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Abstract

Recent work introduces approval with runoff voting, in which voters cast approval ballots, two finalists
are selected, and a runoff election is conducted between them to choose the final winner by majority voting.
While the more common plurality with runoff voting admits only one reasonable choice of the two finalists
(the two candidates with the most plurality votes), the use of approval ballots in the first stage opens up the
possibility of using many reasonable ways to choose the two finalists. What is the optimal way to choose
the two finalists?

In this work, we answer this question using the distortion framework, in which the performance of
every voting system is quantitatively measured by its worst-case social welfare approximation ratio, also
known as distortion. We prove that the best distortion achievable by approval voting with (majority)
runoff is ©(m?) with deterministic finalist selection and ®(m) with randomized finalist selection, where
is the number of candidates. This is actually worse than what simple approval voting without any runoff
achieves (©(m) and ©(y/m), respectively). We pinpoint the use of majority runoff in the second stage
as the culprit, propose a candidate proportional runoff system that declares each finalist the winner with
probability equal to the fraction of voters who prefer it, and analyze the extent to which it can help curb
the distortion.

1 Introduction

A widely used democratic process to aggregate voters’ preferences into a single winner is two-stage vot-
ing. In general a two-stage voting mechanism elicits some information about voters’ preferences over the
candidates and admit a subset of the candidates to the second stage where another round of information
elicitation through voting ballots is happening. Plurality with runoff is the most famous two-stage voting
mechanism. It is the most common method used all around the world to elect presidentsE] In this method
in the first round, each voter is asked for their top preferred candidate. If a candidate receives a simple
majority (more than half) of the votes he wins the election. Otherwise, two candidates with the highest
number of votes admit to the second round where a majority voting determines the final winner.

Having a runoff round is beneficial for several reasons. For instance, even if a voter’s top choice does not
have a chance to be the winner, his vote still counts and might effect the outcome of the election. In addition,
there is a room for debates between the two rounds, and voters can deliberate on their decision. Another
thing that makes voting rules with runoff interesting is that the final winner will have the support of the
majority of the voters. However, plurality with runoff has several downsides that has been exhaustively
studied in the literature [13]]. In this regard, Delemazure et al. [13] raised the following question:

“... is it possible to keep the nice benefit of the two-round protocol without having to bear all the drawbacks
of plurality at the first round?”

IPlurality with runoff is used in 83 countries, while only 22 countries use the single-stage plurality. See
https:/ /en.wikipedia.org/wiki/Two-round_system.


https://en.wikipedia.org/wiki/Two-round_system

With uni-nominal ballots, we are limited to choosing the two candidates with the highest plurality
scores as the finalists. Therefore, if we want to give a positive answer to the above question we have to use
a different ballot design. To this end, Delemazure et al. [13] suggest approval ballots for the first round.

Approval with runoff voting rules are not only theoretically interesting, but also they have been used in
practice. In 2021, the mayoral election of St. Louis (Missouri, US) used this rule. In the first round, 44,571
voters cast approval votes for four candidates. The two candidates with the highest number of approvals
admitted to the second round, and the (uni-nominal) vote of 58,237 voters determined the final winner of
the election.

Using approval ballots in the first round enables the voting mechanism to apply a wider range of rules to
admit two candidates to the runoff round [13]. This raises the following question: what is the optimal way of
selecting the two finalists? Delemazure et al. [13] study this question by comparing various rules designed
for approval-based committee selection (in short, ABC rules), using an axiomatic approach. However, they
do not specifically discuss the quality of the final winner of the election.

Our goal is to compare different approval based voting rules with a quantitative approach. To achieve
this goal we analyze the class of approval voting rules with runoff in the implicit utilitarian framework in-
troduced by Procaccia and Rosenschein [25]. This framework postulates that voters have cardinal utilities
for the candidates and the vote that each voter submits,stems from his utilities. That means if the voting
ballot asks a voter for his ranking over the candidates the assumption of the utilitarian framework is that he
ranks the candidates in the descending order of his utility for them. Similarly, with the approval ballots we
assume that each voter only approves the candidates for which he has utility higher than a threshold. Our
assumption is that all the voters use the same threshold, but for voters to have different thresholds is also a
valid scenario. However, the latter, more general setting, does not admit any desirable distortion. Another
interpretation of our setting is that the election designer decides on the threshold and asks the voters to
submit their approval ballots considering this threshold.

In this framework the social welfare of a candidate is defined as the sum of the utilities of all the voters
for her, and the optimal candidate is considered to be the one with the highest social welfare. The goal of a
voting rule is to minimize the worst-case ratio between the maximum possible social welfare to the social
welfare of it's outcome. This quantitative measure is called distortion. In approval voting with runoff, we
seek pair-selection rules that, when followed by a majority runoff, achieve low distortion.

To capture the effect of the majority runoff on the quality of the selected winner, we investigate two other
settings of (1) approval voting without runoff and (2) approval voting with proportional runoff. The former is
the standard single-stage approval voting in which the winner is selected only based on the approval votes.
In the latter, instead of deterministically selecting the voter with the higher number of votes, the rule selects
each voter with a probability proportional to the number of the voters that select him in the runoff round.
use a randomized rule two select the winner between the two finalists; each being selected with probability
proportional to their votes. We find optimal distortion values in almost all of the three settings for both
deterministic and randomized rules.

1.1 Owur Results

We consider a voting setting with n voters and m candidates. Each voter has a utility for each candidate and
following the literature [4] utilities of a voter for different candidates sums up to 1. We assume that each
voter casts his approval ballot considering threshold 7 € [0, 1]. This value is either selected by the election
designer or is obvious from the context of the election.

