
some states, which is why diversity beats strength. And while the benefits of diversity in problem
solving are well studied [12, 13, 6, 14], the setting of Marcolino et al. combines several ingredients.
First, performance is measured across multiple states; as they point out, this is also relevant when
making economic decisions (such as stock purchases) across multiple scenarios, or selecting item
recommendations for multiple users. Second, agents’ votes are based on randomized algorithms;
this is also a widely applicable assumption, and in fact even Monte Carlo tree search specifically
is used for problems ranging from traveling salesman to classical (deterministic) planning, not to
mention that randomization is often used in many other AI applications.
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Focusing on the computer Go application, we find it exciting because it provides an ideal example
of voting among teams of software agents: It is difficult to compare quality scores assigned by
heterogeneous agents to different moves, so optimization approaches that rely on cardinal utilities
fall short while voting provides a natural aggregation method. More generally the setting’s new
ingredients call for a novel model of social choice, which should be rich enough to explain the
empirical finding that diversity beats strength.

However, the model suggested by Marcolino et al. [19] is rather rudimentary: they prove that a
diverse team would outperform copies of the strongest agent only if one of the weaker agents out-
performs the strongest agent in at least one state; their model cannot quantify the advantage of
diversity. Marcolino et al. [20] present a similar model, but study the effect of increasing the size of
the action space (i.e., the board size in the Go domain). More importantly, Marcolino et al. [19, 20]
— and other related work [6] — assume that each agent votes for a single alternative. In contrast, it
is potentially possible to design agents that generate a ranking of multiple alternatives, calling for a
principled way to harness this additional information.

1.1 Our Approach and Results

We introduce the following novel, abstract model of voting, and instantiate it using Computer Go.
In each state, which corresponds to a board position in Go, there is a ground truth, which captures
the true quality of different alternatives — feasible moves in Go. Heuristic agents have a noisy
perception of the quality of alternatives. We model this using a noise model for each agent, which
randomly maps the ground truth to a ranking of the alternatives, representing the agent’s biased view
of their qualities. But if a single agent is presented with the same state twice, the agent may choose
two different alternatives. This is because agents are assumed to be randomized. For example, as
mentioned above, most computer Go programs, such as Fuego [10], rely on Monte Carlo Tree Search
to randomly decide between different moves. We model this additional source of noise via a second
noise model, which takes the biased ranking as input, and outputs the agent’s vote (another ranking
of the alternatives). A voting rule is employed to select a single alternative (possibly randomly) by
aggregating the agents’ votes. Our main theoretical result is the following theorem, which is, in a
sense, an extension of the classic Condorcet Jury Theorem [9].

Theorem 2 (simplified and informal). (i) Under extremely mild assumptions on the noise models
and voting rule, a uniform team composed of copies of any single agent (even the “strongest” one
with the most accurate noise models), for any number of agents and copies, is likely to vote for
suboptimal alternatives in a significant fraction of states; (ii) Under mild assumptions on the noise
models and voting rule, a diverse team composed of a large number of different agents is likely to
vote for optimal alternatives in almost every state.

We show that the assumptions in both parts of the theorem are indeed mild by proving that three well-
known noise models — the Mallows-φ model [18], The Thurstone-Mosteller model [26, 21], and
the Plackett-Luce model [17, 23] — satisfy the assumptions in both parts of the theorem. Moreover,
the assumptions on the voting rule are satisfied by almost all prominent voting rules.

We also present experimental results in the Computer Go domain. As stated before, our key method-
ological contributions are a procedure for automatically generating diverse teams by using different
parameterizations of a Go program, and a novel procedure for extracting rankings of moves from
algorithms that are designed to output only a single good move. We show that the diverse team
significantly outperforms the uniform team under the plurality rule. We also show that it is possible
to achieve better performance by extracting rankings from agents using our novel methodology, and
aggregating them via ranked voting rules.

2 Background

We use [k] as shorthand for {1, . . . , k}. A vote is a total order (ranking) over the alternatives, usually
denoted by σ. The set of rankings over a set of alternatives A is denoted by L(A). For a ranking σ,
we use σ(i) to denote the alternative in position i in σ, so, e.g., σ(1) is the most preferred alternative
in σ. We also use σ([k]) to denote {σ(1), . . . , σ(k)}. A collection of votes is called a profile, denoted
by π. A deterministic voting rule outputs a winning alternative on each profile. For a randomized
voting rule f (or simply a voting rule), the output f(π) is a distribution over the alternatives. A
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voting rule is neutral if relabeling the alternatives relabels the output accordingly; in other words,
the output of the voting rule is independent of the labels of the alternatives. All prominent voting
rules, when coupled with uniformly random tie breaking, are neutral.

Families of voting rules. Next, we define two families of voting rules. These families are quite
wide, disjoint, and together they cover almost all prominent voting rules.

• Condorcet consistency. An alternative is called the Condorcet winner in a profile if it is
preferred to every other alternative in a majority of the votes. Note that there can be at
most one Condorcet winner. A voting rule is called Condorcet consistent if it outputs the
Condorcet winner (with probability 1) whenever it exists. Many famous voting rules such
as Kemeny’s rule, Copeland’s rule, Dodgson’s rule, the ranked pairs method, the maximin
rule, and Schulze’s method are Condorcet consistent.

• PD-c Rules [8]. This family is a generalization of positional scoring rules that include
prominent voting rules such as plurality and Borda count. While the definition of Cara-
giannis et al. [8] outputs rankings, we naturally modify it to output winning alternatives.
Let Tπ(k, a) denote the number of times alternative a appears among first k positions in
profile π. Alternative a is said to position-dominate alternative b in π if Tπ(k, a) > Tπ(k, b)
for all k ∈ [m− 1], where m is the number of alternatives in π. An alternative is called the
position-dominating winner if it position-dominates every other alternative in a profile. It
is easy to check that there can be at most one position-dominating winner. A voting rule is
called position-dominance consistent (PD-c) if it outputs the position-dominating winner
(with probability 1) whenever it exists. Caragiannis et al. [8] show that all positional scoring
rules (including plurality and Borda count) and Bucklin’s rule are PD-c (as rules that output
rankings). We show that this holds even when the rules output winning alternatives. This
is presented as Proposition 1 in the online appendix (specifically, Appendix A).

Caragiannis et al. [8] showed that PD-c rules are disjoint from Condorcet consistent rules (actually,
for rules that output rankings, they use a natural generalization of Condorcet consistent rules that
they call PM-c rules). Their proof also establishes the disjointness of the two families for rules that
output winning alternatives.

2.1 Noise Models

One view of computational social choice models the votes as noisy estimates of an unknown true or-
der of the alternatives. These votes come from a distribution that is parametrized by some underlying
ground truth. The ground truth can itself be the true order of alternatives, in which case we say that
the noise model is of the rank-to-rank type. The ground truth can also be an objective true quality
level for each alternative, which is more fine-grained than a true ranking of alternatives. In this case,
we say that the noise model is of the quality-to-rank type. See [15] for examples of quality-to-rank
models and how they are learned. Note that the output votes are rankings over alternatives in both
cases. We denote the ground truth by θ. It defines a true ranking of the alternatives (even when the
ground truth is a quality level for each alternative), which we denote by σ∗.

Formally, a noise model P is a set of distributions over rankings — the distribution corresponding
to the ground truth θ is denoted by P (θ). The probability of sampling a ranking σ from P (θ) is
denoted by PrP [σ;θ].

Similarly to voting rules, a noise model is called neutral if relabeling the alternatives permutes
the probabilities of various rankings accordingly. Formally, a noise model P is called neutral if
PrP [σ;θ] = PrP [τσ; τθ], for every permutation τ of the alternatives, every ranking σ, and every
ground truth θ. Here, τσ and τθ denote the result of applying τ on σ and θ, respectively.

Classic noise models. Below, we define three classical noise models:

• The Mallows-φ model [18]. This is a rank-to-rank noise model, where the probability
of a ranking decreases exponentially in its distance from the true ranking. Formally, the
Mallows-φ model for m alternatives is defined as follows. For all rankings σ and σ∗,

Pr[σ;σ∗] =
φdKT (σ,σ

∗)

Zmφ
, (1)
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where dKT is the Kendall-Tau distance that measures total pairwise disagreement between
two rankings, and the normalization constant Zmφ =

∏m
k=1

∑k−1
j=0 φ

j is independent of σ∗.

