
Fairly Stable Two-Sided Matching with Indifferences

BENJAMIN COOKSON, University of Toronto, Canada
NISARG SHAH, University of Toronto, Canada

Stability has been a foundational criterion for two-sided matching. When agents on one side have weak
preferences involving indifferences, the seminal work of Kesten and Ünver [2015] proposes the Fractional
Deferred Acceptance (FDA) algorithm for computing a fractional matching that satisfies (ex ante) stability
along with a fairness criterion that ensures no discrimination among (equally-preferred) agents on one side.

We show that their algorithm can actually fail to terminate, refuting their claim of (polynomial-time)
termination. Using substantially new algorithmic ideas, we develop an algorithm, Doubly-Fractional Deferred
Acceptance (DFDA), which can handle agents on both sides exhibiting indifferences and, in polynomial time,
compute a fractional matching satisfying ex ante stability and no ex ante discrimination among agents on
both sides, thus fixing and superseding the result of Kesten and Ünver [2015].

Contents

Abstract 0
Contents 0
1 Introduction 1
1.1 Our Contributions 2
1.2 Related Work 3
2 Preliminaries 4
2.1 Stability and Fairness Criteria 4
2.2 Proposer-Optimal Matchings 6
3 The Fault in Our Stars: Strong Ex Ante Stability in Finite Time? 6
4 Doubly-Fractional Deferred Acceptance 8
5 A Polynomial-Time Algorithm for Doubly-Strong Ex Ante Stable Matching 10
5.1 Analysis of DFDA-SCC 13
6 Discussion 17
References 18
A Algorithms FDA and FDA-Cycle 21
B Failure of FDA-Cycle on Our Counterexample 21
C Alkan-Gale Stability 26
C.1 Alkan-Gale Matching Model 26
C.2 Doubly-Strong Ex-Ante Stability Through Choice Functions 27
D Missing Proofs from Section 5 32
E Why We Demand Proposers With Free Weights 35
F Incompatibility With Pareto Optimality 35
G Extended Discussion 35

Manuscript submitted for review to the 26th ACM Conference on Economics & Computation (EC'25).

Benjamin Cookson and Nisarg Shah 1

1 Introduction

Ever since the seminal work of Gale and Shapley [1962], the problem of two-sided matching has
influenced not only a vast sea of academic research at the intersection of economics and computer
science [Chiappori and Salanié, 2016, Roth, 2008], but also a wide range of real-world applications
ranging from school admissions and placement of hospital residents to course allocation and
centralized kidney markets [Biró, 2017].

The simplest formulation involves two sets of agents, 𝑁 (“proposers”) and 𝑀 (“acceptors”), with
|𝑁 | = |𝑀 | and each agent 𝑖 ∈ 𝑁 ∪ 𝑀 having preferences ≽𝑖 over agents on the other side. The
goal is to find a desirable one-to-one matching 𝑥 between agents on the two sides based on their
preferences. Much of the prior work assumes strict preferences, where each agent 𝑖 has a total order
≻𝑖 over agents on the other side, and seeks integral matchings, where each agent is matched to a
unique agent on the other side, i.e., 𝑥 ∈ {0, 1}𝑁×𝑀 with

∑
𝑗 ′∈𝑀 𝑥𝑖 𝑗 ′ =

∑
𝑖′∈𝑁 𝑥𝑖′ 𝑗 = 1 for all 𝑖 ∈ 𝑁 and

𝑗 ∈ 𝑀 . A celebrated example is the polynomial-time Deferred Acceptance (DA) algorithm by Gale
and Shapley [1962], which satisfies stability: no pair of proposer and acceptor who are not matched
to each other should prefer each other over the agents they are respectively matched to. Many
extensions of DA have been proposed to handle real-world nuances such as agent capacities [Roth,
1985], “couples constraints” [Roth, 1984], and decentralized implementations [Roth and Vate, 1990].

One such practical consideration is agents havingweak preferences that exhibit indifferences (ties).
Such indifferences are commonplace in real-world applications. For example, in a school choice
program, schools prioritize students based on only a few criteria, such as the walk zone and sibling
criteria [Abdulkadiroğlu et al., 2005], inducing ties among many students. When indifferences are
allowed, one thread of the literature still continues to focus on integral matchings. Erdil and Ergin
[2017] show that, while stability already implies Pareto optimality under strict preferences, finding
a stable and Pareto optimal matching is a much more involved task in the presence of indifferences.
Manlove et al. [2002] show that maximizing the number of agents matched in a stable matching is
NP-hard in the presence of indifferences; this can be approximated up to a factor of 3/2 [McDermid,
2009] (1 + 1/𝑒 if indifferences exist only on one side [Lam and Plaxton, 2019]).
However, when one adds fairness considerations to the mix, it becomes evident that one must

allow a fractional matching, where 𝑥 ∈ [0, 1]𝑁×𝑀 and 𝑥𝑖 𝑗 denotes the degree to which the pair of
agents 𝑖 and 𝑗 are matched. Fractional matchings can also be interpreted as lotteries over integral
matchings [Birkhoff, 1946]. Consider the trivial example in Figure 1(a), where two proposers, 𝑖
and 𝑖 ′, strictly prefer acceptor 𝑗 to 𝑗 ′, while the acceptors are indifferent between the proposers.
Both integral matchings are stable, but assign the more preferred acceptor 𝑗 exclusively to one
of the proposers (see Figure 1(b)), which is unfair to the proposers as they are indistinguishable
and, hence, should be treated equally. The fractional matching in Figure 1(c) that equally shares
𝑗 (and, thus, also 𝑗 ′) between the two proposers is the only fair outcome. Note that this can be
implemented as a lottery over the two integral stable matchings.

Preferences

𝑖, 𝑖 ′: 𝑗 ≻ 𝑗 ′

𝑗, 𝑗 ′: 𝑖 ∼ 𝑖 ′

(a) Preferences with ties.

𝑗 𝑗 ′

𝑖 1 0
𝑖 ′ 0 1

(b) Unfair integral stable matching.

𝑗 𝑗 ′

𝑖 1/2 1/2
𝑖 ′ 1/2 1/2

(c) Fair fractional stable matching.

Fig. 1. Indifferences mandate fractional matchings for fairness.

This simple observation has inspired a fostering literature on seeking fractional matchings that
are both stable and fair in the presence of indifferences. The seminal work of Kesten and Ünver

Benjamin Cookson and Nisarg Shah 2

[2015] studies a model in which only acceptors can have indifferences (while proposers have strict
preferences), and seeks two criteria (see Section 2 for formal definitions):

• ex ante stability, a suitable adaptation of stability for fractional matchings demanding that
no pair of agents 𝑖 and 𝑗 be able to even increase their degree of match by decreasing their
degrees of matches to less-preferred agents; and
• no ex ante discrimination (among proposers), a fairness criterion which informally requires
that there should be no discrimination between two proposers being matched to an acceptor
when the acceptor is indifferent between them.

Kesten and Ünver define Fractional Deferred Acceptance (FDA), a generalization of DA that
achieves both these guarantees simultaneously. In the above example, FDA indeed produces the
fractional matching in Figure 1(c), and no ex ante discrimination among proposers is precisely
what demands that 𝑖 and 𝑖 ′ receive an equal share of the preferred acceptor 𝑗 .

But what if there are indifferences in the preferences of agents on both side? Consider the
following slightly more involved example with three agents on each side.

Preferences

𝑖, 𝑖 ′, 𝑖 ′′: 𝑗 ∼ 𝑗 ′ ≻ 𝑗 ′′

𝑗, 𝑗 ′: 𝑖 ≻ 𝑖 ′ ∼ 𝑖 ′′
𝑗 ′′: 𝑖 ∼ 𝑖 ′ ∼ 𝑖 ′′

(a) Preferences with indifferences

on both sides.

𝑗 𝑗 ′ 𝑗 ′

𝑖 1 0 0
𝑖 ′ 0 1/2 1/2
𝑖 ′′ 0 1/2 1/2

(b) FDA (tie-breaking): fair to pro-

posers, but unfair to acceptors.

𝑗 𝑗 ′ 𝑗 ′

𝑖 1/2 1/2 0
𝑖 ′ 1/4 1/4 1/2
𝑖 ′′ 1/4 1/4 1/2

(c) “Doubly fair” fractional stable

matching.

Fig. 2. Indifferences on both sides demand a new method.

We can run FDA after breaking ties between 𝑗 and 𝑗 ′ in the proposers’ preferences, but this
results in 𝑖 being matched exclusively to whichever acceptor ends up being her top choice after the
tie-breaking; for example, Figure 2(b) shows the FDA matching if we break ties in 𝑖’s preferences as
𝑗 ≻ 𝑗 ′ ≻ 𝑗 ′′. This is unfair to the other acceptor (𝑗 ′ in this case) as 𝑗 and 𝑗 ′ are indistinguishable
and, hence, should be treated equally. This can be formalized as the same no ex ante discrimination
axiom of Kesten and Ünver [2015], but for acceptors. In fact, the matching shown in Figure 2(c)
turns out to be the unique matching satisfying ex ante stability and no ex ante discrimination for
both proposers and acceptors in this example. But is such a matching even guaranteed to exist?
This is the main research question that we seek to answer in our work:

When agents on both side exhibit indifferences, does there always exist a matching that is

simultaneously stable (in the sense of ex ante stability) and fair (in the sense of no ex ante

discrimination) to agents on both sides? If so, can it be computed in polynomial time?

1.1 Our Contributions

Our main contribution is to answer both questions affirmatively, but our story actually begins with
a closer examination of the seminal work of Kesten and Ünver [2015]. In more detail, they define
Fractional Deferred Acceptance (FDA) as a natural iterative procedure of proposals and rejections
to find a matching satisfying both ex ante stability and no ex ante discrimination among proposers;
they term this combination of axioms strong ex ante stability. While FDA may not terminate, a
result of Alkan and Gale [2003] can be used to show that it converges to the proposer-optimal

Benjamin Cookson and Nisarg Shah 3

strongly ex ante stable matching,1 although Kesten and Ünver give a direct proof of this. Let us
refer to this matching as the FDA matching.
The reason that FDA may not terminate is that it can get stuck in an infinte loop wherein

agents in a cycle keep proposing/rejecting to the next agent in the cycle, but the degree of match
being proposed/rejected diminishes over time, leading to convergence. Kesten and Ünver design an
algorithm that detects such a cycle when it forms and immediately “jumps” to the matching that
infinitely many proposals/rejections along the cycle would lead to. They claim that this algorithm,
which we refer to as FDA-Cycle, finds the FDA matching in polynomial time.

Our first significant contribution is to show that this is incorrect. We present an example where
even the FDA-Cycle ends up in an infinite loop, despite “resolving cycles” immediately as they
arise. This makes polynomial-time (or even finite-time) computation of a strongly ex ante stable
matching an open question once again. We resolve this positively, while extending the model of
Kesten and Ünver [2015] to allow indifferences and achieve no ex ante discrimination on both sides.
First, we define Doubly-Fractional Deferred Acceptance (DFDA), a natural iterative procedure

similar to FDA, but which incorporates indifferences on both sides. We show that DFDA satisfies ex
ante stability, no ex ante discrimination among both proposers and acceptors, and a fourth axiom
we term ex ante indifference neutrality; we term the combination of all four axioms doubly-strong ex
ante stability. By invoking the framework of Alkan and Gale [2003], we show that, while DFDA
may not terminate, it converges to a proposer-optimal doubly-strong ex ante stable matching.

Next, we design our polynomial-time algorithm. The insight we obtain from our counterexample
to FDA-Cycle is that it is not sufficient to resolve one cycle at a time. Instead, our algorithm detects
entire strongly connected components as they arise (or even before they arise), and resolves them by
jumping to their resultant matching. We show that this algorithm, which we term DFDA-SCC, in
fact terminates in polynomial time and returns a doubly-strong ex ante stable matching; this is our
main contribution with a highly intricate proof. There is one key difference between our work and
that of Kesten and Ünver [2015]. While FDA-Cycle exactly mimics (a serialization of) FDA and
thus converges to the same matching (despite failing to converge), DFDA-SCC does not exactly
mimic DFDA. Despite significant effort, we are unable to prove that it returns the same matching
that DFDA converges to (or at least a proposer-optimal matching), but conjecture this to be the
case. We discuss this issue at length in Section 6.

1.2 Related Work

Apart from the work already cited in the introduction, there are a few threads of related work that
our DFDA should be contrasted against.

Matching under weak preferences. Han [2024] extends the celebrated Probabilistic Serial (PS)
algorithm for one-sided matching (of agents to objects) to two-sided matching, assuming agents
(proposers) to have strict preferences but allowing objects (acceptors) to have weak preferences.
This unifies PS with FDA, retaining ex ante stability but sacrificing no ex ante discrimination for
ordinal fairness, a criterion that plays a key role in characterizations of PS [Hashimoto et al., 2014,
Kesten et al., 2011]. This complements the work of Katta and Sethuraman [2006] which extend
PS by allowing agents to have weak preferences but still assuming objects to have no preferences
(equivalently, assuming every object to be indifferent between all the agents). To the best of our
knowledge, there is no known extension of PS to two-sided matching in the full domain where
both agents and objects have weak preferences. Huang and Kavitha [2021] study popular matchings,
which are weakly preferred to any other matching by at least half of the agents. It is known that

1This means a strongly ex ante stable matching that is weakly ordinally preferred to every other strongly ex ante stable
matching by every proposer simultaneously.

Benjamin Cookson and Nisarg Shah 4

popularity is a weaker notion than fractional stability [Gärdenfors, 1975], which is in turn weaker
than ex ante stability. Assuming strict preferences on both sides, they prove that the popular
matching maximizing any linear objective can be computed efficiently due to elegant half-integral
and self-duality properties of such matchings. Popular matchings remain well-defined with weak
preferences, but we are not aware of any work investigating this.