We begin by analyzing the single-stage approval voting (without runoff), which we use as a benchmark
to compare with the distortion values in the other with-runoff settings. We achieve (asymptotically) tight
bounds on distortion for all values of T € [0,1]. For deterministic rules and for any 7 € [0,1], we can
achieve optimal distortion by selecting the candidate with the highest number of approvals. We show that,
among all possible thresholds, T = 1 gives us the optimal distortion which is @ (). For randomized rules,

we can achieve better distortion bounds. The optimal distortion value is ®(y/m) which is achievable at
-1
T= T



Table 1: Summary of results for the optimal distortion values of approval voting with different runoff
scenarios. All upper bound results use the threshold T = %, except for the case of randomized rules with
no runoffs which uses T = -

No Runofs Majority Proportional

Deterministic @ (m) O(m?)  O(m)
Randomized ©(y/m) O(m) O(m), Q(m°)

Next, we turn to approval voting with majority runoff. In this case for deterministic rules, we show
that by admitting the two candidates with the highest number of approvals to the runoff, we can achieve
optimal distortion for all values of T € [0,1]. However, in comparison to the without runoff version,
distortion increases by a factor of m for all values of T. In this setting, among all thresholds, T = - gives us
the optimal distortion of @(m?). Moreover, for randomized rules, the optimal distortion increases to @ ().
We pinpoint the use of majority runoff as the culprit.

To curb distortion in two-stage approval voting, we propose and analyze approval voting with propor-
tional runoff. We find that by choosing the two candidates with highest number of approvals (the rule that
is optimal for the voting with majority runoff) we can get back to ©(m) distortion. This improvement also
holds for all values of T. However, for randomized rules, we show that we cannot decrease the distortion
to O(y/m) as any rule incurs Q(m°®) distortion.

Finally, we conduct simulations based on synthetic data, and real-world datasets of ranked prefer-
ences [23]. We evaluate the empirical performance of several ABC rules by measuring their average-case
approximation-ratio of the maximum social welfare.

2 Related Work

This work extends the notion of distortion in the utilitarian framework [25], which has been extensively
studied over the past decade. Caragiannis and Procaccia [12] show that the distortion of the plurality rule
is O(m?). This bound was later proven to be the best possible among the deterministic ordinal voting rules
[11]. Boutilier et al. [9] prove a lower bound of Q)(y/m) on the distortion of any randomized voting rule.
They also present a voting rule with distortion of O(y/mlog” m). Recently, Ebadian et al. [14] closed this
gap by proposing the stable lottery rule which achieves ©(y/m) distortion. Borodin et al. [8] extend this result
for the case that we only have access to the top- preferred candidates of each voter.

There is also a large body of literature on the metric distortion, where voters and candidates are assumed
to be embedded in a metric space [1} 2]]. In this setting the distortion of any deterministic rule is known to
be at least 3, and it has been proved recently that this distortion is achievable [19] 21].

In addition there are several works that consider a specific setting and give bounds on the distortion or
design algorithms with good distortion in that setting [15}[18} 16} [17]. One of these works which considers a
setting close to ours is the work of Pierczyniski and Skowron [24] that talks about the distortion of approval
voting in the metric setting.

Another line of research that our work is build on is approval voting. Voting with approval ballots has
gained a lot of attention in the past decade [20, 13 [10, 22]. This type of voting ballots is useful in different
settings, for instance Benade et al. [6] consider the distortion of threshold approval votes in participatory
budgeting. Moreover, the approval voting with runoff rule which we are investigating was introduced by
Sanver [26] and further investigated by Delemazure et al. [13].



3 Preliminaries

For t € N, define [t] = {1,2,...,t}, and for a finite set S, define A(S) to be the set of all probability
distributions over S.

A single-winner election consists of a set N = [n] of n voters, and a set C = {cy,¢,...,cn} of m
candidates. We assume that each voter i € N has a utility function u; : C — IRy( over the candidates,
where u;(c) is her utility for candidate c. For x € A(C) we define u;(x) = Ecx[u;(c)]. Following the
literature [5], we work with unit-sum utility functions, where Y .. u;(c) = 1 for each i € N.

Let ii = (uy,up,...,u,) be the utility profile. Define the social welfare of a candidate ¢ € C to be
SW(c,il) = Y ;en ti(c). The goal of the election is to select a candidate with the maximum social welfare.
The challenge is that we do not have access to the utilities, and eliciting them directly would place undue
cognitive burden on the voters. Hence, the election designer designs a voting system, which operates in
one or more sequential stages. In each stage, a voting ballot elicits some partial information about voter
utilities, and the design of the ballot may depend on the information collected in previous stages.

We are primarily interested in two voting systems: (single-stage) approval voting and (two-stage) ap-
proval voting with runoff.

3.1 Approval Voting

Single-stage approval voting is conducted using approval ballots, where each voter approves an unranked
subset of the candidates. We model this using a threshold T € [0, 1] such that each voter approves all the
candidates for which she has utility at least 7. When 7 is explicitly set by the designer, these is known as
threshold approval voting [7], but this can also be used as a model for the voters converting utility functions
to approval votes. We refer to such ballots as T-approval ballots.

Let 8; C C be the approval vote of voter i, and 77 = (81,8, ...,8,) be the approval profile. A (random-
ized) approval voting rule f : (2°) " — A(C) maps an approval profile to a distribution over the candidates.
We say that f is deterministic if it always output a distribution with singleton support.

3.2 Approval Voting with Runoff

Approval voting with runoff is a two-stage election system. In the first stage, a pair of candidates are se-
lected as finalists based on approval ballots submitted by the voters, and in the second stage, an election
(called a runoff) is conducted between the two finalists, where each voter specifies whom she prefers more
and a runoff rule is used to select the winner. To ensure that voters break ties between equal-utility final-
ists consistently in the runoff election, we assume that each voter i has a ranking ce; : [m] — C, where
0e;(f) refers to the j-th most preferred candidate of voter i, that is consistent with her utility function, i.e.,
u;(ce;(j)) = ui(ce;(j')) for all j < j'. In the runoff election between any two finalists, each voter i votes for
the one who is higher up in her ranking ce;. Let & = (ce1, 0ep, . . ., 0e,) denote the profile of these rankings.