• The Thurstone-Mosteller (TM) [26, 21] and the Plackett-Luce (PL) [17, 23] models. Both
models are of the quality-to-rank type, and are special cases of a more general random
utility model (see [2] for its use in social choice). In a random utility model, each alternative
a has an associated true quality parameter θa and a distribution µa parametrized by θa. In
each sample from the model, a noisy quality estimate Xa ∼ µa(θa) is obtained, and the
ranking where the alternatives are sorted by their noisy qualities is returned.
For the Thurstone-Mosteller model, µa(θa) is taken to be the normal distributionN (θa, ν

2)
with mean θa, and variance ν2. Its PDF is

f(x) =
1√

2πν2
e−

(x−θa)2

2ν2 .

For the Plackett-Luce model, µa(θa) is taken to be the Gumbel distribution G(θa). Its PDF
follows f(x) = e−(x−θa)−e

−(x−θa)

. The CDF of the Gumbel distribution G(θa) is given by
F (x) = e−e

−(x−θa)

. Note that we do not include a variance parameter because this subset
of Gumbel distributions is sufficient for our purposes.
The Plackett-Luce model has an alternative, more intuitive, formulation. Taking λa =
eθa , the probability of obtaining a ranking is the probability of sequentially choosing its
alternatives from the pool of remaining alternatives. Each time, an alternative is chosen
among a pool proportional to its λ value. Hence, Pr[σ; {λa}] =

∏m
i=1

λσ(i)∑m
j=i λσ(j)

, where
m is the number of alternatives.

3 Theoretical Results

In this section, we present our theoretical results. But, first, we develop a novel model that will
provide the backdrop for these results. Let N = {1, . . . , n} be a set of agents. Let S be the set of
states of the world, and let |S| = t. These states represent different scenarios in which the agents
need to make decisions; in Go, these are board positions. Let µ denote a probability distribution
over states in S, which represents how likely it is to encounter each state. Each state s ∈ S has
a set of alternatives As, which is the set of possible actions the agents can choose in state s. Let
|As| = ms for each s ∈ S. We assume that the set of alternatives is fixed in each state. We will later
see how our model and results can be adjusted for varying sets of alternatives. The ground truth in
state s ∈ S is denoted by θs, and the true ranking in state s is denoted by σ∗s .

Votes of agents. The agents are presented with states sampled from µ. Their goal is to choose
the true best alternative, σ∗s (1), in each state s ∈ S (although we discuss why our results also hold
when the goal is to maximize expected quality). The inability of the agents to do so arises from two
different sources: the suboptimal heuristics encoded within the agents, and their inability to fully
optimize according to their own heuristics — these are respectively modeled by two noise models
P 1
i and P 2

i associated with each agent i.

The agents inevitably employ heuristics (in domains like Go) and therefore can only obtain a noisy
evaluation of the quality of different alternatives, which is modeled by the noise model P 1

i of agent
i. The biased view of agent i for the true order of the alternatives in As, denoted σis, is modeled
as a sample from the distribution P 1

i (σ∗s ). Moreover, we assume that the agents’ decision making is
randomized. For example, top computer Go programs use Monte Carlo tree search algorithms [7].
We therefore assume that each agent i has another associated noise model P 2

i such that the final
ranking that the agent returns is a sample from P 2

i (σis). To summarize, agent i’s vote is obtained
by first sampling its biased truth from P 1

i , and then sampling its vote from P 2
i . It is clear that the

composition P 2
i ◦ P 1

i plays a crucial role in this process.

Agent teams. Since the agents make errors in estimating the best alternative, it is natural to form a
team of agents and aggregate their votes. We consider two team formation methods: a uniform team
comprising of multiple copies of a single agent that share the same biased truths but have different
final votes due to randomness; and a diverse team comprising of a single copy of each agent with
different biased truths and different votes. We show that the diverse team outperforms the uniform
team irrespective of the choice of the agent that is copied in the uniform team.
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3.1 Restrictions on Noise Models

No team can perform well if the noise models P 1
i and P 2

i lose all useful information. Hence,
we impose intuitive restrictions on the noise models; our restrictions are mild, as we demonstrate
(Theorem 1) that the three classical noise models presented in Section 2.1 satisfy all our assumptions.

PM-α Noise Model For α > 0, a neutral noise model P is called pairwise majority preserving with
strength α (or PM-α) if for every ground truth θ (and the corresponding true ranking σ∗) and every
i < j, we have

Prσ∼P (θ)[σ
∗(i) �σ σ∗(j)] ≥ Prσ∼P (θ)[σ

∗(j) �σ σ∗(i)] + α, (2)

where �σ is the preference relation of a ranking σ sampled from P (θ). Note that this definition
applies to both quality-to-rank and rank-to-rank noise models. In other words, in PM-α noise models
every pairwise comparison in the true ranking is preserved in a sample with probability at least α
more than the probability of it not being preserved.

PD-α Noise Model For α > 0, a neutral noise model is called position-dominance preserving with
strength α (or PD-α) if for every ground truth θ (and the corresponding true ranking σ∗), every
i < j, and every k ∈ [m− 1] (where m is the number of alternatives),

Prσ∼P (θ)[σ
∗(i) ∈ σ([k])] ≥ Prσ∼P (θ)[σ

∗(j) ∈ σ([k])] + α. (3)

That is, for every k ∈ [m− 1], an alternative higher in the true ranking has probability higher by at
least α of appearing among the first k positions in a vote than an alternative at a lower position in
the true ranking.

Compositions of noise models with restrictions. As mentioned above, compositions of noise
models play an important role in our work. The next lemma shows that our restrictions on noise
models are preserved, in a sense, under composition; its proof appears in Appendix B.
Lemma 1. For α1, α2 > 0, the composition of a PD-α1 noise model with a PD-α2 noise model is
a PD-(α1 · α2) noise model.

Unfortunately, a similar result does not hold for PM-α noise models; the composition of a PM-α1

noise model and a PM-α2 noise model may yield a noise model that is not PM-α for any α > 0. In
Appendix C, we give such an example. While this is slightly disappointing, we show that a stronger
assumption on the first noise model in the composition suffices.

PPM-α Noise Model For α > 0, a neutral noise model P is called positional pairwise majority
preserving (or PPM-α) if for every ground truth θ (and the corresponding true ranking σ∗) and
every i < j, the quantity

Prσ∼P (θ)[σ(i′) = σ∗(i) ∧ σ(j′) = σ∗(j)]− Prσ∼P (θ)[σ(j′) = σ∗(i) ∧ σ(i′) = σ∗(j)] (4)

is non-negative for every i′ < j′, and at least α for some i′ < j′. That is, for i′ < j′, the probability
that σ∗(i) and σ∗(j) go to positions i′ and j′ respectively in a vote should be at least as high as the
probability of them going to positions j′ and i′ respectively (and at least α greater for some i′ and
j′). Summing Equation (4) over all i′ < j′ shows that every PPM-α noise model is also PM-α.

Lemma 2. For α1, α2 > 0, if noise models P 1 and P 2 are PPM-α1 and PM-α2, respectively, then
their composition P 2 ◦ P 1 is PM-(α1 · α2).

The lemma’s proof is relegated to Appendix D.

3.2 Team Formation and the Main Theoretical Result

Let us explain the process of generating votes for the uniform team and for the diverse team. Con-
sider a state s ∈ S. For the uniform team consisting of k copies of agent i, the biased truth σis is
drawn from P 1

i (θs), and is common to all the copies. Each copy j then individually draws a vote
πjis from P 2

i (σis); we denote the collection of these votes by πkis = (π1
is, . . . , π

k
is). Under a voting

rule f , let Xk
is = I[f(πkis) = σ∗s (1)] be the indicator random variable denoting whether the uniform
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team selects the best alternative, namely σ∗s (1). Finally, agent i is chosen to maximize the overall
accuracy E[Xk

is], where the expectation is over the state s and the draws from P 1
i and P 2

i .