Cardinal preferences. The model of cardinal utilities is even more expressive than that of weak
preferences. Any algorithms designed for weak preferences (including ours) can be applied to an
instance with cardinal utilities as they induce unique weak preferences; however, applying an
algorithm designed for strict preferences requires breaking ties and the result can be dependent on
tie-breaking. Caragiannis et al. [2019a] use cardinal utilities to also justify fractional matchings:
they show that stable fractional matchings can have arbitrarily larger utilitarian social welfare
compared to stable integral matchings, and design approximation algorithms for the NP-hard
problem of maximizing welfare subject to stability. Panageas et al. [2024] give an algorithm that
computes a fractional matching maximizing the Nash social welfare within an error of 𝜀 in 𝑂 (1/𝜀)
time. But the Nash-optimal solution, while celebrated in fair division for satisfying envy-freeness
under additive/linear preferences [Caragiannis et al., 2019b, Ebadian et al., 2024, Weller, 1985], even
under constraints [Cookson et al., 2025, Wu et al., 2021], Tröbst and Vazirani [2024] show that it
provides no approximation to envy-freeness for two-sided matching, and use other means to show
the existence of fractional matchings satisfying two sets of axioms: envy-freeness (EF) and Pareto
optimality, and justified envy-freeness (JEF) and weak Pareto optimality.

2 Preliminaries

For 𝑘 ∈ N, define [𝑘] ≜ {1, . . . , 𝑘}. There are two sets of agents, 𝑁 and𝑀 , with |𝑁 | = |𝑀 |. We use
𝑖, 𝑖 ′, 𝑖 ′′ to refer to agents in 𝑁 , called proposers, and 𝑗, 𝑗 ′, 𝑗 ′′ to refer to agents in𝑀 , called acceptors.
Each proposer 𝑖 ∈ 𝑁 has weak preferences over acceptors in𝑀 given by a strict weak ordering ≽𝑖 ,
which partitions𝑀 into equivalence classes 𝐸𝑖 =

{
𝐸𝑖1, . . . , 𝐸𝑖𝑘𝑖

}
, for some 𝑘𝑖 ∈ N, such that: (i) for

all 𝑡 ∈ [𝑘𝑖], proposer 𝑖 is indifferent between all acceptors 𝑗, 𝑗 ′ ∈ 𝐸𝑖𝑡 , denoted by 𝑗 ∼𝑖 𝑗 ′, and (ii) for
all 𝑡, 𝑡 ′ ∈ [𝑘𝑖] with 𝑡 > 𝑡 ′, proposer 𝑖 strictly prefers any acceptor 𝑗 ∈ 𝐸𝑖𝑡 to every acceptor 𝑗 ′ ∈ 𝐸𝑖𝑡 ′ ,
denoted by 𝑗 ≻𝑖 𝑗 ′. Similarly, each acceptor 𝑗 ∈ 𝑀 has a strict weak ordering ≽𝑗 , which partitions
𝑁 into equivalence classes 𝐸 𝑗 =

{
𝐸 𝑗1, . . . , 𝐸 𝑗𝑘 𝑗

}
, for some 𝑘 𝑗 ∈ N, such that 𝑖 ∼𝑗 𝑖 ′ for all 𝑡 ∈ [𝑘 𝑗]

and 𝑖, 𝑖 ′ ∈ 𝐸 𝑗𝑡 and 𝑖 ≻𝑗 𝑖 ′ for all 𝑡, 𝑡 ′ ∈ [𝑘 𝑗] with 𝑡 > 𝑡 ′, 𝑖 ∈ 𝐸 𝑗𝑡 , and 𝑖 ′ ∈ 𝐸 𝑗𝑡 ′ . An ordinal two-sided
matching problem is given by the four-tuple (𝑁,𝑀, ≽𝑁= (≽𝑖)𝑖∈𝑁 , ≽𝑀= (≽𝑗) 𝑗 ∈𝑀).
When 𝑘𝑖 = |𝑀 | for each 𝑖 ∈ 𝑁 (i.e., there are no indifferences), we say that the proposers have

strict preferences; when 𝑘 𝑗 = |𝑁 | for each 𝑗 ∈ 𝑀 , we say that the acceptors have strict preferences;
and when both are true, we say that both sides have strict preferences.
A (fractional) matching 𝑥 ∈ [0, 1]𝑁×𝑀 is a doubly stochastic matrix satisfying

∑
𝑗 ′∈𝑀 𝑥𝑖 𝑗 ′ =∑

𝑖′∈𝑁 𝑥𝑖′ 𝑗 = 1 for all 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 . We refer to row 𝑥𝑖 = (𝑥𝑖 𝑗) 𝑗 ∈𝑀 as the matching of proposer
𝑖 ∈ 𝑁 and column 𝑥 𝑗 = (𝑥𝑖 𝑗)𝑖∈𝑁 as the matching of acceptor 𝑗 ∈ 𝑀 . We also denote |𝑥𝑖 | ≜

∑
𝑗 ∈𝑀 𝑥𝑖 𝑗

and
��𝑥 𝑗 �� ≜ ∑

𝑖∈𝑁 𝑥𝑖 𝑗 . When 𝑥𝑖 𝑗 ∈ {0, 1} for all 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , we refer to the matching as integral.

2.1 Stability and Fairness Criteria

Our starting point is stability and fairness criteria for fractional matching introduced by Kesten
and Ünver [2015].

Definition 1 (Ex ante stability). Amatching 𝑥 is ex ante stable if there are no 𝑖, 𝑖 ′ ∈ 𝑁 and 𝑗, 𝑗 ′ ∈ 𝑀
such that 𝑗 ≻𝑖 𝑗 ′, 𝑖 ≻𝑗 𝑖 ′, 𝑥𝑖 𝑗 ′ > 0, and 𝑥𝑖′ 𝑗 > 0. In words, no pair of proposer 𝑖 and acceptor 𝑗 should
both be positively matched to agents they prefer less than each other.

Benjamin Cookson and Nisarg Shah 5

For integral matchings, ex ante stability coincides with the popular stability criterion of Gale
and Shapley [1962]; all stable integral matchings are ex ante stable, but there are often additional
fractional matchings that are ex ante stable as well. For fractional matchings under strict preferences,
ex ante stability coincides with strong stability defined and studied by Roth et al. [1993]. Ex ante
stability is also same as the fractional stability criterion of Caragiannis et al. [2019a] for cardinal
utilities, but with cardinal comparisons replaced by SD-preference relations defined above.2
While ex ante stability focuses on the strict portion of the preferences, the following fairness

criterion focuses on indifferences.

Definition 2 (No ex ante discrimination among proposers). A matching 𝑥 has no ex ante discrimi-

nation among proposers if there are no 𝑖, 𝑖 ′ ∈ 𝑁 and 𝑗, 𝑗 ′ ∈ 𝑀 such that 𝑖 ∼𝑗 𝑖 ′, 𝑗 ≻𝑖 𝑗 ′, 𝑥𝑖 𝑗 ′ > 0, and
𝑥𝑖 𝑗 < 𝑥𝑖′ 𝑗 . In words, no proposer 𝑖 should receive less of acceptor 𝑗 than another proposer 𝑖 ′ while
still being positively matched to an acceptor 𝑗 ′ she prefers strictly less than 𝑗 , if 𝑗 is indifferent
between 𝑖 and 𝑖 ′.

Kesten and Ünver [2015] also give a name to the combination of the above two criteria.

Definition 3 (Strong ex ante stability). A matching 𝑥 is strongly ex ante stable if it is ex ante stable
and has no ex ante discrimination among proposers.

Kesten and Ünver [2015] assume that only acceptors in𝑀 can have indifferences while proposers
in 𝑁 have strict preferences. When both proposers and acceptors have weak preferences, as is the
case in our general model, it is natural to symmetrically apply the no-discrimination criterion to
acceptors based on indifferences in proposers’ preferences. To the best of our knowledge, we are
the first to consider this criterion of fairness.

Definition 4 (No ex ante discrimination among acceptors). A matching 𝑥 has no ex ante discrim-

ination among acceptors if there are no 𝑖, 𝑖 ′ ∈ 𝑁 and 𝑗, 𝑗 ′ ∈ 𝑀 such that 𝑗 ∼𝑖 𝑗 ′, 𝑖 ≻𝑗 𝑖 ′, 𝑥𝑖′ 𝑗 > 0,
and 𝑥𝑖 𝑗 < 𝑥𝑖 𝑗 ′ . In words, no acceptor 𝑗 should receive less of proposer 𝑖 than another acceptor 𝑗 ′
while still being positively matched to a proposer 𝑖 ′ she prefers strictly less than 𝑖 , if 𝑖 is indifferent
between 𝑗 and 𝑗 ′.

The two no-discrimination criteria stipulate desired behavior when indifferences on one side
interact with strict preferences on the other side. While the no-discrimination criterion addresses
conditions where indifferences on one side interact with strict preferences on the other side, the
following criterion that we introduce addresses conditions where indifferences on the two sides
interact with each other. See Section 6 for additional discussion about this criterion.

Definition 5 (Ex ante indifference neutrality). A matching 𝑥 is ex ante indifference neutral if there
are no 𝑖, 𝑖 ′ ∈ 𝑁 and 𝑗, 𝑗 ′ ∈ 𝑀 such that 𝑗 ∼𝑖 𝑗 ′, 𝑖 ∼𝑗 𝑖 ′, 𝑥𝑖 𝑗 < min

{
𝑥𝑖 𝑗 ′, 𝑥𝑖′ 𝑗

}
. In words, if proposer 𝑖

and acceptor 𝑗 prefer each other as much as they prefer acceptor 𝑗 ′ and proposer 𝑖 ′, respectively,
then they should be matched to a degree at least as much as the degree of match between either
𝑖 and 𝑗 ′ or 𝑖 ′ and 𝑗 . When agents have an innate preference to balance their degrees of matches
to equally-preferred agents,3 this makes sense: in case of the above violation, proposer 𝑖 and 𝑗

would “deviate” to increase 𝑥𝑖 𝑗 to at least min
{
𝑥𝑖 𝑗 ′, 𝑥𝑖′ 𝑗

}
as this would leave them both happier by

increasing their balance.

When a matching meets all four criteria above, we call it doubly-strong ex ante stable.

2Based on common nomenclature, this would be called SD-fractional-stability.
3This is in fact formalized when we make a connection to the result of Alkan and Gale [2003] and impose a preference for
balancedness to turn the weak preferences strict.

Benjamin Cookson and Nisarg Shah 6

Definition 6 (Doubly-strong ex ante stability). A matching 𝑥 is doubly-strong ex ante stable if it is
ex ante stable, has no ex ante discrimination among proposers and among acceptors, and is ex ante
indifference neutral.

2.2 Proposer-Optimal Matchings

Deferred-acceptance style algorithms often find a matching that not only satisfies desirable stability
and fairness criteria but is in fact “proposer-optimal” among such matchings. This is formalized
using ordinal dominance. First, we extend agents’ preferences over individual agents to preferences
over fractional matches using the (first-order) stochastic dominance (SD) relation.

Definition 7 (SD-preferences). For proposer 𝑖 ∈ 𝑁 and two fractional matches 𝑥𝑖 , 𝑦𝑖 ∈ [0, 1]𝑀 ,
we say that 𝑖 weakly SD-prefers 𝑥𝑖 to 𝑦𝑖 , denoted 𝑥𝑖 ≽

SD
𝑖 𝑦𝑖 , if, for each 𝑗 ∈ 𝑀 , we have that∑

𝑗 ′∈𝑀 :𝑗 ′≽𝑖 𝑗 𝑥𝑖 𝑗 ′ ⩾
∑

𝑗 ′∈𝑀 :𝑗 ′≽𝑖 𝑗 𝑦𝑖 𝑗 ′ . We say that 𝑖 strictly SD-prefers 𝑥𝑖 to 𝑦𝑖 , denoted 𝑥𝑖 ≻SD𝑖 𝑦𝑖 , if
𝑥𝑖 ≽

SD
𝑖 𝑦𝑖 holds and at least one of its defining inequalities is strict. SD-preferences of each acceptor

𝑗 ∈ 𝑀 are defined symmetrically.

Next, we use the SD-preference relation to define ordinal dominance.

Definition 8 (Ordinal dominance for the proposers). Given two matchings 𝑥,𝑦 ∈ [0, 1]𝑁×𝑀 , we
say that 𝑥 ordinarily dominates 𝑦 for the proposers, denoted 𝑥 ≽SD

𝑁
𝑦, if 𝑥𝑖 ≽SD𝑖 𝑦𝑖 for each 𝑖 ∈ 𝑁 .

Ordinal dominance can then be used to define a “best matching” for proposers within a set of
matchings.

Definition 9 (Proposer-optimality). Given a set 𝑋 of matchings, a matching 𝑥 ∈ 𝑋 is proposer-
optimal within 𝑋 if, for every 𝑦 ∈ 𝑋 , we have that 𝑥 ≽SD

𝑁
𝑦.

In general, it is possible that there is no proposer-optimal matching within 𝑋 . Interestingly,
though, the sets of strongly ex ante stable matchings and doubly-strong ex ante stable matchings
always admit a proposer-optimal matching; Kesten and Ünver [2015] establish the former and
Theorem 1 establishes the latter.

3 The Fault in Our Stars: Strong Ex Ante Stability in Finite Time?

Our story begins with the seminal work of Kesten and Ünver [2015], who study fractional matchings
in the presence of indifferences in acceptors’ preferences, define strong ex ante stability (the
combination of ex ante stability and no ex ante discrimination among proposers), and identify
Fractional Deferred Acceptance (FDA), a natural adaptation of (integral) Deferred Acceptance (DA) of
Gale and Shapley [1962], which produces a fractional matching provably satisfying strong ex ante
stability. While we will not present all the formal details of their work, we must present enough
for the reader to understand our first significant contribution, which is to identify (and, in later
sections, fix) a major flaw in the main contribution of Kesten and Ünver [2015].

Algorithm FDA. A formal description of the FDA algorithm is presented as Algorithm 3 in
Appendix A. Informally, it is an iterative process, which starts with an empty matching and every
proposer having a free weight of 1. In each iteration, all proposers simultaneously propose their free
weight to their respective most-preferred acceptors who have not yet rejected any of their proposals
(even fractionally).4 Then, each acceptor whose sum of matched weight and total proposed weights
exceeds 1 rejects enough proposed weight such that this sum reduces to 1. The rejections happen
in a water-filling manner—from the least preferred equivalence class to the most preferred, and
within each equivalence class, at an equal rejection pace to all the highest-matched proposers at
4Recall that in their model, proposers have strict preferences, so such an acceptor is unique for each proposer.