Formally, in the first stage, a (randomized) approval-based pair-selection rule f; : (2€)" — A (C?) takes
as input an approval profile and returns a distribution over pairs of candidates. In the second stage, a
runoff is conducted between a pair of candidates (finalists) sampled from this distribution. For notational
simplicity, we say that a runoff rule f, takes as input the distribution over pairs of candidates from the
first stage f1(77) and the ranking profile & and returns a distribution over the candidates. Together, we can
denote an entire system of approval voting with runoff as a voting rule fj o (7T, ®) = f2(f1(7), ). In this
work consider two runoff rules:

® Majority Runoff (maj). This is the canonical runoff method, in which, once a pair of finalists is sampled
from the distribution returned in the first stage, the finalist preferred by a majority of the voters is
selected as the winner (deterministically)E]

%In case of a tie, where each finalist is preferred by exactly half of the voters, either can be selected as the winner and our proofs
continue to work.



e Proportional Runoff (prop). This is a novel runoff method that we introduce and study, in which, once a
pair of finalists is sampled from the distribution returned in the first stage, each finalist is selected with
probability equal to the fraction of voters who prefer it. Note that unlike majority runoff, proportional
runoff uses randomization to select the winner among the two finalists.

3.3 Distortion in Approval Voting

As stated earlier, our goal is to select a candidate with high social welfare. Since the voting systems defined
above have access to only partial information about voter utilities, we use the notion of distortion proposed
by Procaccia and Rosenschein [25] to quantify how well a voting rule f maximizes social welfare.

Define the distortion of a distribution over candidates x € A(C) on a utility profile i as:

(s 1) = e S

For a single-stage approval voting rule f, define its distortion for utility profile if with respect to thresh-
old T as distc(f,i#) = dist(f(7), ), where 7 is the approval profile induced by utility profile i under
threshold 7. The (overall) distortion of f with respect to 7 is dist¢(f) = sup;; dist(f, ).

For a pair selection rule f; and runoff rule f, € {maj, prop} in two-stage approval voting with runoff,
define its distortion for a consistent pair of utility profile i and ranking profile ¢ with respect to threshold T
as distc(f2 0 f1,i, @) = dist(fp o f1(7T, @), if), where 7 is again the approval profile induced by utility profile
il under threshold 7. The (overall) distortion of f with respect to T is distc(f2 © f1) = sup () distc(f2 o
f1,1i,8), where the supremum is over consistent pairs of utility profiles and ranking profiles.

4 Approval Voting

We begin with an analysis of the simpler (single-stage) approval voting, which we use as a benchmark to
compare to in our analysis of approval voting with runoff in the next section.

4.1 Deterministic Rules

First, we analyze the case where we want to select a winner deterministically based on t-approval ballots.
The next result shows that when 7 is too large, none of the voters might approve any candidate, and a deter-
ministic winner selected without any information about voter utilities might incur unbounded distortion.

_1
m—1’

Theorem 1. For T > any deterministic rule with T-approval ballots incurs unbounded distortion.

Proof. Suppose none of the voters approve any candidate and a deterministic voting rule selects candidate

¢ as the winner. We construct the underlying utility profile i in which every voter i has utility u;(c’) = ﬁ
for every candidate ¢’ # ¢, and u;(c) = 0. Note that this is consistent with empty T-approval ballots for
T > —Lo. In this case, SW(c, i) = 0 whereas SW(c’,if) = -5 > 0 for any other candidate ¢/, resulting in
unbounded distortion. O

Note that when T < 1, every voter must approve at least one candidate, as max u;(c) > L ¥ u;(c) =

%. Hence, the pessimistic scenario above, in which none of the voters approving any candidate, can no
longer arise. The following result shows an upper bound we can place on the distortion in this case, using
the most straightforward voting rule that selects the most approved candidate as the winner. We later show
that this is optimal up to a constant factor.

Theorem 2. For T < %, selecting the most approved candidate based on T-approval ballots achieves a distortion of
at most % +m—1



Proof. Let i be a utility profile and 7 be the induced t-approval profile. Let ¢ be the most approved can-
didate with g approvals. Then, SW(c, i) > q - T. Since voter utilities are unit-sum and 7 < %, each voter
approves at least one candidate. Hence, g > %.

Let c* be an optimal candidate with the maximum social welfare under ii. Then, SW(c*, i) < g-1+
(n —q) - T, since at most g voters who approve c* can have utility at most 1 for it and the rest have utility
less than 7 for it. Thus, the distortion is bounded by

q+(n_q)T<%+

—1<1+m—1,
q-T T

ESHIN

where, in the last inequality, we used the fact that g > O

n
.

We now prove that this upper bound is tight for deterministic rules up to a constant factor. Note that
fort<1l/mandm >2,1/7—1>(1/3)(1/t+m—1).

Theorem 3. Form > 3and T < —ml_l, any deterministic rule with T-approval ballots incurs a distortion of at least
1
- —L
T

Proof. Suppose that for each i € [m], there are n/m voters who approve candidates ¢; and C(i mod m)+1-
Every voter has utility 1 — 7 for their top choice, T for their second choice, and 0 for the rest.

Let ¢ be the candidate selected by a deterministic rule. Let the 2n/m voters approving ¢ have utility
T for ¢ and utility 1 — 7 for their other approved candidate. Pick any candidate c¢* # ¢, and let the 2n/m
voters approving c* have utility 1 — 7 for c* and 7 for their other approved candidate.

Under this utility profile i, SW(c,if) = T -2n/m whereas SW(c*,ii) = (1 — 1) -2n/m. Hence, the
distortion is at least

(1—T)~2n/m:l_1. 0
T-2n/m T

We conclude by noting the distortion achievable by deterministic rules in single-stage approval voting

(along with the optimal choice of T) based on the above results.

Corollary 1. For deterministic rules with T-approval ballots, the optimal distortion is @ (m), which can be achieved
by at T = L by selecting the most approved candidate.

Proof. By Theorem distortion is unbounded when T > ﬁ, and for T < 5=, we know from Theorem

that distortion is lower bounded by % — 1, which is minimized at T = ﬁ Hence, distortion is at least

m — 2. Furthermore, Theorem [2[ shows that at T = %, selecting the most approved candidate achieves
a distortion of at most 2m — 1. Therefore, the optimal distortion value is ®(m) and can be achieved at

m

4.2 Randomized Rules

Next, we turn to randomized rules for single-stage approval voting. Recall that when T > ﬁ, determin-

istic rules incur unbounded distortion due to the possibility of none of the voters approving any candidate.
In contrast, we show that with randomized rules, better distortion bounds can be achieved precisely by us-
ing such high values of T. Our starting point is the simple observation that selecting a candidate uniformly
at random already achieves a distortion of m regardless of T and the approval profile because the optimal
candidate is selected with a probability of . We show that mixing uniformly random selection with the
deterministic strategy of selecting the most approved candidate achieves a significantly better distortion,
as low as O(y/m) when T = 1//m.