The diverse team consists of one copy of each agent i ∈ N . Importantly, although we can take
multiple copies of each agent and a total of k copies, we show that taking even a single copy of
each agent outperforms the uniform team. Each agent i has its own biased truth σis drawn from
P 1
i (θs), and it draws its vote ψis from P 2

i (σis). This results in the profile ψns = (ψ1s, . . . , ψns).
Let Y ns = I[f(ψns ) = σ∗s (1)] be the indicator random variable denoting whether the diverse team
selects the best alternative, namely σ∗s (1).

Below we put forward a number of assumptions on noise models; different subsets of assumptions
are required for different results. We remark that each agent i ∈ N has two noise models for each
possible number of alternatives m. However, for the sake of notational convenience, we refer to
these noise models as P 1

i and P 2
i irrespective of m. This is natural, as the classic noise models

defined in Section 2.1 describe a noise model for each m.

A1 For each agent i ∈ N , the associated noise models P 1
i and P 2

i are neutral.

A2 There exists a universal constant η > 0 such that for each agent i ∈ N , every possible ground
truth θ (and the corresponding true ranking σ∗), and every k ∈ [m] (where m is the number of
alternatives), Prσ∼P 1

i (θ)
[σ∗(1) = σ(k)] ≤ 1− η.

In words, assumption A2 requires that the true best alternative appear in any particular position
with probability at most a constant which is less than 1. This ensures that the noise model indeed
introduces a non-zero constant amount of noise in the position of the true best alternative.

A3 There exists a universal constant α > 0 such that for each agent i ∈ N , the noise models P 1
i

and P 2
i are PD-α.

A4 There exists a universal constant α > 0 such that for each agent i ∈ N , the noise models P 1
i

and P 2
i are PPM-α and PM-α, respectively.

We show that the preceding assumptions are indeed very mild in that classical noise models in-
troduced in Section 2.1 satisfy all four assumptions. The proof of the following result appears in
Appendix E.
Theorem 1. With a fixed set of alternatives (such that the true qualities of every two alternatives
are distinct in the case where the ground truth is the set of true qualities), the Mallows-φ model
with φ ∈ [ρ, 1 − ρ], the Thurstone-Mosteller model with variance parameter σ2 ∈ [L,U ], and the
Plackett-Luce model all satisfy assumption A1, A2, A3, and A4, given that ρ ∈ (0, 1/2), L > 0, and
U > L are constants.

We are now ready to present our main result; its proof appears in Appendix F.
Theorem 2. Let µ be a distribution over the state space S. Let the set of alternatives in all states
{As}s∈S be fixed.

1. Under the assumptions A1 and A2, and for any neutral voting rule f , there exists a uni-
versal constant c > 0 such that for every k and every N = {1, . . . , n}, it holds that
maxi∈N E[Xk

is] ≤ 1 − c, where the expectation is over the state s ∼ µ, the ground truths
σis ∼ P 1

i (θs) for all s ∈ S, and the votes πjis ∼ P 2
i (σis) for all j ∈ [k].

2. Under each of the following two conditions, for a voting rule f , it holds that
limn→∞ E[Y ns ] = 1, where the expectation is over the state s ∼ µ, the biased truths
σis ∼ P 1

i (θs) for all i ∈ N and s ∈ S, and the votes ψis ∼ P 2
i (σis) for all i ∈ N and

s ∈ S: (i) assumptions A1 and A3 hold, and f is PD-c; (ii) assumptions A1 and A4 hold,
and f is Condorcet consistent.

4 Experimental Results

We now present our experimental results in the Computer Go domain. We use a novel methodology
for generating large teams, which we view as one of our main contributions. It is fundamentally
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Figure 1: Winning rates for Diverse (continuous line) and Uniform (dashed line), for a variety of
team sizes and voting rules.

different from that of Marcolino et al. [19, 20], who created a diverse team by combining four
different, independently developed Go programs. Here we automatically create arbitrarily many
diverse agents by parameterizing one Go program. Specifically, we use different parametrizations
of Fuego 1.1 [10]. Fuego is a state-of-the-art, open source, publicly available Go program; it won
first place in 19×19 Go in the Fourth Computer Go UEC Cup, 2010, and also won first place in 9×9
Go in the 14th Computer Olympiad, 2009. We sample random values for a set of parameters for each
generated agent, in order to change its behavior. In Appendix G we list the sampled parameters, and
the range of sampled values. The original Fuego is the strongest agent, as we show in Appendix H.

All results were obtained by simulating 1000 9×9 Go games, in an HP dl165 with dual dodeca core,
2.33GHz processors and 48GB of RAM. We compare the winning rates of games played against a
fixed opponent. In all games the system under evaluation plays as white, against the original Fuego
playing as black. We evaluate two types of teams: Diverse is composed of different agents, and
Uniform is composed of copies of a specific agent (with different random seeds). In order to study
the performance of the uniform team, for each sample (which is an entire Go game) we construct
a team consisting of copies of a randomly chosen agent from the diverse team. Hence, the results
presented for Uniform are approximately the mean behavior of all possible uniform teams, given the
set of agents in the diverse team. In all graphs, the error bars show 99% confidence intervals.

Fuego (and, in general, all programs using Monte Carlo tree search algorithms) is not originally
designed to output a ranking over all possible moves (alternatives), but rather to output a single
move — the best one according to its search tree (of course, there is no guarantee that the selected
move is in fact the best one). In this paper, however, we wish to compare plurality (which only
requires each agent’s top choice) with voting rules that require an entire ranking from each agent.
Hence, we modified Fuego to make it output a ranking over moves, by using the data available in its
search tree (we rank by the number of simulations per alternative). We ran games under 5 different
voting rules: plurality, Borda count, the harmonic rule, maximin, and Copeland. Plurality, Borda
count (which we limit to the top 6 positions in the rankings), and the harmonic rule (see Appendix A)
are PD-c rules, while maximin and Copeland are Condorcet-consistent rules (see, e.g., [24]).

We first discuss Figure 1(a), which shows the winning rates of Diverse and Uniform for a varying
number of agents using the plurality voting rule. The winning rates of both teams increase as the
number of agents increases. Diverse and Uniform start with similar winning rates, around 35%
with 2 agents and 40% with 5 agents, but with 25 agents Diverse reaches 57%, while Uniform only
reaches 45.9%. The improvement of Diverse over Uniform is not statistically significant with 5
agents (p = 0.5836), but is highly statistically significant with 25 agents (p = 8.592 × 10−7). We
perform linear regression on the winning rates of the two teams to compare their rates of improve-
ment in performance as the number of agents increases. Linear regression (shown as the dotted lines
in Figure 1(a)) gives the function y = 0.0094x + 0.3656 for Diverse (R2 = 0.9206, p = 0.0024)
and y = 0.0050x + 0.3542 for Uniform (R2 = 0.8712, p = 0.0065). In particular, the linear ap-
proximation for the winning rate of Diverse increases roughly twice as fast as the one for Uniform
as the number of agents increases.
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Despite the strong performance of Diverse (it beats the original Fuego more than 50% of the time),
it seems surprising that its winning rate converges to a constant that is significantly smaller than 1, in
light of Theorem 2. There are (at least) two reasons for this apparent discrepancy. First, Theorem 2
deals with the probability of making good moves in individual board positions (states), whereas
the figure shows winning rates. Even if the former probability is very high, a bad decision in a
single state of a game can cost Diverse the entire game. Second, our diverse team is formed by
randomly sampling different parametrizations of Fuego. Hence, there might still exist a subset of
world states where all agents would play badly, regardless of the parametrization. In other words,
the parametrization procedure may not be generating the idealized diverse team (see Appendix H).