Benjamin Cookson and Nisarg Shah 7

any given time. At the end, all unrejected proposed weights get added to the current fractional
matching and all rejected proposed weights return to those proposers as free weights, which they
propose in subsequent iterations.

The procedure is quite natural, but Kesten and Ünver observe that it has a critical flaw: there may
be a cycle of agents 𝑖1 → 𝑗1 → 𝑖2 → . . . 𝑖𝑘 → 𝑗𝑘 → 𝑖1 such that in some iteration, 𝑖1 proposes some
weight to 𝑗1, who rejects some matched weight with 𝑖2; so in the next iteration, 𝑖2 proposes some
weight to 𝑗2, who rejects some matched weight with 𝑖3; at some point, 𝑗𝑘 rejects some matched
weight with 𝑖1, who then proposes to 𝑗1 again; and this can continue indefinitely. Due to such
cycles, which they term rejection cycles, FDA may never terminate.
Nonetheless, they observe that by viewing FDA as a specific instantiation of a more general

two-sided “schedule matching” process studied by Alkan and Gale [2003], one can easily conclude
that FDA converges to a matching—henceforth, the FDA matching—that is strongly ex ante stable,
and, in fact, proposer-optimal within the set of such matchings.5 This still leaves the issue of
finite-time computation of a strongly ex ante stable matching, leading to their main contribution.

Algorithm FDA-Cycle. They propose an algorithm, which we refer to as FDA-Cycle (presented
formally as Algorithm 4 in Appendix A), which allegedly computes the FDAmatching in polynomial
time. First, they notice that the proposals can be serialized as the resulting matching is still unique
and independent of the order of proposals (see their Corollary 1). In this serialized process, the
infinitely many proposals and rejections along any rejection cycle can be viewed as consecutive
iterations. However, instead of executing these infinitely many iterations, FDA-Cycle detects a
rejection cycle as soon as it forms and directly computes the matching that these infinitely many
iterations would have converged to in finite time.

Formally, FDA-Cycle keeps track of a rejection graph, which is a directed graph with the agents
as nodes and edges 𝑖 → 𝑗 → 𝑖 ′ exist (for all 𝑖, 𝑖 ′ ∈ 𝑁 and 𝑗 ∈ 𝑀) whenever 𝑥𝑖 𝑗 > 0, 𝑥𝑖′ 𝑗 > 0, 𝑖 has
never been rejected by 𝑗 , and 𝑖 ′ has been rejected by 𝑗 .6 Intuitively, this tells us that whenever 𝑖
proposes to 𝑗 , 𝑗 will reject some fraction of 𝑖 ′.7 FDA-Cycle monitors this graph, and as soon as
a directed cycle forms, it solves a linear program to compute the matching that infinitely many
proposals and rejections across the cycle would converge to, “resolving” the cycle (temporarily).

Erroneous claim. Kesten and Ünver [2015] claim in their Proposition 3 that FDA-Cycle terminates
after a finite number of steps. Our first significant contribution is to show that this is incorrect.
The issue lies in the last paragraph of their proof, presented in their Appendix B, which makes the
following (rephrased) claim: “after all proposers make proposals, at least one proposer is rejected
by one acceptor and has an outstanding fraction, or the algorithm converges, whether or not a
[rejection] cycle occurs. Since there are |𝑁 | proposers and |𝑀 | acceptors, the algorithm converges
after at most |𝑁 | |𝑀 | steps”. It is not clear what they mean by a proposer being rejected by an
acceptor, but the latter conclusion would hold if they mean a proposer is rejected by an acceptor
either for the first time or fully (i.e., making their degree of match 0). It turns out that the former
statement does not hold under either interpretation.

Our counterexample. Our first significant contribution is a counterexample in which FDA-Cycle
in fact fails to terminate, thus precluding the possibility of an alternative proof of its finite-time
convergence. We emphasize that significant effort and careful analysis went into designing this

5They provide an independent proof for this too.
6Actually, in the rejection graph of Kesten and Ünver [2015], only the proposers are nodes, and instead of edges 𝑖 → 𝑗 → 𝑖′,

they add an edge 𝑖
𝑗
→ 𝑖′ labeled with the acceptor 𝑗 ; these are equivalent representations.

7This is because 𝑗 having rejected 𝑖′ previously implies that 𝑗 must be fully matched at the moment, so accepting any
proposed weight requires it to reject some existing weight, and once it rejects agent 𝑖′, it continues to do so until 𝑥𝑖′ 𝑗 = 0.

Benjamin Cookson and Nisarg Shah 8

counterexample. We present the counterexample below and highlight why FDA-Cycle fails to
terminate, but defer the laborious calculations to Appendix B.

This reopens the question of finite-time computation of a strongly ex ante stable matching. The
main contribution of the next two sections is to uncover a novel insight that lets us overcome the
limitation of FDA-Cycle and design a novel polynomial-time algorithm, DFDA-SCC, which in fact
computes a doubly-strong ex ante stable matching in the presence of indifferences on both sides.

Proposers

𝑖1: 𝑗3 ≻ 𝑗4 ≻ { 𝑗1, 𝑗2, 𝑗5}
𝑖2: 𝑗3 ≻ 𝑗5 ≻ { 𝑗1, 𝑗2, 𝑗4}
𝑖3: 𝑗3 ≻ 𝑗2 ≻ 𝑗1 ≻ { 𝑗4, 𝑗5}
𝑖4: 𝑗1 ≻ 𝑗2 ≻ { 𝑗3, 𝑗4, 𝑗5}
𝑖5: 𝑗1 ≻ 𝑗3 ≻ { 𝑗2, 𝑗4, 𝑗5}

Acceptors

𝑗1: 𝑖3 ≻ 𝑖4 ∼ 𝑖5 ≻ {𝑖1, 𝑖2}
𝑗2: 𝑖4 ≻ 𝑖3 ≻ {𝑖1, 𝑖2, 𝑖5}
𝑗3: 𝑖5 ≻ 𝑖1 ∼ 𝑖2 ∼ 𝑖3 ≻ 𝑖4
𝑗4: 𝑖1 ≻ {𝑖2, 𝑖3, 𝑖4, 𝑖5}
𝑗5: 𝑖2 ≻ {𝑖1, 𝑖3, 𝑖4, 𝑖5}

Fig. 3. Counterexample on which FDA-Cycle fails to terminate. In each ordering, the relation between the

agents listed in the set at the end can be arbitrary.

Example 1. Consider the instance shown in Figure 3. For the agents listed as a set in the end, we
can have arbitrary relationship as long as they are all strictly less preferred than the agents listed
previously (e.g., they may form the lowest equivalence class). The infinite looping of FDA-Cycle
happens regardless of these relations.

We assume that Algorithm FDA-Cycle breaks any ties lexicographically. That is, when there are
multiple proposers in 𝑁 with free weight, the one with the smallest index among them proposes in
the next iteration.
As mentioned previously, we defer the tedious calculations to Appendix B, and summarize

the interesting part here. At one point during the execution of FDA-Cycle, a rejection cycle
𝑖4 → 𝑗2 → 𝑖3 → 𝑗1 → 𝑖4 forms, which the algorithm resolves. Crucially, after the resolution, the
cycle remains in the graph, albeit with no free weights left on the proposers. In the subsequent
iterations, edges 𝑖5 → 𝑗3 → 𝑖3 get added to the rejection graph, causing another rejection cycle
𝑖5 → 𝑗3 → 𝑖3 → 𝑗1 → 𝑖5 to form. Again, after the algorithm resolves this cycle, it remains in
the graph. After a couple of (inconsequential) iterations where 𝑖1 and 𝑖2 propose, it is 𝑖4’s turn to
propose again, but re-resolving the 𝑖3-𝑖4 cycle leads to 𝑖5 receiving free weight, which leads to the
𝑖5-𝑖3 cycle being resolved next, leading to free weight to 𝑖4, and so on. FDA-Cycle then continues
for infinitely many steps.

Example 1 highlights the key issue: when multiple cycles have paths to each other (i.e., they are
part of the same strongly connected component), they can keep “reactivating” each other. This
suggests that the right approach is to not resolve one cycle at a time, but rather resolve entire
strongly connected components in one shot, which is precisely what we do later in Section 5.

4 Doubly-Fractional Deferred Acceptance

Before we present a polynomial-time algorithm, we take a slight detour and extend the model of
Kesten and Ünver [2015] to allow indifferences on both sides, not only in acceptors’ preferences.
The first step is to extend their infinite iterative procedure, Fractional Deferred Acceptance (FDA).
We term our procedure Doubly-Fractional Deferred Acceptance (DFDA), and show that it produces a
proposer-optimal doubly-strong ex ante stable matching via a reduction to the framework of Alkan
and Gale [2003]. Then, in the next section, we design our DFDA-SCC algorithm, which somewhat

Benjamin Cookson and Nisarg Shah 9

mimics DFDA, resolves one strongly connected component (SCC) in each iteration, and provably
terminates at a doubly-strong ex ante stable matching in polynomial time.

ALGORITHM 1: Doubly-Fractional Deferred Acceptance (DFDA)
1 ∀𝑖 ∈ 𝑁,𝑤𝑖 = 1 // Free weights

2 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀,𝑥𝑖 𝑗 = 0 // Current matching

3 while ∃𝑖 ∈ 𝑁,𝑤𝑖 > 0 do
// Simultaneous fractional proposals

4 All proposers 𝑖 with𝑤𝑖 > 0 propose simultaneously. Let 𝑃𝑖 be the set of (equally) most-preferred
acceptors of proposer 𝑖 who have not rejected 𝑖 yet. Each proposer 𝑖 evenly splits her proposal
across acceptors in 𝑃𝑖 , proposing a weight of 𝑤𝑖/|𝑃𝑖 | to each of them.

// Simultaneous fractional rejections

5 All acceptors 𝑗 whose sum of current matched weight and total proposed weight exceeds their
capacity of 1 reject some proposers as follows. Each 𝑗 goes through her equivalence classes from the
highest to the lowest. In a given equivalence class, if 𝑗 can accept all the proposed weight from that
class without exceeding her capacity, she does so. Otherwise, 𝑗 starts continuously accepting
proposed weight from the set of currently least-matched proposers in that class at an equal rate,
stopping any proposer whose entire proposed weight has been accepted and starting a new
proposer whenever she joins the set of least-matched proposers, until her capacity is exhausted.

6 end

7 return 𝑥

DFDA, presented as Algorithm 1, is almost identical to FDA, with a simple and natural change to
account for possible indifferences in the proposers’ preferences. Recall that in FDA, each proposer
proposes all her free weight to the most-preferred acceptor who has not rejected any fraction of her,
and this acceptor is unique due to strict preferences. In DFDA, each proposer considers the set of all
(equally) most-preferred acceptors who have not rejected any fraction of her—note that they must all
be part of the same equivalence class—and proposes to all of them simultaneously, evenly splitting
her free weight between them. Thus, each iteration of DFDA witnesses both proposers proposing
to multiple acceptors simultaneously and acceptors rejecting multiple proposers simultaneously,
which explains the name of the algorithm. DFDA is a strict generalization of FDA, reducing to FDA
when proposers have strict preferences.

We establish the desired properties of DFDA by invoking the general framework of Alkan and
Gale [2003]. They study two-sided fractional matching under a broad class of preferences, given
by the so-called (strict) “choice functions”. They prove that (1) the set of stable matchings—with a
specific stability definition that we refer to as AG-stability—form a lattice structure, which admits a
unique proposer-optimal matching under the strict choice-functions-based preferences; and (2) a
natural iterative procedure converges to this unique proposer-optimal AG-stable matching. We
take the weak preferences of proposers and acceptors and impose a secondary preference for
“balancedness” to induce strict choice functions under which (1) AG-stability becomes equivalent to
doubly-strong ex ante stability, thus establishing the existence of a proposer-optimal doubly-strong
ex ante stable matching under the strict choice functions (which remains proposer-optimal under
the original weak preferences; see also Footnote 9), and (2) the iterative procedure of Alkan and
Gale [2003] becomes equivalent to DFDA, which finds the aforementioned matching. This yields
the following result; a formal proof, along with an introduction to the framework of Alkan and
Gale [2003], is given in Appendix C.

Theorem 1. DFDA converges to a proposer-optimal doubly-strong ex ante stable matching.

Benjamin Cookson and Nisarg Shah 10

5 A Polynomial-Time Algorithm for Doubly-Strong Ex Ante Stable Matching

Because DFDA coincides with FDA when proposers happen to have strict preferences, clearly we
cannot resolve rejection cycles one at a time, otherwise we would have the same non-termination
issue as FDA-Cycle on our counterexample from Section 3. Based on the insight obtained from
our counterexample (Example 1), we propose a new algorithm, DFDA-SCC (Algorithm 2), which
circumvents this issue by resolving an entire strongly connected component (SCC) in each iteration.

Our contribution lies not only in the design of this algorithm, but also in its analysis. For Kesten
and Ünver [2015], it is easy to establish equivalence between FDA-Cycle and FDA because FDA-
Cycle exactly follows a serialization of FDA, simply skipping-forward intermediate blocks of
infinitely many iterations across individual rejection cycles. Unfortunately, this is not the case for
DFDA-SCC: it is possible that one of its intermediate matchings may never be produced during
any serialization of DFDA. It is still possible that DFDA-SCC is equivalent to DFDA by eventually
producing the same matching (which would establish its proposer-optimality), but, sadly, we are
unable to prove so and leave this as an open question. This is discussed at length in Section 6.
Nonetheless, we are able to establish doubly-strong ex ante stability of DFDA-SCC, in addition to
polynomial-time convergence. This is our main result with an intricate proof.

Theorem 2. DFDA-SCC (Algorithm 2) terminates in polynomial time and returns a doubly-strong

ex ante stable matching.

Description of DFDA-SCC. Let us describe what DFDA-SCC (Algorithm 2) intuitively does.
The basis of our algorithm is the proposal graph, a directed bipartite graph in which there is a

node for each proposer and acceptor. Each proposer 𝑖 has directed edges to her most-preferred
acceptors who have not yet rejected her; these are the acceptors she will propose to next. Each
acceptor 𝑗 has directed edges to her least-preferred proposers that she is matched to (and among
this set, the ones who currently have the highest degree of match to 𝑗); if 𝑗 wishes to fractionally
reject existing matches to accept proposals from more-preferred proposers, these are the proposers
she will start rejecting.