Theorem 4. For T € [, 1], given T-approval ballots, the randomized rule f that,

1. with probability 1/2, returns the most approved candidate, and



2. with probability 1/2, returns a candidate uniformly at random,
achieves a distortion of at most 2(% + mr).

Proof. Consider any utility profile if and induced T-approval profile 7. Let c be the most approved candi-
date with g approvals. Hence, SW(c, i) > gt. It is easy to see that uniformly random selection achieves
an expected social welfare of L. Hence, the expected social welfare under f is SW(f(7),i) > % (g7 + ).
Let c* be an optimal candidate with the maximum social welfare. Note that each of at most g voters who
approve c* has utility at most 1 for it, while the rest have utility at most 7 for it. Hence, SW(c*, i) <
q-1+ (n—q)t. Therefore,
: g+ (n—q)t 1

diste(f) < 5 ot ) éZ(;—i—mr). O

By setting T = im, the theorem above yields a distortion of O(y/m), which improves upon the best
distortion attainable with deterministic rules.

It is worth mentioning that while using uniformly random selection with 1/2 probability may seem un-
justifiable, changing the 1/2 to any (ever so small) constant probability retains the distortion guarantees of
Theorem ] asymptotically. Furthermore, if all voters prefer one candidate to another, shifting any probabil-
ity mass placed on the latter (Pareto dominated) candidate to the former can only improve distortion.

Now, we show the tightness of the bounds given in Theorem@

Theorem 5. Any randomized rule with T-approval ballots incurs a distortion of at least %5 for T < ﬁ and %(% +
mt) for T > ﬁ

Proof. First, we prove the result for T > 1/+/m. In this case, since 1/t < mT, it is sufficient to prove a lower
bound of %ml’.

Consider an approval profile 77 in which for each i € [m], there are n/m voters approve only candidate
c;. Let f be any randomized rule. There must exist a candidate c that is selected under f(77) with probability
at most . Now, consider a consistent utility profile i, in which the n/m voters approving ¢ have utility
1 for it and 0 for every other candidate; while every other voter has utility 7 for her approved candidate,
T/2 for ¢, and 1 — 37/2 divided equally between the remaining candidates. In this case, SW(c, i) > nt/2,
whereas SW(c’, i) < n/(m — 1) for every ¢’ # c because a total utility of at most n is divided equally
between the remaining candidates due to symmetry. Hence,

. SWi(c, il
dist¢(f) > : - (c, ) N~
Lswie i+ (1= 1) 5y
zZ 4 — ! 5 2(m—1)r21mr.
1 4
m (m-1)t

Next, we consider im >T> ﬁ Here, since 1/t > mr, it is sufficient to prove a lower bound of %.
Consider an approval profile 7 in which every voter approves the set of candidates Ar = {1,2,...,[2£]}.
Let c be the candidate among A: that is selected with probability at most |AlT\ < 2t under f(77). Consider a
consistent utility profile i in which every voter has utility T for every candidate in A; \ {c} (this is less than
1/2 in total), and the remaining utility of at least 1/2 for c¢. Hence, SW(c, i) > n/2; forall ¢ € A\ {c},
SW(c',if) = nt; and, the social welfare of every other candidate is 0. Since ¢ is selected with probability at
most 27 by f,

SlN(c,u) S 1 > i
c,il)+(1—2t)-nt~ 2T+27 ~ 471

diste(f) 2 35wy

At T = ﬁ, the lower bound is equal to 7. In the adversarial profile, every voter approves all the

candidates, and has utility % + ﬁ for her top choice and ﬁ for every other candidate. It is easy to see that
this lower bound, via the same example, continues to hold even when 7 < ﬁ O



We conclude by noting the optimal distortion attainable using randomized rules, which follows from
Theorems@]and

Corollary 2. For randomized rules with t-approval ballots, the optimal distortion value is ©(y/m), which is achiev-

ableat T = L.

N

5 Approval Voting with Majority Runoff

In this section, we show how the distortion worsens (i.e., increases) for both deterministic and randomized
rules when a majority runoff is added to the process.

It is worth remarking that additional information is gained during the runoff stage, which cannot nec-
essarily be known from the approval ballots in the first stage. One might wonder whether this additional
information can help select a better candidate; we prove that this is not true, at least in the worst case. The
reason is that the imposition of majority runoff constrains the process; e.g., a Condorcet loser — a candidate
preferred to any other candidate by only a minority of voters — can never be selected as the final winner.
The following example shows that this already incurs a distortion of Q(m).

Example 1 (Valuable Condorcet Loser). Consider the example in Table [2} in which 5 — 1 voters have a
utility of 1 for candidate cq, while the other % + 1 voters have zero utility for c;.

Voter ui(cr) ui(c),ve # ¢
ief{l,...,n2-1} 1 0
ie{n/2,...,n} 0 1/(m-1)

Table 2: Utility profile of an instance where the Condorcet loser c; has high social welfare compared to
others.

Under this utility profile i, the social welfare of ¢y is SW(cy, i) = 5 — 1, whereas SW(d, i) = "r{f%]l for
every ¢’ # c1. However, c; is the Condorcet loser because 4 + 1 voters prefer every other candidate to ¢y, so
it must be selected with zero probability under approval voting with majority runoff. Hence, the distortion
of any (even randomized) rule is at least m = Q(m).

We have shown the following.

Theorem 6. In approval voting with majority runoff, any (even randomized) rule incurs a distortion of Q)(m), even
if the rule is given access to exact voter utilities.

In the rest of the section, we show that the optimal distortion for deterministic rules is actually worse
(®(m?)), while this lower bound is tight for randomized rules. In both cases, the optimal distortion is
1

achieved at T = ., in contrast to the case of no runoff.

5.1 Deterministic Rules

Similar to Theorem [I}, we argue that using a large value of T can lead to high distortion for deterministic
rules, as voters may not approve any candidates. Due to space limits, we defer the proof to Appendix

Theorem 7. In approval voting with majority runoff, for T > ﬁ, any deterministic rule incurs an unbounded
distortion.