Figure 1(b) compares the results across different voting rules. As mentioned above, to generate
ranked votes, we use the internal data in the search tree of an agent’s run (in particular, we rank
using the number of simulations per alternative). We can see that increasing the number of agents
has a positive impact for all voting rules under consideration. Moving from 5 to 15 agents for
Diverse, plurality has a 14% increase in the winning rate, whereas other voting rules have a mean
increase of only 6.85% (std = 2.25%), close to half the improvement of plurality. For Uniform,
the impact of increasing the number of agents is much smaller: Moving from 5 to 15 agents, the
increase for plurality is 5.3%, while the mean increase for other voting rules is 5.70%(std = 1.45%).
Plurality surprisingly seems to be the best voting rule in these experiments, even though it uses less
information from the submitted rankings. This suggests that the ranking method used does not
typically place good alternatives in high positions other than the very top.
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Figure 2: All voting rules, for Diverse with 5 agents, using
the new ranking methodology.

Hence, we introduce a novel pro-
cedure to generate rankings, which
we view as another major method-
ological contribution. To generate a
ranked vote from an agent on a given
board state, we run the agent on the
board state 10 times (each run is inde-
pendent of other runs), and rank the
moves by the number of times they
are played by the agent. We use these
votes to compare plurality with the
four other voting rules, for Diverse
with 5 agents. Figure 2 shows the
results. All voting rules outperform
plurality; Borda and maximin are sta-
tistically significantly better (p < 0.007 and p = 0.06, respectively). All ranked voting rules are
also statistically significantly better than the non-sampled (single run) version of plurality.

5 Discussion

While we have focused on computer Go for motivation, we have argued in Section 1 that our theo-
retical model is more widely applicable. At the very least, it is relevant to modeling game-playing
agents in the context of other games. For example, random sampling techniques play a key role in
the design of computer poker programs [25]. A complication in some poker games is that the space
of possible moves, in some stages of the game, is infinite, but this issue can likely be circumvented
via an appropriate discretization.

Our theoretical model does have (at least) one major shortcoming when applied to multistage games
like Go or poker: it assumes that the state space is “flat”. So, for example, making an excellent move
in one state is useless if the agent makes a horrible move in a subsequent state. Moreover, rather
than having a fixed probability distribution µ over states, the agents’ strategies actually determine
which states are more likely to be reached. To the best of our knowledge, existing models of voting
do not capture sequential decision making — possibly with a few exceptions that are not relevant
to our setting, such as the work of Parkes and Procaccia [22]. From a theoretical and conceptual
viewpoint, the main open challenge is to extend our model to explicitly deal with sequentiality.

Acknowledgments: Procaccia and Shah were partially supported by the NSF under grants IIS-
1350598 and CCF-1215883, and Marcolino by MURI grant W911NF-11-1-0332.
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A Voting Rules

We first define positional scoring rules and Bucklin’s rule, and then prove Proposition 1.

Positional Scoring Rules A positional scoring rule is given by a scoring vector (α1, . . . , αm)
where αi ≥ αi+1 for all i ∈ {1, . . . ,m} and α1 > αm. Under this rule for each vote σ and
i ∈ [m], αi points are awarded to the alternative σ(i). The alternative with the most points overall
is selected as the winner. The proof of Proposition 1 holds irrespective of the tie-breaking rule used.
Special positional scoring rules include plurality with scoring vector (1, 0, 0, . . . , 0), Borda count
with scoring vector (m,m − 1, . . . , 1), the veto rule with scoring vector (1, 1, . . . , 1, 0), and the
harmonic rule [5] with scoring vector (1, 1/2, . . . , 1/m).

Bucklin’s rule The Bucklin score of an alternative a is the minimum k such that a is among the
first k positions in the majority of input votes. Bucklin’s rule outputs the alternative with the lowest
Bucklin score, and breaks ties among alternatives with the same Bucklin score ` according to the
number of rankings that have the alternative in the first ` positions.
Proposition 1. All positional scoring rules (including plurality and Borda count) and Bucklin’s rule
are PD-c rules.

Proof. Consider a profile π with n rankings and a position-dominating winner a. We show that any
positional scoring rule as well as Bucklin’s rule outputs a on π. For any j ∈ {1, . . . ,m − 1}, let
Tπ(c, j) denote the number of votes where alternative c is among the first j positions in π.

For Bucklin’s rule, consider arbitrary alternative a′ 6= a. Let k denote the Bucklin score of a and k′
denote the Bucklin score of a′. If k > k′, then Tπ(a′, k′) > n/2 and Tπ(a, k′) ≤ Tπ(a, k − 1) <
n/2, which is impossible since the a is the position-dominating winner in π. If k < k′, then
Bucklin’s rule would select a over a′, as required.

If k = k′ 6= m, then we have Tπ(a, k) > Tπ(a′, k) because a is the position-dominating winner.
Hence, the tie is broken in favor of a. Lastly, we note that k = k′ = m is not possible because it
would imply that the total number of appearances of a and a′ in the last position is n − Tπ(a,m −
1) + n− Tπ(a′,m− 1) > 2 · n− 2 · Tπ(a,m− 1) > n. Thus, Bucklin’s rule would choose a over
every other alternative a′, i.e., it would output a as the winner, as required.

Consider a positional scoring rule with scoring vector (α1, . . . , αm). As shown in the proof of
Theorem 3.10 in [8], the score of an alternative a′ in π is equivalently given by

∑m−1
k=1 βk ·Tπ(a′, k),

where βi = αi − αi−1 ≥ 0. It is now easy to see that the position-dominating winner a would have
strictly higher score than every other alternative because βi > 0 for some i. Hence, every positional
scoring rule would also output a, as required.

B Proof of Lemma 1

Let m be the number of alternatives. The result is trivial for m = 1. For m ≥ 2, let P 1 and P 2

be PD-α1 and PD-α2 noise models, respectively. For i, j ∈ [m], let T 1(i, j) and T 2(i, j) be the
probabilities that the ith alternative in the true ranking is placed in position j in a sample from P 1

and P 2, respectively.1 For i, j ∈ [m], let F 1(i, j) =
∑j
l=1 T

1(i, l) and F 2(i, j) =
∑j
l=1 T

2(i, l).
Now, fix 1 ≤ p < q ≤ m. The difference between the probabilities of the pth and qth alternatives in
the true ranking appearing among the first k positions in a sample from P 2 ◦ P 1 is

k∑
i=1

m∑
j=1

T 1(p, j)T 2(j, i)−
k∑
i=1

m∑
j=1

T 1(q, j)T 2(j, i)

=

k∑
i=1

m∑
j=1

T 2(j, i)
(
T 1(p, j)− T 1(q, j)

)
=

m∑
j=1

F 2(j, k)
(
T 1(p, j)− T 1(q, j)

)
=

m∑
j=1

(
F 2(j, k)− F 2(j + 1, k)

) (
F 1(p, j)− F 1(q, j)

)
≥ α1 · α2,

1Note that due to neutrality of P 1 and P 2, these probabilities are independent of the true ranking.
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where the second transition follows by interchanging the order of summation, the third transition
follows by simple algebra (we let F 2(m + 1, k) = 0 because there are only m alternatives), and
the last transition holds because for j = 1, the two terms in the summation are at least α2 and α1,
respectively, as P 1 and P 2 are PD-α1 and PD-α2 noise models, respectively, and for j > 1, both
terms are non-negative.

C Example: Composition of PM Noise Models

Consider a neutral noise model P over 3 alternatives that is of the rank-to-rank type. We describe
the probabilities of various rankings when the ground truth is a � b � c (the probabilities of various
permutations of the true ranking are independent of the true ranking): PrP [a � b � c; a � b �
c] = 0.51, PrP [b � a � c; a � b � c] = 0.09, PrP [c � b � a; a � b � c] = 0.4. That is, the true
ranking stays unchanged with probability 0.51, the top two alternative are swapped with probability
0.09, and the first and the last alternatives are swapped with probability 0.4.

Clearly, P is PM-0.02 because every pairwise comparison is preserved with probability at least 0.51.
Let us consider the composition P ◦ P . We evaluate the probability that the top alternative in the
true ranking stays above the second alternative in the true ranking in a vote sampled from P ◦ P .
This probability is precisely

0.51 · 0.51 + 0.09 · 0.49 + 0.4 · 0.4 = 0.4642 < 0.5.

Hence, in P ◦ P the pair of top two alternatives in the true ranking is flipped with probability more
than 0.5. It follows that P ◦ P is not PM-α for any α > 0.