In each iteration, the algorithm partitions the proposers into groups based on whether they are
part of the same strongly connected component (SCC) of the current proposal graph and sorts these
groups according to the topological order of the proposal graph. Then, it “resolves” each group
(and its corresponding SCC) via a linear program (LP). For any proposer 𝑖 , the SCC of the proposer
graph that contains 𝑖 is guaranteed to include all cycles containing 𝑖 , as well as some “higher-order
cycles” that cause infinite loops like in Section 3.
The algorithm terminates when all proposers have no free weight remaining, which we will

prove must occur after a polynomial number of iterations.
Description of LP-SCC. The linear program at the heart of each step of the algorithm is shown
in Figure 4. At a high level, this LP works by maximizing the amount of total weight proposed
for a given connected component, while being constrained by the expected rules that dictate
how proposals and rejection work in DFDA as well as additional conditions to ensure that the LP
simulates proposal/rejection only up to the point where the proposal graph would change.
In more detail, the main variables in the LP are 𝑦-s and 𝑧-s. For each 𝑖 ∈ 𝑁 , 𝑦𝑖 denotes the total

weight that 𝑖 proposes in the current iteration, of which 𝑦𝑖 𝑗 denotes the weight proposed to 𝑗 ∈ 𝑀 .
Similarly, for each acceptor 𝑗 ∈ 𝑀 , 𝑧 𝑗 denotes the total weight rejected by 𝑗 in the current iteration,
of which 𝑧 𝑗𝑖 denotes the weight that 𝑗 rejects from 𝑖 .
The first four constraints dictate how proposers can propose.
• Constraints (1) and (2)—∀𝑖 ∈ 𝐶𝑡 , 𝑦𝑖 ⩽

∑
𝑗 ∈𝑀 𝑧 𝑗𝑖 + 𝑤𝑖 and ∀𝑖 ∉ 𝐶𝑡 , 𝑦𝑖 = 0—ensure that only

proposers from the current SCC 𝐶𝑡 being resolved propose, and they propose weight that is

Benjamin Cookson and Nisarg Shah 11

ALGORITHM 2: DFDA-SCC
1 ∀𝑖 ∈ 𝑁,𝑤𝑖 ← 1 and 𝑃𝑖 ← 𝐸𝑖1 // Free weight of 𝑖 and acceptors 𝑖 will propose to next

2 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀,𝑥𝑖 𝑗 ← 0 // Current matching

3 𝐺 ← {(𝑖, 𝑗) : 𝑗 ∈ 𝑃𝑖 } // Proposal graph with only proposing edges, no rejections yet

4 while ∃𝑖 ∈ 𝑁,𝑤𝑖 > 0 do
// Key step: SCC decomposition of the rejection graph

5 𝐶1, . . . ,𝐶𝑘 ← Partition 𝑁 into strongly connected components based on 𝐺 , sorted topologically
6 for 𝑡 ∈ [𝑘] do
7 if ∃𝑖 ∈ 𝐶𝑡 such that𝑤𝑖 > 0 then

// Resolve the SCC via an LP and update the matching

8 𝑦∗, 𝑧∗ ← An optimal solution to the linear program LP-SCC (given in Figure 4) for 𝐶𝑡
9 for 𝑖 ∈ 𝑁 do

10 for 𝑗 ∈ 𝑀 do

11 𝑥𝑖 𝑗 ← 𝑥𝑖 𝑗 + 𝑦∗𝑖 𝑗 − 𝑧
∗
𝑗𝑖

// Update matching

12 end

13 𝑤𝑖 ←
∑

𝑗 ∈𝑀 𝑧∗
𝑗𝑖
+𝑤𝑖 − 𝑦∗𝑖 // Update free weights

14 end

// Collect information for updating acceptors’ edges

15 for 𝑗 ∈ 𝑀 do

16 if

��𝑥 𝑗 �� = 1 then
17 𝑋 𝑗 ←

{
𝑖 ∈ 𝑁 : 𝑥𝑖 𝑗 > 0

}
// Proposers matched to 𝑗

18 ℓ ← max
{
𝑘 : 𝑋 𝑗 ∩ 𝐸 𝑗,𝑘 ≠ ∅

}
19 𝐴 𝑗 ← 𝐸 𝑗,ℓ // Least-preferred proposers

20 𝐴∗
𝑗
← argmax𝑖∈𝐴 𝑗

𝑥𝑖 𝑗 // Proposers from 𝐴 𝑗 with max matched weight

21 𝑅 𝑗 ← 𝐴∗
𝑗
∪ {𝑖 ∈ 𝑁 : 𝑖 ∈ 𝐸 𝑗,ℓ′, ℓ ′ > ℓ} // Updated set of rejected proposers

22 end

23 end

// Collect information for updating proposers’ edges

24 for 𝑖 ∈ 𝑁 do

25 𝑅𝑖 ←
{
𝑗 ∈ 𝑀 : 𝑖 ∈ 𝑅 𝑗

}
// Acceptors who have rejected 𝑖

26 ℓ ← min
{
𝑘 : 𝐸𝑖,𝑘 ⊈ 𝑅𝑖

}
27 𝑃𝑖 ← 𝐸𝑖,ℓ \ 𝑅𝑖 // Most-preferred acceptors who haven’t rejected 𝑖

28 end

// Update the proposal graph

29 𝐺 ′ ← {(𝑖, 𝑗) : 𝑗 ∈ 𝑃𝑖 } ∪
{
(𝑗, 𝑖) : 𝑖 ∈ 𝐴∗

𝑗

}
// New proposal graph

30 if 𝐺 ′ ≠ 𝐺 then // Proposal graph changed, restart the outer loop
31 𝐺 ← 𝐺 ′

32 Go to the start of the While loop (Line 4)
33 end

34 end

35 end

36 end

37 return 𝑥

at most the sum of their free weight and their total rejected weight from the current iteration
(that is, they cannot propose more weight than they have). The inequality rather than a strict

Benjamin Cookson and Nisarg Shah 12

maximize
∑︁
𝑖∈𝑁

𝑦𝑖

subject to // Constraints on proposals

(1) ∀𝑖 ∈ 𝐶𝑡 : 𝑦𝑖 ⩽
∑

𝑗 ∈𝑀 𝑧 𝑗𝑖 +𝑤𝑖

(2) ∀𝑖 ∉ 𝐶𝑡 : 𝑦𝑖 = 0
(3) ∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑃𝑖 : 𝑦𝑖 𝑗 = 𝑦𝑖/|𝑃𝑖 |
(4) ∀𝑖 ∈ 𝑁,∀𝑗 ∉ 𝑃𝑖 : 𝑦𝑖 𝑗 = 0

// Constraints on rejections

(5) ∀𝑗 ∈ 𝑀,
��𝑥 𝑗 �� = 1 : 𝑧 𝑗 =

∑
𝑖∈𝑁 𝑦𝑖 𝑗

(6) ∀𝑗 ∈ 𝑀,
��𝑥 𝑗 �� < 1 : 𝑧 𝑗 = 0

(7) ∀𝑗 ∈ 𝑀,∀𝑖 ∈ 𝐴∗𝑗 : 𝑧 𝑗𝑖 = 𝑧 𝑗/|𝐴∗𝑗 |
(8) ∀𝑗 ∈ 𝑀,∀𝑖 ∉ 𝐴∗𝑗 : 𝑧 𝑗𝑖 = 0

// Constraints that stop the flow at discrete structural changes

(9) ∀𝑗 ∈ 𝑀,
��𝑥 𝑗 �� < 1 :

∑
𝑖∈𝑁 𝑦𝑖 𝑗 ⩽ 1 −

��𝑥 𝑗 ��
(10) ∀𝑗 ∈ 𝑀,∀𝑖 ∈ 𝐴∗𝑗 ,∀𝑖 ′ ∈ 𝐴 𝑗 \𝐴∗𝑗 : 𝑥𝑖 𝑗 − 𝑧 𝑗𝑖 ⩾ 𝑥𝑖′ 𝑗 + 𝑦𝑖′ 𝑗
(11) ∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑀 : 𝑧 𝑗𝑖 ⩽ 𝑥𝑖 𝑗

Fig. 4. Linear program LP-SCC used to resolve a strongly connected component in DFDA-SCC (Algorithm 2).

equality in Constraint (1) allows proposers to retain some free weight in the end, which is
key to solving the problem as a series of continuous flow problems rather than a series of
discrete proposal-rejection sequences.
• Constraint (3) and (4)—∀𝑖 ∈ 𝑁,𝑦𝑖 𝑗 = 𝑦𝑖/|𝑃𝑖 |,∀𝑗 ∈ 𝑃𝑖 and 𝑦𝑖 𝑗 = 0,∀𝑗 ∉ 𝑃𝑖—ensures that
proposers propose only to their most-preferred acceptors who have not rejected them and
propose an equal amount to them.

The next four constraints dictate how acceptors handle the weight proposed to them.
• Constraints (5) and (6)—∀𝑗 ∈ 𝑀,𝑧 𝑗 =

∑
𝑖∈𝑁 𝑦𝑖 𝑗 when

��𝑥 𝑗 �� = 1 and 𝑧 𝑗 = 0 when
��𝑥 𝑗 �� < 1—

stipulate that a saturated (fully matched) acceptor must reject exactly as much weight as she
accepts, while a non-saturated acceptor must not reject. Constraint (9) later ensures that such
an acceptor does not accept more weight than her remaining match capacity. This ensures
that once an acceptor becomes saturated, they remain saturated for the rest of the algorithm.
• Constraints (7) and (8)—∀𝑗 ∈ 𝑀,𝑧 𝑗𝑖 = 𝑧 𝑗/|𝐴∗𝑗 | for all 𝑖 ∈ 𝐴∗𝑗 and 𝑧 𝑗𝑖 = 0 for all 𝑖 ∉ 𝐴∗𝑗—ensure
fair rejections. Only the least-preferred matched acceptors with the highest matched weight
(those in 𝐴∗𝑗) are rejected, and they are rejected equally. Constraint (10) stops the LP once
this highest matched weight reduces to the next-highest level, at which point a new acceptor
from 𝐴 𝑗 must be added to 𝐴∗𝑗 by the algorithm.

This leaves constraint (11)—∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑀,𝑧 𝑗𝑖 ⩽ 𝑥𝑖 𝑗 . This states that an acceptor cannot
reject more weight from a proposer than it has available to reject. We do not have to consider any
incoming proposed weight from 𝑖 to 𝑗 because, due to constraint (8), 𝑧 𝑗𝑖 can only be positive if

Benjamin Cookson and Nisarg Shah 13

𝑖 ∈ 𝐴∗𝑗 , in which case 𝑖 will not be proposing any weight to 𝑗 in this iteration, or for the remainder
of the algorithm.
The LP maximizes

∑
𝑖∈𝑁 𝑦𝑖 , i.e., the total amount of weight proposed by the proposers. The

optimal solution (𝑦∗, 𝑧∗) is used by DFDA-SCC to update the matching and the proposal graph.

5.1 Analysis of DFDA-SCC

We are now ready to begin proving polynomial-time termination and doubly-strong ex ante stability
of DFDA-SCC (Theorem 2).

5.1.1 Proof of polynomial-time termination. First, we introduce several suites of technical lemmas
that help relate the behavior of DFDA-SCC to well-known properties of deferred-acceptance-style
algorithms. As such, these results are quite intuitive once one understands what DFDA-SCC is
doing on a high-level, but are used extensively later to formally prove its characteristics. Some of
these lemmas rely on additional lemmas that are presented in Appendix D.
The first group of lemmas relate to how the acceptors in the DFDA-SCC algorithm handle

rejections. Intuitively, these relate to the fact that after each step of the algorithm, the acceptors get
weakly better off as they are offered more proposals and get to carefully pick their favorites. We
defer the proof of these lemmas to Appendix D.

Lemma 1. For any acceptor 𝑗 ∈ 𝑀 , if at any point during the execution of Algorithm 2 we have��𝑥 𝑗 �� = 1, then
��𝑥 𝑗 �� = 1 will remain true for the rest of the algorithm.

Lemma 2. For any 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , at any point of Algorithm 2, if 𝑖 ∈ 𝑅 𝑗 is true, then for all 𝑖 ′ ∈ 𝑁
such that 𝑖 ∼𝑗 𝑖 ′, 𝑥𝑖 𝑗 ⩾ 𝑥𝑖′ 𝑗 will remain true for the rest of the algorithm.

Lemma 3. For any 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , at any point of Algorithm 2, if 𝑖 ∈ 𝑅 𝑗 becomes true, then 𝑖 ∈ 𝑅 𝑗

will remain true for the rest of the algorithm.

The next suite of lemmas revolve around a structural observation relating the last three constraints
of LP-SCC to key events in the algorithm, which cause progress to be made. Specifically, all these
events revolve around changes to the proposal graph, which correspond to proposers being either
rejected for the first time by an acceptor, or fully rejected from an acceptor. As we will show,
keeping track of such changes is crucial for arguing polynomial-time termination.

Lemma 4. In any solution to the LP, one of the following will be true:

• (A) ∀𝑖 ∈ 𝐶𝑡 , 𝑦𝑖 =
∑

𝑗 ∈𝑀 𝑧 𝑗𝑖 +𝑤𝑖

• (B) ∃ 𝑗 ∈ 𝑀,
��𝑥 𝑗 �� < 1,

∑
𝑖∈𝑁 𝑦𝑖 𝑗 = 1 − 𝑥 𝑗

• (C) ∃𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀,𝑥𝑖 𝑗 > 0, 𝑧 𝑗𝑖 = 𝑥𝑖 𝑗 .

• (D) ∃ 𝑗 ∈ 𝑀, ∃𝑖 ∈ 𝐴∗𝑗 , ∃𝑖 ′ ∈ 𝐴 𝑗 \𝐴∗𝑗 , 𝑥𝑖 𝑗 − 𝑧 𝑗𝑖 = 𝑥𝑖′ 𝑗 + 𝑦𝑖′ 𝑗 .