In contrast, when 7 < %, each voter approves at least one candidate. A reasonable rule in this case
returns the two candidates with the highest numbers of approvals, breaking ties arbitrarily. We analyze the
distortion of this rule in the following lemma, and later prove that this is optimal up to a constant factor.



Theorem 8. In approval voting with majority runoff, for T < -, selecting the two candidates with the highest
numbers of approvals achieves a distortion of at most 2?’"

Proof. Consider any instance with utility profile i and approval profile /7. Let ¢; and ¢ be the two most
approved candidates with g1 and go approvals, respectively, with q; > g». If ¢; wins the runoff, then by
Theoremdistortion is bounded by % + m — 1 which is better than the sought 27’” bound.

Next, suppose c; wins the runoff. Note that c; must be preferred to c; by at least 5 voters. Further, each
such voter approves at least her most preferred candidate (which is not ¢1) due to T < % Hence, candidates

in C\ {¢1} have a total of at least 5 approvals. Since ¢, has the highest number of approvals among such
candidates, q; > % > 5. Thus, SW(cp, i) > 5T. Furthermore, as SW(c,il) < n — SW(cp, i) for any
candidate ¢ # ¢y, we have that the distortion of f is at most

n—SW(czﬁ,u)< n _1:2ﬁ_ ' 0
SW(cy, if) nt/(2m) T

To show the optimality of the distortion bound proven above, we can utilize Example[I|and the example
presented in Theorem [8| The idea is to have a Condorcet loser that is the top rank of 5 — 1 voters with
utility of 1, which cannot win the election. The approval profile of the rest of the agents is as constructed
in Theorem 3} In Theorem [3} we show the winner has a social welfare of at most ;. - 7. The social welfare

of the Condorcet loser in this new example is 5 — 1. Therefore, we obtain a distortion lower bound of

21 5= — 1. We defer the complete proof of Theorem@to Appendix

"/m‘T

Theorem 9. For T < ﬁ, in approval voting with majority runoff, any deterministic rule incurs a distortion of at
least J- — 1.
27

We conclude by noting the distortion achievable by deterministic rules in approval voting with majority
runoff (along with the optimal choice of 7) based on the above results (Theorems [ﬂ to E])

Corollary 3. In approval voting with majority runoff, the optimal distortion value for deterministic rules is @ (m?)

which can be achieved at T = %

5.2 Randomized Rules

Next, we turn to randomized rules for approval voting with majority runoff. Recall that Theorem [p| shows
a distortion better than O(m) is infeasible, even with randomization. We present an upper bound of O(m)
that shows the optimal distortion value for randomized rules is ®(m). Moreover, similar to the case of
deterministic rules, the outcome of adding a majority runoff to approval voting is an increase in distortion
of randomized rules from @(y/m) to @(m).

The following is a technical lemma showing an upper bound on the social welfare of a Condorcet loser
(if existent), which is useful for proving our upper bound. The proof is provided in Appendix

Lemma 1. If a candidate c is the Condorcet loser in an instance, then SW(c) < § + 5.

Now, we are ready to present the randomized rule that achieves the optimal distortion when a majority
runoff is used. The idea is to always include the most approved candidate as a finalist, and for the second
finalist, we show that mixing uniformly random selection with the deterministic strategy of selecting the

second most approved candidate, achieves a distortion of O(m) at T = 1. Due to space limits, we defer the

proof to Appendix "

Theorem 10. For T = %, let ¢1 and cy be the two candidates with highest number of approvals, then the randomized
rule f that

1. with probability 1/2, selects (c1, cp) as finalists,



2. and with probability 1/2, selects the pair (c1, ") with a random candidate ¢’ € C\ {c1, c2} as finalists,
achieves a distortion of at most 4m.

We conclude by noting the optimal distortion attainable using randomized rules in approval voting
with majority runoff.

Corollary 4. In approval voting with majority runoff, the optimal distortion value of randomized rules is ©(m)
which can be achievable at T = ﬁ

6 Approval Voting with Proportional Runoff

In the prior sections, we analyze distortion of approval voting with and without majority runoff. We ob-
serve that addition of majority runoff increases distortion for both deterministic and randomize rules. To
find a middle-ground and curb distortion, we propose and analyze using another runoff method, propor-
tional runoff.

6.1 Deterministic Rules

We show that by using proportional runoff in approval voting can decrease the distortion of deterministic
rules to @(m) compared to the distortion of @(m?) when majority runoff is used.

Theorem [7|shows that for T > -1, there exists an example such that the pair of candidates picked by
any deterministic pair selection have zero social welfare and, hence, unbounded distortion.

1

——, any deterministic rule incurs

Corollary 5 (Theorem . In approval voting with proportional runoff, for T >
unbounded distortion.

Recall that when T < %, every voter must approve at least one candidate. The following result analyzes
the pair selection that elects the two most approved alternatives as finalists (breaking tie arbitrarily). We
later prove that this is optimal up to a constant factor. In Theorem [§, we show that the same method
achieves the optimal distortion with majority runoff.

Theorem 11. In approval voting with proportional runoff, for T < %, selecting the two candidates with the highest
number of approvals achieves a distortion of at most 8(% + m).

Proof. Consider any instance with utility profile i and approval profile 77. Suppose ¢ and c; are the two
most approved candidates with g, and g, approvals respectively. If the majority of voters prefer c; to cy,
then c; is selected with probability at least 1/2, and, by Theorem distortion is bounded by 2 - (% +m—1).

Otherwise, c; wins the pairwise comparison and is selected with probability at least 1/2.