D Proof of Lemma 2

The result is trivial for m = 1. Let m ≥ 1. Let P 1 and P 2 be PPM-α1 and PM-α2 noise models
respectively. Let m denote the number of alternatives. Fix 1 ≤ i < j ≤ m. For 1 ≤ i′ < j′ ≤ m,
define T 1(i, j, i′, j′) to be the probability that the alternatives in positions i and j in the true ranking
appear in positions i′ and j′, respectively, in a vote sampled from P 1. Since P 1 is PPM-α1, we have
T 1(i, j, i′, j′) ≥ T 1(i, j, j′, i′) for all 1 ≤ i′ < j′ ≤ m and T 1(i, j, i′, j′) ≥ T 1(i, j, j′, i′) + α1 for
some 1 ≤ i′ < j ≤ m′.
Let T 2(i, j) denote the probability that the alternative in position i in the true ranking is preferred to
the alternative in position j in the true ranking in a vote sampled from P 2. Since P 2 is PM-α2, we
know that T 2(i, j) ≥ T 2(j, i) + α2. Now, the difference between the probability of the alternative
in position i in the true ranking being preferred to the alternative in position j in the true ranking in
a vote from P 2 ◦ P 1 and the probability of its converse is∑
i′,j′∈[m]

T 1(i, j, i′, j′) · T 2(i′, j′)−
∑

i′,j′∈[m]

T 1(i, j, i′, j′) · T 2(j′, i′)

=
∑

i′,j′∈[m]

T 1(i, j, i′, j′) ·
(
T 2(i′, j′)− T 2(j′, i′)

)
=

∑
1≤i′<j′≤m

(
T 1(i, j, i′, j′) ·

(
T 2(i′, j′)− T 2(j′, i′)

)
+ T 1(i, j, j′, i′) ·

(
T 2(j′, i′)− T 2(i′, j′)

))
=

∑
1≤i′<j′≤m

(
T 1(i, j, i′, j′)− T 1(i, j, j′, i′)

)
·
(
T 2(i′, j′)− T 2(j′, i′)

)
≥ α1 · α2,

where the last transition holds because our assumptions on P 1 and P 2 imply that there exist 1 ≤
i′ < j′ ≤ m for which T 1(i, j, i′, j′) ≥ T 1(i, j, j′, i′) + α1, and for those values of i′ and j′, we
have T 2(i′, j′) ≥ T 2(j′, i′) + α2. Thus, P 2 ◦ P 1 is PM-(α1 · α2).

E Proof of Theorem 1

We show that three classical noise models—the Mallows-φ model, the Thurstone-Mosteller model,
and the Plackett-Luce model—satisfy our four assumptions. For assumption A4, we only show that
the noise models are PPM-α; this implies that they are also PM-α.
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Proof of Theorem 1. Let m denote the number of alternatives. Let L(A) be the set of all rankings
over m alternatives. In all the proofs below, P will denote the noise model under consideration,
and pi,j will denote the probability that the alternative in position i in the true ranking appears in
position j in a vote sampled from P . We begin with the proof for the Mallows-φ model.

Part I: The Mallows-φ model.

We prove that the Mallows-φ model with φ ∈ [ρ, 1− ρ] and constant ρ ∈ (0, 1/2) satisfies assump-
tions A1, A2, A3, and A4.

Assumption A1: It is well-known and easy to check that neutrality of the Kendall-Tau distance
implies neutrality of the Mallows-φ model for all φ ∈ (0, 1). Hence, the Mallows-φ model satisfies
assumption A1.

Assumption A2: We need to show that there exists a constant η > 0 such that p1,k ≤ 1 − η for
all k ∈ [m]. Lemma 3.8 in [8] shows that when σ is sampled from the Mallows-φ model with true
ranking σ∗ and m alternatives,

pi,1 =
φi−1∑m−1
j=0 φj

.

The proof explicitly evaluates the probability by summing the probabilities of all rankings where
σ(1) = σ∗(i). Using an almost identical proof technique, we evaluate the similar probability p1,i
used in assumption A2. First, we show that for any i ∈ [m − 1], we have p1,i+1 = φ · p1,i. To see
this,

p1,i − p1,i+1 =

∑
σ∈L(A)|σ(i)=σ∗(1) φ

dKT (σ,σ
∗) −

∑
σ∈L(A)|σ(i+1)=σ∗(1) φ

dKT (σ,σ
∗)

Zmφ

=

∑
σ∈L(A)|σ(i)=σ∗(1)

(
φdKT (σ,σ

∗) − φdKT (σσ(i)↔σ(i+1),σ
∗)
)

Zmφ

=
∑

σ∈L(A)|σ(i)=σ∗(1)

φdKT (σ,σ
∗) · (1− φ)

Zmφ
= (1− φ) · p1,i,

where the second transition holds because σ ↔ σσ(i)↔σ(i+1) is a bijection between the set of
rankings where σ∗(1) = σ(i) and the set of rankings where σ∗(1) = σ(i+ 1). The third transition
holds because swapping σ(i) = σ∗(1) with the alternative σ(i + 1) does not change any pairwise
comparisons between σ and σ∗, except that of σ∗(1) and σ(i+ 1). The latter is mismatched with σ∗
after the exchange. Hence, the Kendall Tau distance to σ∗, which is equal to the number of pairwise
mismatches with σ∗, increases by exactly 1 after the exchange.

Hence, p1,i− p1,i+1 = (1−φ) · p1,i, which implies that p1,i+1 = φ · p1,i. Applying this repeatedly,
we have that p1,i = p1,1 · φi−1, for every i ∈ [m]. Summing over i ∈ [m] and observing that∑m
i=1 p1,i = 1, we get that

p1,i =
φi−1∑m−1
j=0 φj

≤ φi−1∑∞
j=0 φ

j
= φi−1 · (1− φ).

Hence, for all i ∈ [m], p1,i ≤ p1,1 ≤ 1 − φ ≤ 1 − ρ. Hence, the Mallows-φ model satisfies
assumption A2 with η = ρ.

Assumption A3: We need to show that for all i, j ∈ [m] with i < j and k ∈ [m− 1],

PrP [σ∗(i) ∈ σ([k])] > PrP [σ∗(j) ∈ σ([k])]. (5)
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We take the difference of the two terms, and remove the set of common rankings where both σ∗(i)
and σ∗(j) are in σ([k]). Thus, we get

PrP [σ
∗(i) ∈ σ([k])]− PrP [σ

∗(j) ∈ σ([k])] =
∑

σ∈L(A)
σ∗(i)∈σ([k])
σ∗(j)/∈σ([k])

PrP [σ;σ
∗]−

∑
σ∈L(A)

σ∗(j)∈σ([k])
σ∗(i)/∈σ([k])

PrP [σ;σ
∗]

=
∑

σ∈L(A)
σ∗(i)∈σ([k])
σ∗(j)/∈σ([k])

(
PrP [σ;σ

∗]− PrP [σσ∗(i)↔σ∗(j);σ
∗]
)

(6)

≥ (1− φ) ·
∑

σ∈L(A)
σ∗(i)∈σ([k])
σ∗(j)/∈σ([k])

PrP [σ;σ
∗]

≥ (1− φ) · φ
−m2

Zmφ
≥ ρ1−m−m

2

,

where the second transition holds because σ ↔ σσ∗(i)↔σ∗(j) is a bijection between the set of rank-
ings where σ∗(i) ∈ σ([k]) and σ∗(j) /∈ σ([k]), and the set of rankings where σ∗(i) /∈ σ([k])
and σ∗(j) ∈ σ([k]). The third transition holds because σ matches with σ∗ in the pairwise com-
parison of σ∗(i) and σ∗(j) (because σ∗(i) ∈ σ([k]) and σ∗(j) /∈ σ([k])), thus swapping them
increases its distance from σ∗ by at least 1 due to the swap-increasing property of the Kendall-Tau
distance (Lemma 3.5 in [8]). Hence, the probability drops at least by a factor of φ from Equa-
tion (1). The fourth transition holds because there is at least one ranking where σ∗(i) ∈ σ([k]) and
σ∗(j) /∈ σ([k]), and the ranking has probability at least φ−m

2

/Zmφ . Finally, the last transition holds
because 1/Zmφ ≥ (1− φ)m (which is easy to show), and φ ∈ [ρ, 1− ρ].