Proof. For contradiction, assume that for some proposal graph𝐺 , component 𝐶𝑡 , and existing
(𝑥,𝑤), the corresponding LP outputs a solution where none of these conditions are true.
First, because condition (A) is false, that means there exists some agent 𝑖∗ ∈ 𝐶𝑡 such that

𝑦𝑖∗ <
∑

𝑗 ∈𝑀 𝑧 𝑗𝑖∗ +𝑤𝑖∗ . Intuitively, this means that after the LP has been resolved and the current
matching has been updated with the values of 𝑦∗, 𝑧∗, 𝑖∗ will have free weight remaining.

We can show that, since conditions (B), (C), and (D) are also all false, 𝑖∗ should be able to propose
more of their weight without violating the constraints of the LP, leading to a contradiction of the
fact that the LP returns a solution maximizing the sum of proposed weights over all the proposers.
Consider what happens if the value of 𝑦𝑖∗ increases by some very small 𝜀. For each 𝑗 ∈ 𝑃𝑖∗ , the

value of 𝑦𝑖∗ 𝑗 will increase by 𝜀/|𝑃𝑖∗ |. For each of these 𝑗 ’s, if
��𝑥 𝑗 �� < 1, then by the fact that condition

Benjamin Cookson and Nisarg Shah 14

(B) is false, we know that
∑

𝑖∈𝑁 𝑦𝑖 𝑗 < 1 −
��𝑥 𝑗 �� must be true. As long as epsilon is sufficiently small,

it will be the case that
∑

𝑖∈𝑁 𝑦𝑖 𝑗 + 𝜀/|𝑃𝑖∗ | ⩽ 1 −
��𝑥 𝑗 �� as well.

Additionally, for all the 𝑗 ∈ 𝑃𝑖∗ such that
��𝑥 𝑗 �� = 1, then increasing the proposals to 𝑗 means

that it will have to reject more of the agents in 𝐴∗𝑗 . Specifically, since proposals to 𝑗 are increasing
by 𝜀/|𝑃𝑖∗ |, 𝑗 will increase its rejection of each proposer in 𝐴∗𝑗 by a factor of 𝜀/(|𝑃𝑖∗ | |𝐴∗𝑗 |). Due to
condition (C) and (D), such a change will always be possible. We must have that for all 𝑖 ∈ 𝐴∗𝑗 ,
𝑧 𝑗𝑖 < 𝑥𝑖 𝑗 , and for all 𝑖 ′ ∈ 𝐴 𝑗 \ 𝐴∗𝑗 , we have that 𝑥𝑖 𝑗 − 𝑧 𝑗𝑖 > 𝑥𝑖′ 𝑗 + 𝑦𝑖′ 𝑗 . Thus, given 𝜀 is sufficiently
small, the inequalities 𝑧 𝑗𝑖 + 𝜀/(|𝑃𝑖∗ | |𝐴∗𝑗 |) < 𝑥𝑖 𝑗 and 𝑥𝑖 𝑗 − 𝑧 𝑗𝑖 − 𝜀/(|𝑃𝑖∗ | |𝐴∗𝑗 |) > 𝑥𝑖′ 𝑗 +𝑦𝑖′ 𝑗 will still hold.
One can easily verify that the rest of the constraints of the LP will trivially hold after this 𝜀

increase as well, as they are all equality constraints that we already implicitly handled above, or
have no relation to the variables that we changed.
The above procedure will increase 𝑦𝑖∗ by a factor of 𝜀, while maintaining all the necessary

inequalities of the LP provided that 𝜀 is sufficiently small, giving the desired contradiction. □

Lemma 4 intuitively states the following: After any iteration of the algorithm, one of these
conditions will be true:
• (A) All proposers in 𝐶𝑡 have no free weight.
• (B) Some acceptor that was not full at the beginning of the iteration becomes full.
• (C) Some proposer is fully rejected from some acceptor.
• (D) Some proposer is added to 𝐴∗𝑗 for some acceptor 𝑗 .

(A) is a special condition as the proposers not having any free weight is what we want to happen
to ensure termination with a perfect matching. The other three conditions, (B), (C), and (D), all
correspond to the previously mentioned changes in the proposal graph. We show this formally in
Lemma 5, the proof of which is deferred to Appendix D.

Lemma 5. Let 𝑦∗, 𝑧∗ be the variables after resolving some LP in Algorithm 2. The process of updating

the current matching using 𝑦∗, 𝑧∗ will change the proposer graph only if at least one of the conditions

(B), (C) or (D) are true.

With this, we can next prove Lemma 6, which shows how the algorithm will come to terminate.

Lemma 6. In some iteration of the main while loop in Algorithm 2, if for every component 𝐶𝑡 of

proposers, the LP run on 𝐶𝑡 terminates with only condition (A) being true, then the matching produced

by the last component being solved will be a perfect matching.

Proof. First note that due Lemma 5, since conditions (B), (C), and (D) are never true during such
an iteration of the while loop, the proposal graph will never change, and thus the LP will run on
every strongly connected component of proposers.
By definition of condition (A), if an LP for component 𝐶𝑡 terminates with (A) being true, then

each proposer in 𝐶𝑡 will have no free weight after the matching is updated with the LP values.
Further, from the fact that the components are solved in a topological ordering, if an agent 𝑖 ∈ 𝐶𝑡

does not have any free weight after 𝐶𝑡 is solved, then there is no component 𝐶𝑡 ′ with 𝑡 ′ > 𝑡 whose
solution will result in new free weight being pushed back to 𝑖 .
To formalize this, we can say that for every 𝐶𝑡 ′ ordered after 𝐶𝑡 , and for all 𝑖 ′ ∈ 𝐶𝑡 ′ , 𝑖 is not

reachable from 𝑖 ′ in the proposal graph. This means that if there is an edge (𝑖 ′, 𝑗) for some 𝑗 ∈ 𝑀
in the proposal graph, then there cannot be an edge (𝑗, 𝑖) in the graph as well.
It can easily be seen from conditions (5) and (6) of the LP that for any 𝑗 ∈ 𝑀 , 𝑧 𝑗 > 0 only if

𝑦𝑖′ 𝑗 > 0 for some 𝑖 ′ ∈ 𝑁 . Since for an execution of the LP on 𝐶𝑡 ′ , the only proposers that propose
their weight are proposers in 𝐶𝑡 ′ , we have that for any 𝑗 ∈ 𝑀 , 𝑦𝑖′ 𝑗 > 0 only if 𝑖 ′ ∈ 𝐶𝑡 ′ and (𝑖 ′, 𝑗) is
an edge in the proposal graph. Therefore, for any 𝐶𝑡 ′ ordered after 𝐶𝑡 , there will never be a 𝑗 ∈ 𝑀

Benjamin Cookson and Nisarg Shah 15

in the LP solving 𝐶𝑡 ′ such that 𝑧 𝑗𝑖 > 0. Thus, for all 𝑖 ∈ 𝐶𝑡 , we will have
∑

𝑗 ∈𝑀 𝑧 𝑗𝑖 = 0, meaning
that𝑤𝑖 = 0 after updating the matching with the new values from the LP. □

Finally, leveraging all these technical lemmas, we can show that at each step of DFDA-SCC,
progress will be made, changing the proposal graph, and allowing the algorithm to terminate after
a polynomial number of iterations.

Theorem 3. Algorithm 2 terminates in polynomial time, and will output a perfect matching.

Proof. Each iteration of the main for loop simply runs an LP with the number variables and
constraints being polynomial in the number of agents, then updates the proposal graph. Clearly a
single iteration of this loop terminates in polynomial time,8 and since it runs once for each strongly
connected component in the proposal graph, each instance of this for loop will have at most |𝑁 |
iterations. Therefore, we just need to show that the algorithm terminates after a polynomial number
of iterations of the main while loop.

From Lemma 4, we know when we run the LP on a component𝐶𝑡 , one of four listed conditions—
(A), (B), (C), or (D)—must be true.

Condition (A) represents that the LP was able to resolve all the free weight from the proposers
in𝐶𝑡 . From Lemma 6, we know that if this happens for every component in a given iteration of the
while loop, the the algorithm will terminate with a perfect matching after that iteration.

The other three conditions all correspond to events that cause the proposer graph to change,
and thus move the algorithm forward. We will show that each of these conditions can only occur
polynomial number of times.

If condition (B), ∃ 𝑗 ∈ 𝑀,
��𝑥 𝑗 �� < 1,

∑
𝑖∈𝑁 𝑦𝑖 𝑗 = 1 −

��𝑥 𝑗 ��, is true, that means that there existed some
acceptor 𝑗 that was not full at the beginning of the LP, but is full afterwards. From Lemma 1, we
know that this can only happen at most |𝑀 | times during the algorithm, since once an acceptor
become full, its weight cannot go down again.
If condition (C), ∃𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀,𝑥𝑖 𝑗 > 0, 𝑧 𝑗𝑖 = 𝑥𝑖 𝑗 , is true, this means that some proposer 𝑖 did

have weight matched with some acceptor 𝑗 at the beginning of the LP, but was fully rejected from
𝑗 by the results of the LP. By condition (8) of the LP, we can see that 𝑧 𝑗𝑖 can only be positive if
𝑖 ∈ 𝐴∗𝑗 is true. 𝑖 ∈ 𝐴∗𝑗 implies that 𝑖 ∈ 𝑅 𝑗 is true, and by Lemma 3, this means that 𝑖 ∈ 𝑅 𝑗 will remain
true for every future step of the algorithm. 𝑖 ∈ 𝑅 𝑗 also implies that 𝑗 ∈ 𝑃𝑖 cannot be true. Finally,
following from condition (4) of the LP, in any future iteration of the algorithm, 𝑦𝑖 𝑗 can only be true
if 𝑗 ∈ 𝑃𝑖 is true. This means that once 𝑖 is fully rejected from 𝑗 , it can never increase again. Thus,
this can only happen once for every 𝑖 and 𝑗 , meaning it only happens |𝑁 | |𝑀 | times total.
Finally, if condition (D), ∃ 𝑗 ∈ 𝑀, ∃𝑖 ∈ 𝐴∗𝑗 , ∃𝑖 ′ ∈ 𝐴 𝑗 \𝐴∗𝑗 , 𝑥𝑖 𝑗 − 𝑧 𝑗𝑖 = 𝑥𝑖′ 𝑗 + 𝑦𝑖′ 𝑗 is true, this means

that there is some acceptor 𝑗 , and some proposer 𝑖 that is in 𝐴 𝑗 (among the lowest equivalency
class proposers matched to 𝑗), but not in 𝐴∗𝑗 (does not have the most weight matched to 𝑗 among
proposers in 𝐴 𝑗) who becomes tied for having the most weight matched to 𝑗 among proposers
in 𝐴 𝑗 , either by 𝑥𝑖 𝑗 increasing and/or 𝑥𝑖′ 𝑗 decreasing for all 𝑖 ′ ∈ 𝐴∗𝑗 . We note that an LP can only
terminate with this condition being true once for every 𝑖, 𝑖 ′ 𝑗 pair, meaning that it can only happen
at most |𝑁 |2 |𝑀 | times throughout the course of the algorithm.
To see this, first note that condition (D) being true implies that 𝑖 and 𝑖 ′ will be matched to 𝑗

in the same amount after updating the matching with the LP results. This is because we have

8Crucially, note that the optimal solution (𝑦∗, 𝑧∗) of each LP affects the updated matching 𝑥 , which is involved in the right
hand side of the subsequent LP. If one uses an arbitrary polynomial-time solver for LPs, this may cause an exponential
blow-up in the bit-complexity of the successive LPs and, hence, the time it takes to solve them. This can be prevented by
using a polynomial-time algorithm for solving LPs whose running time is independent of the bit-complexity of the right
hand side, such as that of Tardos [1986].

Benjamin Cookson and Nisarg Shah 16

𝑥𝑖 𝑗 − 𝑧 𝑗𝑖 = 𝑥𝑖′ 𝑗 +𝑦𝑖′ 𝑗 , and we also know from the fact that 𝑖 ∈ 𝐴∗𝑗 that 𝑦𝑖 𝑗 = 0, and from the fact that
𝑖 ′ ∉ 𝐴∗𝑗 that 𝑧 𝑗𝑖′ = 0.

Next, note that 𝑖 ∈ 𝐴∗𝑗 before the LP execution implies that either 𝑖 ∈ 𝐴∗𝑗 or 𝑖 ∈ 𝑅 𝑗 \𝐴∗𝑗 must be
true after updating the matching. This follows from Lemma 3. If 𝑖 ∈ 𝐴∗𝑗 is true, then by the fact that
𝑖 and 𝑖 ′ are now matched to 𝑗 with the same amount, then 𝑖 ′ ∈ 𝐴∗𝑗 is also true. If 𝑖 ∈ 𝑅 𝑗 \𝐴∗𝑗 is true,
then 𝑖 , and thus, 𝑖 ′ must be matched to 𝑗 at weight 0, and therefore 𝑖 ′ ∈ 𝑅 𝑗 \𝐴∗𝑗 must also be true.
Either way, we have that 𝑖 ′ ∈ 𝑅 𝑗 is true. By Lemma 3, we know that 𝑖 ′ will never leave 𝑅 𝑗 for the
remainder of the algorithm, so therefore, it can never be in 𝐴 𝑗 \𝐴∗𝑗 again, and thus condition (D)
cannot repeat with these agents.
This means that after at most (|𝑁 | |𝑀 |) + (|𝑁 |2 |𝑀 |) + |𝑀 | iterations of the main while loop,

either conditions (B), (C), and (D) will have have occurred their maximum number of times, or the
algorithm has terminated.
Thus, if the algorithm has not terminated at this point, then in the next iteration of the while

loop, condition (A) and none of the other conditions are true after each LP is solved. Following
from Lemma 6, the algorithm will terminate after this iteration. □

5.1.2 Proof of doubly-strong ex ante stability. Finally, we will show that the perfect matching that
Algorithm 2 returns in polynomial time will be doubly-strong ex-ante stable.

Theorem 4. The matching produced by Algorithm 2 is doubly-strong ex-ante stable.