Among the g; voters who approve ¢, either half of them have ¢; > ¢, and Pr[c;] > qlni, or at least

half of them have c; > ¢ and approve both c; and ¢;. In the latter, g, > '771 Therefore, with probability at
least 1/2, we select a candidate with % (half of the maximum) approvals. Following the proof of Theorem

distortion would be bounded by 4 - (% + m — 1). The only remaining case, is when Pr[c;] > %

* Case c¢* = cy. Then, from q; > 7, we have Pr[c;] = Pr[c*] > mn/ 2> ». Hence, distortion is bounded
by 2m.

e Case c* # c1. Then, ¢* has at most g, approvals, and

E[SW(prop o f,0)] > (Prlea] -1 + Prlea] -q2) - T
11 I n—q

> (4 S PO

/(Zn nto T, >T
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If 1 > \/%, we have L4 > 5. Otherwise, as \/72‘7” < % (holds for m > 2), we have "%1 >

n

Hence, E[SW (prop o f,ii)] > 45, - T. This bound combined with E[SW(f)]

n
= TR
> Prlcy] - 27 results in

- 1 n
E[SW(propo f,ii)] > > (Pr[cz} 2T -T) .
Furthermore, SW(c*, i) < g2 + (n — q2)7 (approvals with utility 1 and non-approvals with utility at
most T). Therefore, distortion is bounded by
SW(c*, i) e Gt (n—q2)T
E[SW(propo f,i)] = 1 (Pr[ca] - got + {-7)

1
gz.lqzmgg(m)_ g
20T+ 2T T

We now prove that this upper bound is tight for deterministic rules up to a constant factor. Note that
for T < %, % +m < % As the lower bound construction is similar to Theorem [3| we defer the proof to

Appendix
Theorem 12. In approval voting with proportional runoff, for T < —L, any deterministic incurs a distortion of at
least % (% — )

We conclude by noting the optimal distortion for deterministic rules with proportional runoff.

Corollary 6. In approval voting with proportional runoff, the optimal distortion value for deterministic rules is

@(m) which can be achieved at T = L.

6.2 Randomized Rules

Now, we turn to randomized rules in approval voting with proportional runoff. The improvement in dis-
tortion of deterministic rules with proportional runoff compared to majority runoff, hints that distortion of
randomized rules should also improve from ®(m) when majority runoff is used. While we were unsuc-
cessful in finding upper bounds better than O(m), we prove that distortion in this setting is w(+/m); more
specifically, we prove that it is Q(m®®), and we leave this gap in the optimal distortion value (between
Q(m®®) and O(m)), as an open problem.

The following observation helps to apply some known results in previous settings to the setting with
proportional runoff.

Proposition 1. Let f be a pair selection rule. Then, for all T € [0,1] and m, we have  dist,(m) < dist;(propo f) <
2 - distr(majo f) where distr(m) = min dist(f') is the optimal distortion of all randomized approval voting rules.

Proof. As proportional runoff selects the majority winner by a probability of at least % (at least 7/2 voters
prefer the majority winner), E[SW(prop o )] > E[1 SW(maj o f)], which yields the second inequality.

The first inequality follows from the fact that E[SW(prop o f)] < E(, ,)~f[SW(c1) + SW(c2)] = 2~
E..¢[SW(c)], where the last term is an expectation with marginal probabilities that ¢ appears in the pair
returned by f. This is similar to drawing two candidates from a single-stage voting rule. Thus, any lower
bound on distortion of single-stage approval voting, holds for approval voting with runoff by an additional
factor of 1/2. O

By the above observation the prior bounds on the distortion of approval voting with or without majority
runoff, we conclude the following bounds for the setting with proportional runoff.

Corollary 7. In approval voting with proportional runoff, T = L, there exists a randomized rule that achieves

distortion of O(m). Furthermore, any randomized rule incurs a distortion of

11



e Q(m) for T < %
o and Q(L +mt) forv > L.

Proof. By Proposition [1} the upper bound follows from Theorem [10] and the lower bound follows from
Theorem[5l O

So far, we have shown that distortion is Q(y/m). In Theorem we show a better lower bound for
range of values of T specifically for the setting with proportional runoff. Due to space limits, we defer the

proof to Appendix

Theorem 13. In approval voting with proportional runoff, for T € [%, 1], any randomized rule incurs a distortion
of at least Q( min{m, (mt)3/2}).

Fort > im, Corollary [7]shows a lower bound of Q(mt) which is outperformed by Q((m7)3/2) upper
bound in Théorem (13} For 7 € (2, ﬁ], Corollary[7]shows a lower bound of Q) 1) while Theorem 13]shows
a Q((mt)3/2). The former is a decreasing function as T increases and the latter is an increasing function.

By combining the two, we get a lower bound of max{2, (m7)3/2} which is minimized at 1 = (m7)3/2, i.e,,
T= (%)3/5. Thus, we get a lower bound of Q(m%¢) for distortion in this setting.

Corollary 8. In approval voting with proportional runoff, the optimal distortion value for randomized rules is in the
range of [O(m), Q(m®®)]. The upper bound of O(m) is achievable at T = .

7 Experiments

In this section, we evaluate the empirical performance of several rules in approval voting with or without
runoff. We measure the average-case approximation-ratio between the social welfare achieved by these
rules and the optimal social welfare over synthetic and real-world datasets.

Rules. For two-stage rules, we investigate pair selection rules introduced by Delemazure et al. [13]. Each
rule in this class selects a pair {c,¢’} of the candidates maximizing Sz(c) + Sz(c) — aSz(c,¢’) for some
a € [0,1] where Sz(c) is the number of the candidates that approve c. This class is named a — AV rules.
We use three rules from this class: MAV (a« = 0), PAV (¢« = 1/2), and CCAV(x = 1). We also consider the
sequential versions of these rules where the first selected candidate is the most approved candidate and the
second candidate is selected to maximize the desired objective given a fixed first candidate. The sequential
version of MAV is the same as MAV, but for PAV and CCAV we name their sequential version SPAV and
SCCAYV respectively. We use both each of the rules defined in composition with majority and proportional
runoff. We also consider three single stage rules. One deterministic rule: most approved candidate (MAC),
and two randomized rules: (1) proportional to approval score (PAS) and (2) with probability 1/2 most
approved candidate, with 1/2 uniform (HMHU). In total we have 13 different rules.

7.1 Synthetic Data

Data Generation. We use n = 200 voters. For an instance with m candidates, we create an approval profile as
follows. We first generate m random permutations over the alternatives. For each voter, draw one of these
permutations as her preference ranking, and draw a utility vector ii.d. from a Dirichlet distribution with
m concentration parameters all set to 1, i.e. Dir(1,...,1), and assign utilities of the drawn vector according
to the preference ranking. We generate the approval votes based on 7. For each m € {5,10,15...,100} and
T € {0,0.01,0.02,...,0.1,0.15,0.2,...,1}, we report the average welfare ratio achieved by the rules over
1000 generated instances. The error bars show the standard error.