Hence, there exists a constant α = ρ1−m−m
2

> 0 such that Pr[σ∗(i) ∈ σ([k])] ≥ Pr[σ∗(j) ∈
σ([k])] + α for all i, j ∈ [m] with i < j and k ∈ [m− 1], as desired.

Assumption A4: We want to show that there exists a constant α > 0 such that for all i, j ∈ [m]
with i < j, the quantity

PrP [σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′)]− PrP [σ∗(i) = σ(j′) ∧ σ∗(j) = σ(i′)] (7)

is non-negative for all i′, j′ ∈ [m] with i′ < j′ and at least α for some i′, j′ ∈ [m] with i′ < j′.

Fix i, j, i′, j′ ∈ [m] such that i < j and i′ < j′. Similarly to Equation (6), we note that σ ↔
σσ∗(i)↔σ∗(j) is also a bijection between the set of rankings where σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′),
and the set of rankings where σ∗(i) = σ(j′) ∧ σ∗(j) = σ(i′). Hence, following the same steps, we
can derive

PrP [σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′)]− PrP [σ∗(i) = σ(j′) ∧ σ∗(j) = σ(i′)]

≥ (1− φ) · PrP [σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′)].

Thus, the difference is always non-negative. Further, note that there always exists a ranking σ where
σ∗(i) = σ(i′)∧σ∗(j) = σ(j′). Thus, using the same bound as in the case of assumption A3, we get
that there exists a constant α > 0 depending only on ρ and m such that the quantity in Equation (7)
is at least α for all 1 ≤ i′ < j′ ≤ m.

PART II: The Thurstone-Mosteller and the Plackett-Luce models.

We give a common proof by viewing both noise models as special cases of a random utility model.
Let θa denote the true quality of alternative a. Let µa(θa) denote the distribution from which noisy
estimate of the quality of alternative a is sampled. Let fθa and Fθa denote the PDF and CDF,
respectively, of µa(θa), i.e., the noisy quality estimate comes from a distribution that only depends
on the true quality. We assume the following two properties on fθ.

(P1) fθ shifts with θ, i.e., fθ(x) = fθ′(x+ θ′ − θ) for all x, θ, θ′ ∈ R.
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(P2) It is more likely that a higher quality estimate emerged from higher true quality and lower
quality estimate emerged from lower true quality, than vice-versa. Formally, for all θ > θ′

and x > x′, fθ(x) ·fθ′(x′)−fθ(x′) ·fθ′(x) > 0. Further, for x, x′, θ, θ′, x−x′, and θ− θ′
bounded from above and below by constants the difference is at least a constant.

(P3) A random variable X distributed according to fθ satisfies that Pr[|X − θ| ≤ c], Pr[X >
θ + c], and Pr[X < θ − c] are all positive constants less than 1 if c is a positive constant.
Further, the set of values {fθ(θ+x)}x∈[−c,c] is bounded from above and below by positive
constants if c is a constant.

Lemma 3. The normal distribution (with variance parameter bounded from above and below by
positive constants) and the Gumbel distribution satisfy properties P1, P2, and P3.

Proof. Property P1 follows directly from the definition of the two distributions. For property P2,
first consider the normal distribution with fixed variance ν.

fθ(x) · fθ′(x′)− fθ(x′) · fθ′(x)

=
1

2πν2

(
e−

(x−θ)2

2ν2 · e−
(x′−θ′)2

2ν2 − e−
(x′−θ)2

2ν2 · e−
(x−θ′)2

2ν2

)
=

1

2πν2

(
e−

(x−θ)2+(x′−θ′)2

2ν2 − e−
(x′−θ)2+(x−θ′)2

2ν2

)
> 0,

where the last transition holds because

(x′ − θ)2 + (x− θ′)2 − (x− θ)2 − (x′ − θ′)2

= 2 (xθ + x′θ′ − xθ′ − x′θ)
= 2(x− x′)(θ − θ′) > 0.

Similarly, for the Gumbel distribution, we have

fθ(x) · fθ′(x′)− fθ(x′) · fθ′(x)

= e−(x−θ)−e
−(x−θ)

· e−(x
′−θ′)−e−(x′−θ′)

− e−(x
′−θ)−e−(x′−θ)

· e−(x−θ
′)−e−(x−θ′)

= e−x+θ−x
′+θ′ ·

(
e−e

−(x−θ)−e−(x′−θ′)
− e−e

−(x′−θ)−e−(x−θ′)
)
.

Finally, we have that

e−(x−θ) + e−(x
′−θ′) − e−(x

′−θ) − e−(x−θ
′)

=
(
e−x

′
− e−x

)(
eθ
′
− eθ

)
< 0.

In both of these cases, it can easily be checked that the difference is at least a positive constant if x,
x′, θ, θ′, x− x′, and θ − θ′ are bounded from both sides by constants.

For property P3, this is a well-known fact for the normal distribution when the standard deviation
σ itself is bounded from above and below by constants. For the Gumbel distribution, this can be
checked using its explicit PDF fθ(x) = e−(x−θ)−e

−(x−θ)
and its explicit CDF Fθ(x) = e−e

−(x−θ)
.

Hence, both distributions satisfy all three properties.

Next, we show that any random utility model where the PDF satisfies these three properties satisfies
our four assumptions. Recall that the set of alternatives and therefore their true qualities are fixed.
We use a slightly different notation for the following proofs. For i ∈ [m], let the true quality of
alternative σ∗(i) be θi, and let its noisy quality estimate be the random variable Xi whose value is
drawn from µa(θi), where a = σ∗(i). Let fXi and FXi denote the PDF and CDF ofXi respectively.
Let X−i denote the set of random variables {X1, . . . , Xi−1, Xi+1, . . . , Xm}.
For a set S of t random variables and k ∈ [t], let topk(S) be the random variable denoting the
kth highest value among the random variables in S, i.e., it is the t − k + 1th order statistic of S.
Correspondingly, let ftopk(S) and Ftopk(S) denote its CDF and PDF respectively.
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Assumption A1: Neutrality is evident because the noisy quality estimates (and therefore the rank-
ing of the alternatives in a sample vote) depend on the true qualities of the alternatives, but are
independent of the identities of the alternatives.

Assumption A2: We want to show that there exists a constant η > 0 such that p1,i ≤ 1 − η for all
i ∈ [m]. Note that

p1,1 ≥ Pr

[
X1 >

θ1 + θ2
2

]
·
m∏
i=2

Pr

[
Xi <

θ1 + θ2
2

]
.

On the right hand side, we use the fact that Xi are independent of each other. Each term represents
the probability of an Xi bounded within a constant amount on one side. Hence, due to property (P3)
and the fact that m is constant, we have that p1,1 ≥ η1 for some constant η1 > 0. This immediately
implies that p1,i ≤ 1 − η1 for all i ∈ {2, . . . ,m}. We now prove that p1,1 ≤ 1 − η2 for some
constant η2 > 0. This is sufficient because it then follows that assumption A2 is satisfied with
η = min(η1, η2) > 0.

Note that

p1,1 ≤ 1− Pr

[
X1 <

θ1 + θ2
2

]
· Pr

[
X2 >

θ1 + θ2
2

]
.

Once again, both probability terms on the right hand side are positive constants due to property P3.
Hence, p1,1 is a constant less than 1. Hence, we have that assumption A2 is satisfied.

Assumption A3: We want to show that there exists a constant α > 0 such that for all i, j ∈ [m]
with i < j and k ∈ [m− 1], we have PrP [σ∗(i) ∈ σ([k])] ≥ PrP [σ∗(j) ∈ σ([k])] + α.