Proof. First, we will show that Algorithm 2 returns an allocation that is ex-ante stable. For
contradiction, assume this is false. This means that there are some 𝑖, 𝑖 ′ ∈ 𝑁 and 𝑗, 𝑗 ′ ∈ 𝑀 such that
𝑗 ≻𝑖 𝑗 ′, 𝑖 ≻𝑗 𝑖 ′, 𝑥𝑖 𝑗 ′ > 0, and 𝑥𝑖′ 𝑗 > 0 are all true.
Note that if 𝑥𝑖 𝑗 ′ > 0, that means that at some point of Algorithm 2, 𝑗 ′ ∈ 𝑃𝑖 must have been true.

This means that 𝑖 ∈ 𝑅 𝑗 must have been true at that point, or else, 𝑗 ∈ 𝑃𝑖 would have been the case
instead. 𝑖 ∈ 𝑅 𝑗 implies that 𝑗 can only be currently matched to agents that are weakly preferred to
𝑖 , and therefore strictly preferred to 𝑖 ′. Thus, we must have that 𝑥𝑖′ 𝑗 = 0 and 𝑖 ′ ∈ 𝑅 𝑗 at this point.
By Lemma 3, 𝑖 ′ will remain in 𝑅 𝑗 for the rest of the algorithm, and therefore cannot be positively
matched to 𝑗 in the final output, causing a contradiction.
Next we will prove that Algorithm 2 has no ex-ante discrimination for the proposers. For

contradiction, assume this is false. Then there are 𝑖, 𝑖 ′ ∈ 𝑁 , 𝑗, 𝑗 ′ ∈ 𝑀 such that 𝑖 ∼𝑗 𝑖 ′, 𝑗 ≻𝑖 𝑗 ′,
𝑥𝑖 𝑗 ′ > 0, and 𝑥𝑖′ 𝑗 > 𝑥𝑖 𝑗 are all true.

As in the argument for ex-ante stability, 𝑥𝑖 𝑗 ′ > 0 means that at some step of the algorithm,
𝑗 ′ ∈ 𝑃𝑖 , thus 𝑖 ∈ 𝑅 𝑗 . Thus, immediately from Lemma 2, we can conclude that 𝑥𝑖 𝑗 ⩾ 𝑥𝑖′ 𝑗 , giving a
contradiction.
Next, we will prove that the matching produced by Algorithm 2 has no ex-ante discrimination

for the acceptors. For contradiction, assume this is false. Then there are 𝑗, 𝑗 ′ ∈ 𝑀 , 𝑖, 𝑖 ′ ∈ 𝑁 such
that 𝑗 ∼𝑖 𝑗 ′, 𝑖 ≻𝑗 𝑖 ′, 𝑥𝑖′ 𝑗 > 0, and 𝑥𝑖 𝑗 ′ > 𝑥𝑖 𝑗 .
Since, 𝑥𝑖′ 𝑗 > 0 we know that 𝑖 ∉ 𝑅 𝑗 was true at every point of the algorithm. Note that by the

condition (3) of the LP, whenever 𝑖 proposes any of its weight to 𝑗 ′, since 𝑖 ∈ 𝑅 𝑗 was never true, it
must be the case that 𝑖 will always propose an equal amount of weight to 𝑗 . Thus, the only way that
𝑥𝑖 𝑗 ′ > 𝑥𝑖 𝑗 could be true is if 𝑗 ever rejected some weight from 𝑖 , which is not possible due to 𝑖 ∉ 𝑅 𝑗 .

Finally, we will prove that 𝑥 is ex-ante indifference neutral. For contradiction, assume this is
false, and there exists agents 𝑖, 𝑖 ′ ∈ 𝑁 , 𝑗, 𝑗 ′ ∈ 𝑀 , such that 𝑗 ∼𝑖 𝑗 ′, 𝑖 ∼𝑗 𝑖 ′, 𝑥𝑖 𝑗 < 𝑥𝑖 𝑗 ′ and 𝑥𝑖 𝑗 < 𝑥𝑖′ 𝑗 .

Note that 𝑥𝑖 𝑗 < 𝑥𝑖 𝑗 ′ implies that at some step in the algorithm, we had 𝑖 ∈ 𝑅 𝑗 . This follows from
the fact that if 𝑖 ∈ 𝑅 𝑗 was never true, then in an identical argument to the previous paragraph, we
know that every time 𝑖 proposed to 𝑗 ′ it must have also proposed the same amount to 𝑗 . Thus, if
𝑖 ∈ 𝑅 𝑗 were never true, it would have to be the case that 𝑥𝑖 𝑗 ⩾ 𝑥𝑖 𝑗 ′ .

Benjamin Cookson and Nisarg Shah 17

However, 𝑥𝑖 𝑗 < 𝑥𝑖′ 𝑗 implies that 𝑖 ∈ 𝑅 𝑗 was never true at any point in the algorithm. This follows
from Lemma 2, as 𝑖 ∈ 𝑅 𝑗 would imply 𝑥𝑖 𝑗 ⩾ 𝑥𝑖′ 𝑗 . This along with the paragraph above clearly
cannot be true at the same time, giving us the desired contradiction. □

Together, Theorems 3 and 4 yield the two claims made in Theorem 2, concluding its proof.

6 Discussion

While we have established polynomial-time computation of a doubly-strong ex ante stable matching,
many exciting questions remain open.

The lingering issue of equivalence to DFDA and proposer-optimality. Recall that both our
infinite procedure DFDA and polynomial-time algorithm DFDA-SCC produce a doubly-strong ex
ante stable matching, but DFDA has the additional guarantee that its matching is proposer-optimal.
Sadly, we are unable to prove proposer-optimality of DFDA-SCC or its equivalence to DFDA.9
First, notice that in Line 7 of DFDA-SCC, we stipulate the condition that a strongly connected

component𝐶𝑡 is resolved via LP-SCC only if there is some proposer 𝑖 ∈ 𝐶𝑡 with free weight𝑤𝑖 > 0.
This condition actually plays no role in our proofs; Theorem 2 holds with or without it. We enforce
it because in its absence DFDA-SCC would engage in extraneous proposals/rejections that are not
part of DFDA; we provide an elaborate explanation of this in Appendix E.
While the addition of this condition brings DFDA-SCC closer to mimicking DFDA, there is

another missing ingredient to reach full equivalence. In DFDA, each proposer proposers her entire
free weight in any given iteration. In contrast, in DFDA-SCC, proposers in the strongly connected
component resolved in a given iteration may retain some free weight at the end of the iteration, and
this flexibility is crucial for DFDA-SCC to work. In the deferred acceptance literature, it generally
holds that the order in which the proposers propose does not alter the final outcome; McVitie and
Wilson [1971] prove this for the original DA algorithm of Gale and Shapley [1962] and Kesten
and Ünver [2015] show this for FDA.10 But we need a stronger independence condition that the
final outcome is independent not only of the order of proposals, but also of the amount of weight
proposed; that is, we need it to hold that the final matching remains the same even if an arbitrary

proposer proposes an arbitrary fraction of her free weight in each iteration. We conjecture that this
is true, which would make DFDA-SCC the first polynomial-time algorithm for computing the FDA
matching with indifferences only on one side and the DFDA matching in our generalized domain
with indifferences on both sides.

Conjecture: DFDA-SCC always returns the DFDA matching (which is also the FDA match-
ing when proposers have strict preferences).

Ex ante indifference neutrality and Pareto optimality. In Section 2, we remarked that it is not
clear if our ex ante indifference neutrality criterion is intuitively desirable. The following example
9Equivalence to DFDA would imply proposer-optimality, but the converse is not true. This is because our reduction to
the framework of Alkan and Gale [2003] in the proof of Theorem 1 induces artificial strict preferences, which makes
doubly-strong ex ante stable matchings form a lattice structure, whose unique proposer-optimal matching DFDA finds.
But the original weak preferences may admit other proposer-optimal matchings too; see Appendix F for an example.
Hence, simply establishing proposer-optimality of DFDA-SCC under the actual weak preferences would not establish its
equivalence to DFDA. This is not the case for Kesten and Ünver [2015], who assume strict proposer preferences and thus
enjoy a unique proposer-optimal strongly ex ante stable matching.
10Technically, they only prove that FDA-Cycle returns a unique matching regardless of its tie-breaking. FDA-Cycle does
not cover all possible orders of proposals as, once proposers propose along one rejection cycle, it must follow infinitely
many proposals along the same cycle and converge to the resulting matching before continuing. A truly general claim
would require analyzing all such “sequences” where some proposals are preceded by infinitely many others.

Benjamin Cookson and Nisarg Shah 18

shows one formal reason why it may be undesirable: it is incompatible with Pareto optimality (or,
rather, ordinal Pareto undomination). A concrete example is given in Appendix F. Kesten and Ünver
[2015] show that one can cyclically shift matched weights in the FDA matching to find ordinal
improvements for the proposers that retain ex ante stability but introduce ex ante discrimination
among proposers; this yields an ex ante stable matching that is ordinally Pareto undominated
by any other ex ante stable matching. But whether true ordinal Pareto undomination (by any
other matching) can be achieved, possibly while also retaining no ex ante discrimination among
proposers and acceptors, remains to be seen.

Open Question:When both proposers and acceptors have weak preferences, does there
always exist a fractional matching that is ex ante stable, has no ex ante discrimination
among proposers and acceptors, and is ordinally Pareto undominated? What if agents on
one side (e.g., proposers) have strict preferences?

Ex ante indifference neutrality nonetheless plays a key role in our reduction to the framework of
Alkan and Gale [2003] for establishing proposer-optimality of the DFDA matching among the set
of doubly-strong ex ante stable matchings (Theorem 1). We believe that it should be possible to
drop ex ante indifference neutrality to make the statement stronger:

Conjecture: The DFDA matching is in fact proposer-optimal within the broader set of
matchings satisfying ex ante stability and no ex ante discrimination among both proposers
and acceptors (but not necessarily ex ante indifference neutrality).

Intuitively, if some proposer 𝑖 strictly prefers the change from the DFDA matching to another
matching, then there must be a shift of matched weights across strict preferences of 𝑖 , which should
lead to the new matching violating one of the other three axioms.

Match capacities. Many of the real-world applications of two-sided matching mentioned in
Section 1 involve many-to-one or many-to-many matchings. In most models, including that of
Kesten and Ünver [2015], each acceptor 𝑗 can be matched to 𝑐 𝑗 ⩾ 1 proposers, but each proposer
can only be matched to a single acceptor. All our results easily extend to this model; the only
change needed is that each acceptor 𝑗 rejects excess weight to reduce its matched weight back
to 𝑐 𝑗 rather than 1. This does not affect any of our proofs. However, if each proposer 𝑖 were to be
matched to 𝑐𝑖 ⩾ 1 acceptors, they would need to propose to acceptors across multiple equivalence
classes, which would require a new analysis. It is unclear if our guarantees hold in this case.

Investigation of stable and fair two-sided matching in the presence of indifferences opens doors
to many exciting research questions and connections. Due to the space constraint, we could only
mention the most interesting ones above; the rest are deferred to Appendix G.

References

Atila Abdulkadiroğlu, Parag A Pathak, Alvin E Roth, and Tayfun Sönmez. 2005. The Boston public school match. American

Economic Review 95, 2 (2005), 368–371.
Ahmet Alkan and David Gale. 2003. Stable schedule matching under revealed preference. Journal of Economic Theory 112, 2

(2003), 289–306.
Haris Aziz, Rupert Freeman, Nisarg Shah, and Rohit Vaish. 2023a. Best of Both Worlds: Ex Ante and Ex Post Fairness in

Resource Allocation. Operations Research 72, 4 (2023), 1674–1688.
Haris Aziz, Aditya Ganguly, and Evi Micha. 2023b. Best of both worlds fairness under entitlements. In Proceedings of the

2023 International Conference on Autonomous Agents and Multiagent Systems. 941–948.
G. Birkhoff. 1946. Three observations on linear algebra. Universidad Nacional de Tucumán, Revista A 5 (1946), 147–151.

Benjamin Cookson and Nisarg Shah 19

Péter Biró. 2017. Applications of Matching Models under Preferences. In Trends in Computational Social Choice, Ulle Endriss
(Ed.). AI Access, Chapter 18, 345–373.

A. Bogomolnaia and H. Moulin. 2001. A New Solution to the Random Assignment Problem. Journal of Economic Theory 100
(2001), 295–328.

Eric Budish, Yeon-Koo Che, Fuhito Kojima, and Paul Milgrom. 2013. Designing Random Allocation Mechanisms: Theory
and Applications. American Economic Review 103, 2 (2013), 585–623.

Ioannis Caragiannis, Aris Filos-Ratsikas, Panagiotis Kanellopoulos, and Rohit Vaish. 2019a. Stable fractional matchings. In
Proceedings of the 2019 ACM Conference on Economics and Computation. 21–39.

Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and Junxing Wang. 2019b. The
Unreasonable Fairness of Maximum Nash Welfare. ACM Transactions on Economics and Computation 7, 3 (2019), Article
12.

Pierre-André Chiappori and Bernard Salanié. 2016. The econometrics of matching models. Journal of Economic Literature

54, 3 (2016), 832–861.
Benjamin Cookson, Soroush Ebadian, and Nisarg Shah. 2025. Constrained Fair and Efficient Allocations. In 39th. Forthcoming.
Soroush Ebadian, Rupert Freeman, and Nisarg Shah. 2024. Harm ratio: A novel and versatile fairness criterion. In 4th. 1–14.
Aytek Erdil and Haluk Ergin. 2017. Two-sided matching with indifferences. Journal of Economic Theory 171 (2017), 268–292.
Michal Feldman, Simon Mauras, Vishnu V Narayan, and Tomasz Ponitka. 2024. Breaking the envy cycle: Best-of-both-

worlds guarantees for subadditive valuations. In Proceedings of the 25th ACM Conference on Economics and Computation.
1236–1266.