Results. In Figures[I|and [p|in Section[7.T|we observe that the average distortion of &« — AV rules has little
dependence on whether we choose the two finalists by maximizing the objective globally or sequentially.
We can also see that using majority runoff almost always gives us a better welfare ratio. However, only

12



for larger values of 7, there is a considerable gap between the rules with majority runoff and rules with
proportional runoff. Furthermore, for small values of T, a single-stage rule gives us lower social welfare
(higher distortion), but for larger values of 7 it is better than proportional runoff. However, majority runoff
performs better on these instances.

For a specific m the distortion decreases up to some T and then starts to increase. In Figure[fin Section[7]]
we can see that for different values of m the minimum distortion happens at different 7. The question is
that, what is the optimal value of T for each m. We answer this question with Figure 2| where you can see
that the best 7 is asymptotically 2/m for all the rules except PSA. We can see the distortion of different
rules with this 7 in Figure[7}

Welfare Ratio

0.5 1

0.4 1

0.3 1

Tau

0.2 1

0.1 A

0.0 - T T T T T
20 40 60 80 100

Figure 2: The value of T that gives the best distortion for different voting rules.
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7.2 PrefLib Data

We run our experiment on 134 different real world data from PrefLib [23]. Each instance gives us the
number of the candidates and the ranking of the voters over them. For each voter we generate a utility
function uniformly drawn from the m-simplex, and change the order of the utilities to make it consistent
with the preference ranking. Based on these utilities and with T = 2/m we generate the approval votes and
run our rules. The welfare ratio of some of the rules on this data for different values of m is presented in
Figure[8] We exclude values of m for which less than 3 instances are available in the dataset.

Welfare Ratio

3 4 18 20 23 24 67 103 115 240 242
(101) (109) (6) (5) (7) @) @ 4 @ @ (4)
m
(Number of instances with this m)

Figure 3: The welfare ratio of different instances from PrefLib SOC data with T = 2/m.

8 discussion

We studied the class of approval with runoff rules based in the utilitarian distortion framework. We show
that, compared to the single-stage setting, distortion increases substantially when a majority runoff is used
in the second round. We proposed the randomized proportional runoff system, and showed that for deter-
ministic rules, it keeps distortion as low as it is in the single-stage setting. However, for randomized rules,
we leave the optimal distortion value of approval voting with proportional runoff as an open question.
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A Missing Proofs

A.1 Proof of Theorem[7

Proof. Consider a T-approval profile 77 in which none of the voters approve any candidates. Without loss of
generality, suppose a deterministic rule selects ¢ and ¢ as finalists. Regardless of the outcome of the runoff
election, consider a consistent utility profile i in which every voter has utility 15 for every candidate

except ¢1 and ¢y, and zero utility for c; and ¢;. Note that this is consistent with 77 due to T > ﬁ Hence,
SW(cy,il) = SW(cp, if) = 0, meaning that the social welfare of the final winner is zero regardless of the
outcome of the runoff election. In contrast, every other candidate have a positive social welfare, yielding
unbounded distortion. O

A.2 Proof of Theorem|[9

Proof. Similar to Example (1, consider an election in which the top vote of 7 — 1 voters is c; with utility of
1, while c; is the least preferred candidate for the rest with a utility of 0. Hence, SW(c;) = 5 —1; and ¢;
cannot be the winner of the election as it is the Condorcet loser.

For the rest of the 7 4 1 voters, similar to the example in Theorem suppose ﬁ fraction of them have
approve {c;,c;;1} for i € [2,m — 1]. The remaining -1 fraction approve {ci, c2}. These voters have a
utility of 1 — 7 for their top choice and 7 for their second top vote, which can be either c; or ¢;; 1.

Let ¢, ¢’ be the finalists determined by the deterministic rule. Suppose ¢ # c1, without loss of generality.
If we make c the winner of the election, by placing ¢ the second vote of voters who approve ¢, SW(c) < 2 - ;

as a result, distortion is lower bounded by ';,//3”_11 > 7% — 1. It remains to prove that ¢ can win the election.

As ¢1 loses to all other candidates including ¢, we assume that ¢’ # ;.
Except for voters who approve ¢/, we can rank c above ¢’ as the given approvals allows for such prefer-

ence rankings to exist. Therefore, ¢ wins the majority comparison if 2 - ”n/ffll < 5, which holds for m > 3

and n > 4. 0

A.3 Proof of Lemma

Proof. Suppose c is the Condorcet loser in an instance. Let rank;(c) € [1, m] be the rank of ¢ in the preference
ranking of voter i. Then, by the unit-sum assumption, we have u;(c) < ﬁ (otherwise, there are rank;(c)
candidates worth more than ﬁ to voter i which violates the unit-sum assumption). As c loses to all
other agents, it must be ranked lower than each candidate by at least /2 voters. Hence, }_; rank;(c) >
(m —1) - & + n (the additional n stems from the fact that the rank functions starts from 1). Then,

7

SR

‘ n n
W <E - < = —.
SW(i) < —~ rank;(c) ~ 2 1_'—2

where (1) holds as follows. Due to the convexity of the function 1 and given that _; rank;(c) > 4(m — 1) +

n, Y, m is maximized when some ranks are 1 and the rest are m. That is, it is best to have c the top

choice of 5 voters and the bottom choice of the remaining voters, which completes the proof. O
A.4 Proof of Theorem [10)

Proof. Consider any instance with utility profile if and approval profile 7Z. Let q; and g, be the number of
approvals of c; and ¢, respectively. Let c* be the optimal candidate.

* Case c; wins over ¢;. By Theorem[2} choosing ¢; deterministically would have bounded the distortion
by 2m. In this case, we choose it with probability of at least 1/2. Therefore, distortion is bounded by
4m.
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e Case cq loses to c; and c* # c1. As cq loses to ¢y, then c; is not the top choice of at least 11/2 voters.
By the choice of T = -, every voter must approve at least one candidate. Therefore, there are at least
n/2 approvals for candidates other than c1. Therefore, as c; is the second most approved candidate,
g = m Furthermore, by the assumption that ¢c* # ¢q, ¢* has at most g, approvals. Hence,

SW(c*,il) < g2 + (n — q2) - &, and distortion of this rule is bounded by

where the last inequality holds by g > ..