Note that σ∗(i) ∈ σ([k]) is the probability that the quality estimate of σ∗(i) is among the k highest
quality estimates. This is equivalent to the quality estimate Xi of σ∗(i) being higher than the kth
highest quality estimate among X−i. Hence,

PrP [σ∗(i) ∈ σ([k])] =

∫ ∞
t=−∞

fXi(t)Ftopk(X−i)(t) dt. (8)

Let ∆ = θi − θj . Now, similarly to Equation (8) we also have

PrP [σ∗(j) ∈ σ([k])] =

∫ ∞
t=−∞

fXj (t)Ftopk(X−j)(t) dt

=

∫ ∞
t=−∞

fXj (t−∆)Ftopk(X−j)(t−∆) dt. (9)

Due to our assumption P1, we have fXi(t) = fXj (t−∆) for all t ∈ R. Now, we also have that for
all t ∈ R,

Ftopk(X−j)(t) ≤ Ftopk(X−i)(t). (10)

To see this, note thatX−j andX−i have identical components except the former hasXi and the latter
has Xj in its place. Note that Xi first-order stochastically dominates Xj because of our assump-
tion P1. Hence, it follows that every order statistic of X−j first-order stochastically dominate the
corresponding order statistic of X−i. In particular, topk(X−j) first-order stochastically dominates
topk(X−i), which is exactly Equation (10).

Substituting Equation (10) in the difference of Equations (8) and (9), we get

PrP [σ∗(i) ∈ σ([k])]− PrP [σ∗(j) ∈ σ([k])]

≥
∫ θi

θj

fXi(t) ·
(
Ftopk(X−j)(t)− Ftopk(X−j)(t−∆)

)
dt

=

∫ θi

θj

fXi(t) · Pr[topk(X−j) ∈ (t−∆, t]] dt.

Now, due to property P3 and because a continuous function achieves its minimum on a closed
interval, both fXi(t) and Pr[topk(X−j) ∈ (t−∆, t]] are bounded from below by positive constants

15



for t ∈ [θj , θi]. Hence, the integral of their product is bounded from below by a positive constant,
which implies that assumption A3 is satisfied.

Assumption A4: We show a stronger condition that there exists a positive constant α > 0 such that
for all i, j, i′, j′ ∈ [m] with i < j and i′ < j′,

Ω = PrP [σ∗(i) = σ(i′) ∧ σ∗(j) = σ(j′)]− PrP [σ∗(i) = σ(j′) ∧ σ∗(j) = σ(i′)] ≥ α. (11)

Fix i, j ∈ [m] with i < j and i′, j′ ∈ [m] with i′ < j′. We explicitly evaluate the probability
difference Ω in Equation (11) by conditioning on the values of XS = {Xk}k∈S , where S = [m] \
{i, j}. Consider two cases.

Case 1: j′ > i′ + 1 In this case, we want that Xi ∈ (topi′(XS), topi′−1(XS)] and Xj ∈
(topj′−1(XS), topj′−2(XS)]. (The latter interval has shifted indices because insertion of
Xi would shift the rank ofXj by one.) Thus, we can evaluate Ω in Equation (11) as follows.

Ω =

∫
tS

∫ topi′−1(XS)

ti=topi′ (XS)

∫ topj′−2(XS)

tj=topj′−1(XS)

fXi(ti)fXj (tj)fXS (tS) dtj dti dtS

−
∫
tS

∫ topi′−1(XS)

tj=topi′ (XS)

∫ topj′−2(XS)

ti=topj′−1(XS)

fXi(ti)fXj (tj)fXS (tS) dtj dti dtS

=

∫
tS

∫ topi′−1(XS)

q=topi′ (XS)

∫ topj′−2(XS)

q′=topj′−1(XS)

(
fXi(q)fXj (q

′)− fXi(q′)fXj (q)
)
fXS (tS) dq′ dq dtS .

Now, define ∆ = (1/3) · mink,l∈[m],k 6=l |θk − θl|. Then, the intervals {[θk − ∆, θk +
∆]}k∈[m] do not intersect. Further, there is a constant probability that Xk is sampled from
the interval [θk −∆, θk + ∆] is a positive constant for all k ∈ S due to property (P3). Let
us denote by R the region in which this this happens for all k ∈ S. Hence, Pr[tS ∈ R]
is also a positive constant. We lower bound Ω by restricting the integration over tS to R.
Further, due to property (P2), we have that over that region,

β = min
tS∈R

q∈(topi′ (tS),topi′−1(tS)]

q′∈(topj′−1(tS),topj′−2(tS)]

fXi(q)fXj (q
′)− fXi(q′)fXj (q)

is a positive constant. Hence, we get that Ω is lower bounded by a positive constant, as
required.

Case 2: j′ = i′ + 1. This case is similar to the previous case, except that the conditions on Xi and
Xj change slightly. In this case, we need to haveXi, Xj ∈ (topi′(XS), topi′−1(XS)] along
with Xi > Xj . Hence, the evaluation of Ω in Equation (11) changes to

Ω =

∫
tS

∫ topi′−1(XS)

q=topi′ (XS)

∫ q

q′=topi′ (XS)

(
fXi(q)fXj (q

′)− fXi(q′)fXj (q)
)
fXS (tS) dq′ dq dtS

≥
∫
tS

∫ topi′−1(XS)

q=
(1/3)topi′ (XS)+
(2/3)topi′−1(XS)

∫ (2/3)topi′ (XS)+
(1/3)topi′−1(XS)

q′=topi′ (XS)

(
fXi(q)fXj (q

′)− fXi(q′)fXj (q)
)
fXS (tS) dq′ dq dtS

≥ β > 0,

where in the third transition,

β = min
tS∈R

q∈
[
(1/3)topi′ (tS)+
(2/3)topi′−1(tS)

,topi′−1(tS)

]
q′∈
[

topi′ (tS),
(2/3)topi′ (tS)+
(1/3)topi′−1(tS)

]
fXi(q)fXj (q

′)− fXi(q′)fXj (q),

where R is the same region as defined in Case 1. Once again, property (P2) implies that β
is a positive constant. Hence, Ω is lower bounded by a constant.
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Hence, both the Thurstone-Mosteller and the Plackett-Luce models are PPM-α for a constant α > 0.
This completes the proof that the three classical noise models, under suitable assumptions, satisfy
our four assumptions.

F Proof of Theorem 2

We first prove an upper bound on the accuracy of the uniform team. Fix an agent i ∈ N . Consider a
state s ∈ S. For an alternative a ∈ As, Pr[f(πkis) = a | σis] is the probability that the uniform team
chooses a when the biased truth is σis. The winner is chosen by applying f to k sampled votes from
P 2
i (σis). Therefore, the neutrality of P 2

i (assumption A1) and of f (assumption in the theorem)
imply that for every permutation τ of the alternatives,

Pr[f(πkis) = τa | τσis] = Pr[f(πkis) = a | σis]. (12)

Consider the set of rankings Goodis ⊆ L(As) such that the true best alternative σ∗s (1) has the
highest winning probability among all alternatives in As if and only if σis ∈ Goodis. From Equa-
tion (12), we can see that permuting the alternatives in σis permutes the winning probabilities of
the alternatives accordingly. Hence, the rankings in Goodis are obtained by taking one ranking in
Goodis and applying all possible permutations that fix (i.e., do not relabel) σ∗s (1), and thus do not
change its position in the ranking. Thus, there exists a k ∈ [ms] such that Goodis is the set of
rankings where σ∗s (1) is in position k.

Let Badis = L(As) \Goodis. By assumption A2, there exists a constant η > 0 such that

Pr[σis ∈ Badis] ≥ η,∀s ∈ S. (13)

Further, when σis ∈ Badis, we know that there exists an alternative a ∈ As with winning probabil-
ity at least as high as that of σ∗s (1). Hence, the winning probability of σ∗s (1) is at most 1/2. That is,

E
[
Xk
is | σis ∈ Badis

]
≤ 1/2. (14)

Putting everything together, we have that

E
[
Xk
is

]
=
∑
s∈S

µ(s) ·
[
Pr[σis ∈ Badis] · E

[
Xk
is | σis ∈ Badis

]
+ Pr[σis ∈ Goodis] · E

[
Xk
i | σis ∈ Goodis

] ]
≤
∑
s∈S

µ(s) ·
[
Pr[σis ∈ Badis] ·

1

2
+ Pr[σis ∈ Goodis] · 1

]
≤
∑
s∈S

µ(s) ·
[
η · 1

2
+ (1− η) · 1

]
= 1− η

2
,

where the second transition holds due to Equation (14), and the third transition holds due to Equa-
tion (13). Taking c = η/2 proves the first part of the theorem.