Rupert Freeman, Evi Micha, and Nisarg Shah. 2021. Two-Sided Matching Meets Fair Division. In 30th. 203–209.
D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage. Americal Mathematical Monthly 69, 1

(1962), 9–15.
Peter Gärdenfors. 1975. Match making: assignments based on bilateral preferences. Behavioral Science 20, 3 (1975), 166–173.
Xiang Han. 2024. A theory of fair random allocation under priorities. Theoretical Economics 19, 3 (2024), 1185–1221.
Tadashi Hashimoto, Daisuke Hirata, Onur Kesten, Morimitsu Kurino, and M Utku Ünver. 2014. Two axiomatic approaches

to the probabilistic serial mechanism. Theoretical Economics 9, 1 (2014), 253–277.
Martin Hoefer, Marco Schmalhofer, and Giovanna Varricchio. 2024. Best of both worlds: Agents with entitlements. Journal

of Artificial Intelligence Research 80 (2024), 559–591.
Chien-Chung Huang and Telikepalli Kavitha. 2021. Popularity, mixed matchings, and self-duality. Mathematics of Operations

Research 46, 2 (2021), 405–427.
Aanund Hylland and Richard Zeckhauser. 1979. The efficient allocation of individuals to positions. Journal of Political

economy 87, 2 (1979), 293–314.
A. Katta and J. Sethuraman. 2006. A Solution to the Random Assignment Problem on the Full Preference Domain. Journal

of Economic Theory 131 (2006), 231–250.
Onur Kesten, Morimitsu Kurino, andMUtku Ünver. 2011. Fair and efficient assignment via the probabilistic serial mechanism.

Mimeographed, Boston University (2011).
Onur Kesten and M. Utku Ünver. 2015. A theory of school-choice lotteries. Theoretical Economics 10, 2 (2015), 543–595.
Chi-Kit Lam and C Gregory Plaxton. 2019. A (1+ 1/e)-approximation algorithm for maximum stable matching with one-sided

ties and incomplete lists. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. 2823–2840.
David F Manlove, Robert W Irving, Kazuo Iwama, Shuichi Miyazaki, and Yasufumi Morita. 2002. Hard variants of stable

marriage. Theoretical Computer Science 276, 1-2 (2002), 261–279.
Eric McDermid. 2009. A 3/2-approximation algorithm for general stable marriage. In International Colloquium on Automata,

Languages, and Programming. 689–700.
David G McVitie and Leslie B Wilson. 1971. The stable marriage problem. Commun. ACM 14, 7 (1971), 486–490.
Ioannis Panageas, Thorben Tröbst, and Vijay Vazirani. 2024. Time-Efficient Algorithms for Nash-Bargaining-Based Matching

Market Models. In 20th. Forthcoming.
Alvin E Roth. 1984. The evolution of the labor market for medical interns and residents: a case study in game theory. Journal

of political Economy 92, 6 (1984), 991–1016.
Alvin E Roth. 1985. The college admissions problem is not equivalent to the marriage problem. Journal of economic Theory

36, 2 (1985), 277–288.
Alvin E Roth. 2008. Deferred acceptance algorithms: History, theory, practice, and open questions. international Journal of

game Theory 36 (2008), 537–569.
Alvin E Roth, Uriel G Rothblum, and John H Vande Vate. 1993. Stable matchings, optimal assignments, and linear

programming. Mathematics of operations research 18, 4 (1993), 803–828.
Alvin E Roth and John H Vande Vate. 1990. Random paths to stability in two-sided matching. Econometrica (1990), 1475–1480.
Éva Tardos. 1986. A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research 34, 2 (1986),

250–256.

Benjamin Cookson and Nisarg Shah 20

Thorben Tröbst and Vijay V. Vazirani. 2024. Cardinal-Utility Matching Markets: The Quest for Envy-Freeness, Pareto-
Optimality, and Efficient Computability. In 25th. 42.

Dietrich Weller. 1985. Fair division of a measurable space. Journal of Mathematical Economics 14, 1 (1985), 5–17.
Xiaowei Wu, Bo Li, and Jiarui Gan. 2021. Budget-feasible Maximum Nash Social Welfare is Almost Envy-free.. In 30th.

465–471.

Benjamin Cookson and Nisarg Shah 21

Appendix of Submission 2276: Fairly Stable Two-Sided Matching with Indifferences

A Algorithms FDA and FDA-Cycle

ALGORITHM 3: Fractional Deferred Acceptance (FDA) [Kesten and Ünver, 2015]
1 ∀𝑖 ∈ 𝑁,𝑤𝑖 = 1
2 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀,𝑥𝑖 𝑗 = 0
3 while ∃𝑖 ∈ 𝑁,𝑤𝑖 > 0 do
4 All proposers 𝑖 with𝑤𝑖 > 0 propose their weight simultaneously to their most preferred acceptor 𝑗

who has not yet rejected any fraction of them.
5 All acceptors 𝑗 who’s tentative matching + proposals are greater than their capacity reject some

proposers based on the following process:
6 Starting with 𝑗 ’s highest equivalency class, if 𝑗 can accept all proposals from that class without

exceeding its capacity, then it does so. Otherwise 𝑗 accepts proposers from this equivalency class as
equally as possible, i.e., 𝑗 increases the amount accepted of each proposer by an equal amount, only
stopping the increase for a given proposer for 𝑗 has accepted all of that proposers weight, or 𝑗 runs
out of capacity. This process is repeated until 𝑗 reaches capacity.

7 end

8 return 𝑥

ALGORITHM 4: FDA-Cycle [Kesten and Ünver, 2015]
1 ∀𝑖 ∈ 𝑁,𝑤𝑖 = 1
2 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀,𝑥𝑖 𝑗 = 0
3 while ∃𝑖 ∈ 𝑁,𝑤𝑖 > 0 do
4 𝑖1 ← arbitrary agent with𝑤𝑖1 > 0
5 if ∃ a cycle 𝐶 = (𝑖1, 𝑗1, 𝑖2, 𝑗2, 𝑖3, 𝑗3 . . . , 𝑖ℓ , 𝑗ℓ , 𝑖1) in the proposal graph then

6 𝑀𝑠 = {𝑖 ∼𝑗𝑠 𝑖𝑠+1 : 𝑥𝑖 𝑗𝑠 > 0}
7 for 𝑠 ∈ {2, . . . , ℓ} do
8 Define equation 𝑦𝑠 =

∑
𝑖∈𝑀𝑠

max{𝑥𝑖 𝑗𝑠 − (𝑥𝑖𝑠+1, 𝑗𝑠 − 𝑦𝑠+1)}
9 end

10 Define equation 𝑦1 +𝑤1 =
∑
𝑖∈𝑀1 max{𝑥𝑖 𝑗1 − (𝑥𝑖2, 𝑗1 − 𝑦2)}

11 Solve the above system for 𝑦1, 𝑦2, . . . , 𝑦ℓ , let 𝑦𝑠 denote the amount of 𝑖𝑠 that gets rejected from
𝑗𝑠−1, and update 𝑥 accordingly.

12 else

13 𝑖1 proposes their free weight to their top acceptor, that acceptor rejects any proposers if
necessary using the same criteria as they do in FDA.

14 end

15 end

16 return 𝑥

B Failure of FDA-Cycle on Our Counterexample

In this section, we will show all the steps of the instance of Figure 3 where FDA-Cycle does not
terminate in a finite number of steps. The first several steps of FDA-Cycle on this instance act as
expected. We will highlight when we reach the key steps where cycles begin to occur. For each step,
we will show both the tenative matching produced, and the current state of the rejection graph
that the algorithm uses to resolve cycles.

Benjamin Cookson and Nisarg Shah 22

In the first two steps of FDA-Cycle, 𝑖1 and 𝑖2 will both propose to 𝑗3. 𝑗3 will reject half of each of
these proposers, and keep the other half.

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Free Weight 1/2 1/2 1 1 1
𝑗1 0 0 0 0 0
𝑗2 0 0 0 0 0
𝑗3 1/2 1/2 0 0 0
𝑗4 0 0 0 0 0
𝑗5 0 0 0 0 0

𝑖1 𝑖3 𝑖2

𝑖4 𝑖5

In the next two steps, 𝑖1, now rejected from their top choice 𝑗3, proposes their 1/2 free weight to
𝑗4. Similarly, 𝑗2 proposes their 1/2 free weight to 𝑗5.

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Free Weight 0 0 1 1 1
𝑗1 0 0 0 0 0
𝑗2 0 0 0 0 0
𝑗3 1/2 1/2 0 0 0
𝑗4 1/2 0 0 0 0
𝑗5 0 1/2 0 0 0

𝑖1 𝑖3 𝑖2

𝑖4 𝑖5

Next, 𝑖3 proposes to 𝑗3. 𝑗3 is indifferent between 𝑖1, 𝑖2, and 𝑖3, so it keeps 1/3 of each of them,
and rejects the rest. In the next two subsequent steps, 𝑖1 and 𝑖2 both take their newly rejected free
weight of 1/6 and propose it to 𝑗4 and 𝑗5 respectively. Note that by [Kesten and Ünver, 2015], this
does not cause any edges to appear on the rejection graph, since while there are proposers who are
rejected from acceptors while having outstanding weight matched to that acceptor, there are no
corresponding proposers who have weight matched to that acceptor and are not yet rejected.

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Free Weight 0 0 2/3 1 1
𝑗1 0 0 0 0 0
𝑗2 0 0 0 0 0
𝑗3 1/3 1/3 1/3 0 0
𝑗4 2/3 0 0 0 0
𝑗5 0 2/3 0 0 0

𝑖1 𝑖3 𝑖2

𝑖4 𝑖5

Next, 𝑖3, now rejected by their top choice 𝑗3, proposes their 2/3 free weight to 𝑗2

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Free Weight 0 0 0 1 1
𝑗1 0 0 0 0 0
𝑗2 0 0 2/3 0 0
𝑗3 1/3 1/3 1/3 0 0
𝑗4 2/3 0 0 0 0
𝑗5 0 2/3 0 0 0

𝑖1 𝑖3 𝑖2

𝑖4 𝑖5

Benjamin Cookson and Nisarg Shah 23

Next, 𝑖4 proposes all their weight to their top choice 𝑗1. Similarly, in the next step, 𝑖5 also proposes
all their weight to 𝑗1. 𝑗1 is indifferent between 𝑖4 and 𝑖5, so it keeps 1/2 of each of them and rejects
the rest. Again, this does not cause any rejection edges to appear.

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Free Weight 0 0 0 1/2 1/2
𝑗1 0 0 0 1/2 1/2
𝑗2 0 0 2/3 0 0
𝑗3 1/3 1/3 1/3 0 0
𝑗4 2/3 0 0 0 0
𝑗5 0 2/3 0 0 0

𝑖1 𝑖3 𝑖2

𝑖4 𝑖5

Next, 𝑖4 proposes their 1/2 free weight to 𝑗2. 𝑗2 prefers 𝑖4 to 𝑖3, so it keeps the 1/2 weight from 𝑖4
and partially rejects 1/6 of 𝑖3. This adds an edge between 𝑖4 and 𝑖3 in the rejection graph.

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Free Weight 0 0 1/6 0 1/2
𝑗1 0 0 0 1/2 1/2
𝑗2 0 0 1/2 1/2 0
𝑗3 1/3 1/3 1/3 0 0
𝑗4 2/3 0 0 0 0
𝑗5 0 2/3 0 0 0

𝑖1 𝑖3 𝑖2

𝑖4 𝑖5

𝑗2

Next, 𝑖3, now rejected from their second choice 𝑗2, proposes their 1/6 weight to 𝑗1. 𝑗1 prefers 𝑗3 to
𝑖4 and 𝑖5. so it accepts the 1/6 weight, and rejects 1/12 from each of the others. This causes edges in
the rejection graph between 𝑖3 and 𝑖4, and 𝑖3 and 𝑖5. Notably, this proposal forms a rejection cycle
between 𝑖3 and 𝑖4, which the algorithm must solve. Using the FDA-Cycle technique of reduction to
linear equation, we are given the following:

𝑦4 + 1/12 = 𝑦3 (1)
𝑦3 = 2𝑦4 (2)

Solving this linear system gives us the values 𝑦4 = 1/12, 𝑦3 = 2/12, updating the matching with
these values give us:

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Free Weight 0 0 0 0 2/3
𝑗1 0 0 1/3 1/3 1/3
𝑗2 0 0 1/3 2/3 0
𝑗3 1/3 1/3 1/3 0 0
𝑗4 2/3 0 0 0 0
𝑗5 0 2/3 0 0 0

𝑖1 𝑖3 𝑖2

𝑖4 𝑖5

𝑗2
𝑗1

𝑗1

The key thing to note here is that after solving the linear equation, the same cyclic relationship
between 𝑖3 and 𝑖4 still remains. 𝑥𝑖3 𝑗2 > 0 and 𝑥𝑖4 𝑗1 > 0 still are both true, 𝑖3 has not not yet been
rejected from 𝑗1, so it will still propose there the next chance it gets, and the same can be said for 𝑖4
and 𝑗2. Thus, the next time either it is either 𝑖3 or 𝑖4’s turn to propose, the same cycle will have to
be dealt with again.