2m*

* Case c* loses to cp and ¢* = 61 If c; wins the majority runoff from any candidate, it will be selected
by a probability of at least ( —, which results in a distortion of at most 2(m — 1). Otherwise, ¢
is the Condorcet loser. By Lemma ]| I SW (c1,i) < 5 + 5. Furthermore, we have selected any other
candidate with probability at least ( ok Hence, E [SW( f,i)] = 5 - (n —SW(c, it)). Then,

7] 2 2
dist, (f) < SW(cy, if) < moo I
" 2 (n—=SW(c, i) = gwry —1  3/2-1
where the last inequality comes from that % + L < & for m > 3. O

A.5 Proof of Theorem

Proof. Suppose that for each i € [m], there are n/m voters who approve candidates c;, ¢(j mod m)+1, and
C(i+1 mod m)+1- Every voter has utility 1 — 2 - T for their top choice, T for their second and third choice, and
0 for the rest.

Let ¢; and ¢, be the candidates selected by a deterministic pair-selection rule. Let the 3n/m voters
approving c; or c; have utility T for ¢; and ¢ and utility 1 — 7 for their other approved candidate. Pick
any candidate c* # c, and let the 3n/m voters approving c* have utility 1 — 7 for c¢* and 7 for their other
approved candidate.

Under this utility profile i, SW(cy, i) = SW(cp, il) = T -3n/m whereas SW(c*,ii) = (1 — 1) -3n/m.

Hence, the distortion is at least

1—-1)- 1/1

A-7)-3n/m 1,1 . .
2-T-3n/m 2

A.6 Proof of Theorem [13

First, we prove a technical lemma.

Lemma 2. Let X be the distribution over A(C?). There exists a subset S C C of size |S| < ', such that
e VeeS,PrlceX] <8,
o and Y, s Pr((c,c’) € X] <IISP/m.

Proof. Let T = {c | Pr[c € X] < 6/m}. Then, |T| > !, otherwise, there at least % candidates with marginal
probability of more than %, which is contradlctlon as the sum of marginal probabilities for all candidates
is 2. We construct the sets S* for all k € [1, %] iteratively using only candidates in T, described as follows.
Start with an empty set S°. Pick a random member of T and add to S'. Define Pr[S¥] = Ycesk = LPr[cex] s

the sum of marginal probabilities of candidates in Sk, 1f Sk ¢ T, then the first condition is satisfied and we
also have Pr[S'] < 6k/m.
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Inductively speaking, at the k-th iteration, there exists a candidate ¢ € T\ S¥~1, such that ¥, gx—1 Pr[(c’,c¥)] <

k—1
ll;r\[sskfl]‘ < 6<k,;};/’” = 18(k-1)/m2. Let S¥ = S¥=1 U {c*}. By such construction, we have ¥ « Pr[(c,c’)] <

i— 2 . o s
Zi'(:l 185;12 U < 2”%, which satisfies the second condition.

c,c'eS

Now, we show the lower bound construction.

Voters
1 2 e n—1 n
1 & (u; =)
2] Equally distributed among S \ {c*} L

Equally distributed among C'\ S
(u; = 0) 1C| = 19|

Candidates

Equally distributed among S\ {c¢*} L
(u; = 0) S| —1—1[+]

m

Figure 4: Preference and utility profile of the lower bound example described in Theorem

Proof of Theorem[13] Let f be a randomized pair selection rule. We construct an example for f as follows
(depicted in Figure ). Suppose voters have an empty approval set for threshold 7, and that each voter
divides their total utility of one between their ¢ = L%J + 1 top candidates (which we define in the next
paragraph). This way, each voter has a utility of % € [5, 7) for their £ top candidates and 0 for the rest.

Letk = 4/ %m(ﬁ —1). Select a set S of k + 1 candidates according to LemmaH Pick one candidate from
S c¢* € S (the last one added by the iterative construction) and place c* as the top vote of all voters. This
way, ¢* would be the social welfare maximizing candidate with SW(c*) = 7 that is selected by the rule

with probability at most %. Suppose the other ¢ — 1 top positions of all voters is divided equally between

S\ {c*}. Therefore, for all ¢ € S\ {c*}, we have ¢ in @ positions worth %, ie,SW(c) = "(gk_l) : % <E

Place other candidates C \ S in the positions I + 1 to m — ¢ + 1, and fill the bottom of the rankings with
S\ {c*}. This way, for each ¢’ € C\ S, the proportional runoff between ¢ € S\ {c*} and ¢’ results in a
winning chance, for ¢, of Pr[c € prop(c,c’)] = 1 - el — 6%1

Now, we show an upper bound on the social welfare obtained f. The rule selects ¢* with probability
of at most £ (true for all in S), which contributes £ - Z to the obtained welfare. For each ¢ € S\ {c*}, the

probability of ¢ winning the election is

Prlc € propo f] = Y _ Pr[(c,c') € f] - Prc € prop(c, )]

ceC
6 (-1
< ( Y, Prl(cc) eﬂ) T Tk
c'eS\{c*}
By Lemma we have that } . rcs\ (4} < 2”%2. Thus,
9k? 6(¢—1)
P < —5+k- .
Z r[c € prop o f] " + p—

ceS\{c*}
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Therefore,

E[SW(propo f)] < 6.n + ). Prlcepropof]- n

m f . k

ceS\{c*}

6 n  9nk 6n(l—1)
<.y )
Swmiet e T Tk
_6.n o i1

m £ m 3m

Putting all together, distortion of f is lower bounded by

n/t 1 m md2
> S min{ o,
PRPIEIPN =) a e 5!
m { m 3m
>0 (min{m, (mT)3/2}) . O
B Missing Experimental Results
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Figure 5: Close look at the average distortion of a-AV rules on synthetic data with m = 20 candidates, and
small T.
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Figure 6: Average distortion of different a-AV rules for different number of candidates.
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Figure 7: The welfare ratio of different rules with T = 2/m.
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