For the results regarding the diverse team, recall that in a state s ∈ S, every agent i ∈ N first
draws its biased truth σis ∼ P 1

i (θs), and then draws a sample ψis ∼ P 2
i (σis). Equivalently, we

can say that each agent i ∈ N draws its vote ψis ∼ (P 2
i ◦ P 1

i )(θs). Let Pi = P 2
i ◦ P 1

i . Thus,
ψns is a profile consisting of one sample from Pi(θs) for each i ∈ N . We want to show that
limn→∞ Pr[f(ψns ) = σ∗s (1)] = 1. We establish this under each of the two conditions mentioned in
the second part of the theorem.

First, let assumptions A1 and A3 hold, and let f be a PD-c voting rule. Fix a state s ∈ S. Since P 1
i

and P 2
i are PD-α (assumption A3), Pi is PD-α2 due to Lemma 1. Thus, by definition we have that

for every agent i ∈ N , every alternative a ∈ As \ {σ∗s (1)}, and every j ∈ [ms − 1],

Pr [σ∗s (1) ∈ ψis([j])] ≥ Pr [a ∈ ψis([j])] + α2.

Recall that Tψns (a, j) denotes the number of times alternative a appears among first j positions in
ψns . Due to Kolmogorov’s strong law, we have that for all a ∈ As\{σ∗s (1)} and for all j ∈ [ms−1],

lim
n→∞

Pr
[
Tψns (σ∗s (1), j) ≤ Tψns (a, j)

]
= 0.
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Taking the union over a ∈ As \ {σ∗s (1)} and j ∈ [ms − 1], and applying the union bound, we
get that the probability that σ∗s (1) is not the position-dominating winner in ψns is zero in the limit
when n → ∞. Since this holds for each state s ∈ S, it holds in expectation over the state space
S. Moreover, the PD-c rule f always outputs the position-dominating winner (with probability 1)
whenever it exists. Hence, we have limn→∞ Pr[f(ψns ) = σ∗s (1)] = 1, as required.

The proof for Condorcet consistent rules is almost identical to the proof for PD-c rules. Let assump-
tions A1 and A4 hold, and let f be a Condorcet consistent voting rule. Fix a state s ∈ S. Since P 1

i
and P 2

i are PPM-α and PM-α respectively (assumption A4), Pi is PM-α2 due to Lemma 2. Thus,
by definition we have that for every agent i ∈ N and alternative a ∈ As \ {σ∗s (1)},

Pr [σ∗s (1) �ψis a] ≥ Pr [a �ψis σ∗s (1)] + α2.

Due to Kolmogorov’s strong law, a majority of votes in ψns would rank σ∗(1) above a with proba-
bility 1 as n → ∞, for every a ∈ As \ {σ∗s (1)}. Hence, in the limit, σ∗s (1) becomes the Condorcet
winner with probability 1. Since this holds for each state s ∈ S, it holds in expectation over the state
space S. Moreover, the Condorcet consistent voting rule f must output the Condorcet winner (with
probability 1) whenever it exists. Hence, once again we have limn→∞ Pr[f(ψns ) = σ∗s (1)] = 1, as
required. (Proof of Theorem 2)

While Theorem 2 is already quite general, it is possible to generalize it even further. We preferred to
present the simpler version for ease of exposition; but let us informally say that it is also possible to
handle the case where the ground truth is an objective true quality for each alternative (and then one
would rather know the expected quality of the chosen alternative), and the case where the number
of alternatives in each state is not fixed.

G Parametrized Agents

In Table 1 we present the parameters that were sampled to generate parametrized versions of Fuego.
For each random draw, we used a uniform random distribution, defined in the interval shown in the
column “Range”. Also, depending on the domain of each parameter, we sample integers or floating
point numbers. A detailed description of these parameters is available in the Fuego documentation,
at http://fuego.sourceforge.net/fuego-doc-1.1/.

H Additional Experimental Results

In this section we present further analysis of our experimental results. First we show that the original
Fuego is, indeed, stronger than the parametrized agents. Like in our experiments, we ran 1000 9× 9
Go games, with the system under evaluation playing as white, against the original Fuego playing as
black. In Figure 3 we can see the winning rate of Fuego and of each one of the parametrized agents.
The original Fuego is the strongest agent (with p < 0.01 for all but 3 agents), having a winning rate
close to 50%. The parametrized agents, on average, have a winning rate of 32.3% (std: 10.4%).

We also evaluate the diversity of a team of parametrized agents, by analyzing a sample of 10
parametrized agents. We use the metric proposed in [19], where diversity is defined as the aver-
age Hellinger Distance [11] between the probability density functions (PDFs) of all possible com-
binations of pairs of agents across different world states. We show three different results: Control
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Figure 3: Winning rate of Fuego and of the parametrized agents.
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Parameter Domain Range
uct param globalsearch mercy rule Integer [0,1]

uct param globalsearch territory statistics Integer [0,1]
uct param globalsearch length modification Float [0, 0.5]
uct param globalsearch score modification Float [0,0.5]

uct param player forced opening moves Integer [0,1]
uct param player reuse subtree Integer [0,1]
uct param player use root filter Integer [0,1]

uct param policy nakade heuristic Integer [0,1]
uct param policy fillboard tries Integer [0, 5]

uct param rootfilter check ladders Integer [0,1]
uct param search check float precision Integer [0,1]

uct param search prune full tree Integer [0,1]
uct param search rave Integer [0,1]

uct param search virtual loss Integer [0,1]
uct param search weight rave updates Integer [0,1]
uct param search bias term constant Float [0, 1.0]
uct param search expand threshold Integer [1,4]
uct param search first play urgency Integer [1,10000]

uct param search knowledge threshold Integer [0,10000]
uct param search number playouts Integer [1,3]
uct param search prune min count Integer [1,128]

uct param search randomize rave frequency Integer [0,200]
uct param search rave weight final Integer [1000,10000]

uct param search rave weight initial Integer [0,999]

Table 1: Parameters sampled to generate different versions of Fuego.

compares each agent with a second sample of itself, in order to measure the noise in our evaluation;
Parametrized Agents compares all possible pairs of parametrized agents, in order to estimate the
diversity of our team; and Independent Agents compares each parametrized agent with Pachi [4], an
independently developed Computer Go program. In order to perform the analysis, we estimate the
PDFs of Pachi and 10 agents from the diverse team, using 100 different board states. For each board
state we sample 100 moves for each agent. The results are shown in Figure 4(a). These results in-
dicate that the level of diversity is especially high when the parametrized agents are compared with
Pachi, suggesting that the current parametrization methodology falls short of creating an idealized
diverse team. That said, the methodology does lead to some diversity, as indicated by the statistically
significant difference between the Control bar and Parametrized Agents bar.

We also evaluate the level of diversity by testing whether there is a set of board states where all
parametrized agents have a low probability of playing the best action. Again, we evaluate a sample
of 10 agents from the diverse team. We first estimate the best move for each of 100 board states.
To this end, we use Fuego to evaluate the given board state, but with a time limit 50x higher than
the default one. Then, based on the previous estimated PDFs of the parametrized agents, we can
obtain the probability of each agent playing the optimal action. Finally, we calculate the proportion
of board states in which all parametrized agents play the best action with probability below a certain
threshold. The results are shown in Figure 4(b). It turns out that all parametrized agents play the
optimal action with probability smaller than 1/2 in 40% of the board states. Moreover, in 10% of
the board states, the probability of playing the optimal action is lower than 10%. Hence, there is still
a large set of board states in which all agents play badly, regardless of the parametrization.
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(a) Diversity of the parametrized agents, compared
with a second sample and with the diversity between
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Figure 4: Evaluation of the diversity of the parametrized agents, and the fraction of states in which
all of them have a low probability of playing the optimal action. The error bars show 99% confidence
intervals.
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