Benjamin Cookson and Nisarg Shah 24

Consider the next step of the FDA-Cycle algorithm in this instance. It is now 𝑖5’s turn to propose.
𝑖5 proposes their 2/3 free weight to 𝑗3. 𝑗3 prefers 𝑖5 to the other 3 agents it is currently accepting
fractions of, so it accepts all 2/3 of 𝑖5, and rejects 2/9 of 𝑖1, 𝑖2, and 𝑖3. However, this causes edges in
the rejection graph between 𝑖5, and {𝑖1, 𝑖2, 𝑖3}. Noticeably, this will cause a rejection cycle between
𝑖5 and 𝑖3, which we can resolve by the following linear system:

𝑦3 + 2/9 = 2𝑦5 (3)
𝑦5 = 3𝑦3 (4)

Solving this linear system gives us 𝑦3 = 2/45, 𝑦5 = 6/45. Updating the matching with these values
(and running through the non-cyclic proposal steps of 𝑖1 and 𝑖2) gives us:

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Free Weight 0 0 0 6/45 0
𝑗1 0 0 27/45 9/45 9/45
𝑗2 0 0 1/3 2/3 0
𝑗3 3/45 3/45 3/45 0 36/45
𝑗4 42/45 0 0 0 0
𝑗5 0 42/45 0 0 0

𝑖1 𝑖3 𝑖2

𝑖4 𝑖5

𝑗2
𝑗1

𝑗1 𝑗3

Note that again, the solving of this cycle does not lead to the cyclic relation going away from
the tentative matching, the next time 𝑖5 proposes, the cycle will need to be resolved again. We also
note that there are technically edges between 𝑖5 and 𝑖1 and 𝑖5 and 𝑖2 in the rejection graph, but they
will never become relevant to the algorithm’s execution, so we do not include them in our diagram
for simplicity.
Next, it is 𝑖4’s turn to propose, again, to do this, the cycle between 𝑖3 and 𝑖4 will have to be

resolved. This will require solving the following linear system:

𝑦4 + 6/45 = 𝑦3 (5)
𝑦3 = 2𝑦4 (6)

This will give us the values of 𝑦4 = 6/45, 𝑦3 = 12/45, updating the matching gives us:

𝑖1 𝑖2 𝑖3 𝑖4 𝑖5

Free Weight 0 0 0 0 6/45
𝑗1 0 0 39/45 3/45 3/45
𝑗2 0 0 3/45 42/45 0
𝑗3 3/45 3/45 3/45 0 36/45
𝑗4 42/45 0 0 0 0
𝑗5 0 42/45 0 0 0

𝑖1 𝑖3 𝑖2

𝑖4 𝑖5

𝑗2
𝑗1

𝑗1 𝑗3

Now, it is 𝑖5’s turn to propose again, and it is still part of the same rejection cycle as previously.
One can see that whatever values we get from solving this rejection cycle, will cause 𝑖4 to have free
weight in the next step, this will force us to solve 𝑖4’s cycle again, which will in turn cause 𝑖5 to
have free weight in the next step, with each step along the way, the free weight getting smaller and
smaller. It is easy to see how this process continues ad infinium.

To illustrate this, we will solve the 𝑖5 and 𝑖4 cycles with generic values for the free weight.
First the 𝑖5 cycle:

Benjamin Cookson and Nisarg Shah 25

𝑦5 +𝑤5 = 3𝑦3 (7)
𝑦3 = 2𝑦5 (8)

The solution to this system will be 𝑦5 = 𝑤5/5, 𝑦3 = 2𝑤5/5.
Similarly for the 𝑖4 cycle:

𝑦4 +𝑤4 = 𝑦3 (9)
𝑦3 = 2𝑦4 (10)

The solution to this cycle will be 𝑦4 = 𝑤4, 𝑦3 = 2𝑤4.
Therefore, we know that the cycle between 𝑖3 and 𝑖4 will only go away if one of the following

happens:

• 𝑖3 gets partially rejected from 𝑗1
• 𝑖4 gets fully rejected from 𝑗1
• 𝑖4 gets partially rejected from 𝑗2
• 𝑖3 gets fully rejected from 𝑗2

Similarly, the cycle between 𝑖3 and 𝑖5 will only go away when:

• 𝑖3 gets partially rejected from 𝑗1
• 𝑖5 gets fully rejected from 𝑗1
• 𝑖5 gets partially rejected from 𝑗3
• 𝑖3 gets fully rejected from 𝑗3

Until one of these events happen, the algorithm will continue to alternate between resolving
these two cycles (while also letting 𝑖1 and 𝑖2 propose their unpropsed weight between each step,
which will not effect the rest of the process). Clearly, resolving either of these cycles will never
cause any of the partial reject conditions to arise, so the algorithm will only exit this cycle resolving
loop when one of the following occurs:

• 𝑖3 gets fully rejected from 𝑗2 or from 𝑗3
• 𝑖4 gets fully rejected from 𝑗1
• 𝑖5 gets fully rejected from 𝑗1

Note that due to the way the cycles are resolved, as long as none of these conditions are met,
then the amount of 𝑖4 and 𝑖5 matched to 𝑗1 will always be equal. Similarly, the amount of 𝑖1, 𝑖2, and
𝑖3 matched to 𝑗3 will always be equal, so the linear system we have to solve at each cycle removal
step will remain the same.
Thus, when we resolve the 𝑖5 cycle next with𝑤5 = 6/45, we will reject 6/255 of 𝑖5 and 𝑖4 from 𝑗1,

and 12/255 of 𝑖3, 𝑖1, and 𝑖2 from 𝑗3.
Next, 𝑖4 will have free weight from 6/255, so resolving its cycle with𝑤4 = 6/255 will mean that 6/255

of 𝑖4 and 𝑖5 will get rejected from 𝑗1, and 12/255 of 𝑗3 will get rejected from 𝑗2. We will then have to
resolve 𝑖5’s cycle with𝑤5 = 6/255.
Putting this together, we have that after 𝑘 times resolving 𝑖5’s cycle from this point, the total

amount of 𝑖5 kicked out of 𝑗1 is
∑𝑘

𝑡=1 12/(45∗5𝑡), which one can verify approaches 3/45 in the limit as
𝑘 approaches infinity, the exact amount that 𝑖5 is matched to 𝑗1 at the beginning of this process.

One can verify that the infinite summations for the other key matrix cells that form the cycles
resolve the same way, showing that this sequence will continue forever.

Benjamin Cookson and Nisarg Shah 26

C Alkan-Gale Stability

C.1 Alkan-Gale Matching Model

In [Alkan and Gale, 2003], the authors defined agent preferences using choice functions. They define
these choice function in a very broad way such that they generalize a huge range of common
matching scenarios, including both integral and fractional matching. For our purposes, we will
assume the following simplified definition of a choice function that handles fractional matching
scenarios.

Definition 10 (Fractional matching choice function). Given a set of agents 𝐴 and a quota 𝑞, a
choice function 𝐶 : R𝐴 → R𝐴 is a mapping from one real vector to another (where each entry of
this vector corresponds to an amount of some 𝑖 ∈ 𝐴), such that for every 𝑥 ∈ R𝐴, we have that for
every 𝑖 ∈ 𝐴, 𝐶 (𝑥)𝑖 ⩽ 𝑥𝑖 (you can only choose at most what is available), and

∑
𝑖∈𝐴𝐶 (𝑥)𝑖 ⩽ 𝑞 (your

total choice cannot be more than your quota).

Given our specific definition of choice functions, we also define the join (∨) and meet (∧)
operations as the natural join and meet on the real numbers, i.e., given a set of agents 𝐴, and two
vectors 𝑥,𝑦 ∈ R𝐴, we say that 𝑥 ∨ 𝑦 is the vector such that for every 𝑖 ∈ 𝐴, (𝑥 ∨ 𝑦)𝑖 = max {𝑥𝑖 , 𝑦𝑖 },
and 𝑥 ∧ 𝑦 is the vector such that for every 𝑖 ∈ 𝐴, (𝑥 ∧ 𝑦)𝑖 = min {𝑥𝑖 , 𝑦𝑖 }.
A given vector 𝑥 ∈ R𝐴 represents all the available ways some agent 𝑖 can be matched with the

agents in 𝐴, and when 𝐶 is 𝑖’s choice function over 𝐴, 𝐶 (𝑥) represents 𝑖’s most preferred matching
among all these possibilities.
For any two vectors 𝑥,𝑦 ∈ R𝐴, Alkan and Gale [2003] gives the following way to determine

whether an agent prefers one of these possibilities over the other.

Definition 11 (AG-preference). For any agent 𝑖 with choice function𝐶𝑖 over some set of agents 𝐴,
and for any two vectors 𝑥,𝑦 ∈ R𝐴, we say that 𝑥 ≽𝐴𝐺𝑖 𝑦 if 𝐶𝑖 (𝑥 ∨ 𝑦) = 𝑥 .

A full matching problem in the model of [Alkan and Gale, 2003] gives two sets of agents 𝑁
and𝑀 where each agent 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 has a choice function and a quota. A perfect matching
𝑥 ∈ R[𝑁×𝑀] in this problem will be such that for all 𝑖 ∈ 𝑁 (resp. 𝑗 ∈ 𝑀) with quota 𝑞, we have∑

𝑗 ∈𝑀 𝑥𝑖 𝑗 = 𝑞 (resp.
∑

𝑖∈𝑁 𝑥𝑖 𝑗 = 𝑞). In each matching, note that each vector 𝑥𝑖 and 𝑥 𝑗 will be in R𝑀

and R𝑁 respectively, so we can use the agents’ choice functions to reason about their preferences
over their matchings.

Under this model, the notion of a stable matching is defined as follows:

Definition 12 (Saturation). For some agent 𝑖 ∈ 𝑁 , and matching 𝑥 , 𝑖 is not 𝑗-saturated at 𝑥 for some
𝑗 ∈ 𝑀 if increasing the amount of 𝑗 available in 𝑥𝑖 would cause 𝑖’s choice function to choose more
of 𝑗 than 𝑥𝑖 has available. i.e., if for any 𝜀 > 0, define the vector 𝑦 as 𝑦 𝑗 ′ = 𝑥𝑖 𝑗 ′ for all 𝑗 ′ ∈ 𝐴 \ { 𝑗},
and 𝑦 𝑗 = 𝑥𝑖 𝑗 + 𝜀. If 𝐶𝑖 (𝑦) 𝑗 > 𝑥𝑖 𝑗 is true, the 𝑖 is not 𝑗-saturated.
A symmetric definition can be given for when some 𝑗 ∈ 𝑀 is not 𝑖-saturated for some 𝑖 ∈ 𝑁 .

Definition 13 (AG-stability). For any matching problem in the Alkan-Gale matching model, a
matching 𝑥 is AG-stable for that problem if for every pair of agents 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , either 𝑖 is
𝑗-saturated or 𝑗 is 𝑖-saturated.

The goal of [Alkan and Gale, 2003] is to show a broad class of choice functions such that when
all agents in a matching problem have such choice functions, the set of stable matchings for the
given problem will form a lattice with respect to each side’s AG-preferences, and for a given side,
the optimal matching in that lattice can be found through a deferred-acceptance procedure.

To characterize such choice functions, the authors give two properties.

Benjamin Cookson and Nisarg Shah 27

Definition 14 (Consistency). A choice function 𝐶 is consistent if for all 𝑥,𝑦 ∈ R𝐴 such that
𝐶 (𝑥) ⩽ 𝑦 ⩽ 𝑥 , then 𝐶 (𝑦) = 𝐶 (𝑥) is true.

Definition 15 (Persistence). A choice function 𝑋 is persistent if for all 𝑥,𝑦 ∈ R𝐴 such that 𝑥 ⩾ 𝑦,
then 𝐶 (𝑦) ⩾ 𝐶 (𝑥) ∧ 𝑦.

With these properties, they are able to state the following:

Theorem 5 (Theorem 2 of [Alkan and Gale, 2003]). For any matching problem where all agents

have persistent and consistent choice functions, there exists a stable matching 𝑥∗ that dominates all

other stable matchings in terms of the AG-preferences of the agents in 𝑁 , i.e., for any stable matching

𝑦, and all 𝑖 ∈ 𝑁 , 𝑥∗𝑖 ≽
AG

𝑖 𝑦𝑖 . This 𝑁 -optimal matching can be found by running the procedure of

Algorithm 6 with 𝑁 as the “proposers”.

C.2 Doubly-Strong Ex-Ante Stability Through Choice Functions

We will use a reduction to the model of Alkan and Gale [2003] to show that under our preference
model, the set of double-strong ex-ante stable matching is equivalent to the lattice of matchings for
a given AG matching problems, and the proposer-optimal matching in that lattice can be found
through the DFDA procedure.

To do this, we will first define the DFDA choice function in Algorithm 6. For any ordinal matching
problem (𝑁,𝑀, ≽𝑁 , ≽𝑀), we will assume that each agent has an induced DFDA choice function
that is based on their preference ordering.

ALGORITHM 5: Choice functions in the framework of Alkan and Gale [2003] that yield DFDA

1 INPUT: 𝑖’s indifference classes 𝐸𝑖 ; Vector 𝑥 ∈ R𝐴
2 𝑐 ← 0𝐴

3 for 𝐸𝑖𝑘 ∈ 𝐸𝑖 do
4 if

∑
𝑗 ∈𝐸𝑖𝑘 𝑥 𝑗 ⩽ 𝑞 −∑𝑗 ∈𝐴 𝑐 𝑗 then

5 ∀𝑗 ∈ 𝐸𝑖𝑘 , 𝑐 𝑗 ← 𝑥 𝑗

6 end

7 else

8 while

∑
𝑗 ∈𝐴 𝑐 𝑗 < 𝑞 and 𝑐 ≠ 𝑥 do

9 Continuously increase 𝑐 𝑗 for all 𝑗 ∈ 𝐸𝑖𝑘 at the same rate. Only stop increasing 𝑐 𝑗 for some 𝑗

if 𝑐 𝑗 = 𝑥 𝑗 becomes true.
10 end

11 return 𝑐

12 end

13 end

14 return 𝑐

We will first prove that the DFDA choice function has necessary properties to admit a lattice of
stable matching in the Alkan-Gale model.

Lemma 7. The DFDA choice function is consistent.

Proof. For contradiction, assume this is false. For some agent 𝑖 with a preference ordering over
a set of agents 𝐴, and agent 𝑖’s induced choice function 𝐶𝑖 over those agents with a quota of 𝑞,
there exists 𝑥,𝑦 ∈ R𝐴 such that 𝐶𝑖 (𝑥) ⩽ 𝑦 ⩽ 𝑥 but 𝐶𝑖 (𝑦) ≠ 𝐶𝑖 (𝑥).

Let 𝐸𝑖𝑘 be the lowest equivalency class that 𝐶𝑖 (𝑥) chooses agents from before terminating. First
consider all the agents from 𝐴 who are chosen by 𝐶𝑖 who are in an equivalency class that is

Benjamin Cookson and Nisarg Shah 28

strictly preferred to 𝐸𝑖𝑘 . From the definition of the DFDA choice function, for each of these agents
𝑖 ∈ 𝐴, 𝐶𝑖 would have selected the full amount of 𝑗 in 𝑥 . Thus, for each such 𝑗 , since we have that
𝐶𝑖 (𝑥) 𝑗 ⩽ 𝑦 𝑗 ⩽ 𝑥 𝑗 and 𝐶𝑖 (𝑥) 𝑗 = 𝑥 𝑗 , it must be the case that 𝑦 𝑗 = 𝑥 𝑗 . Since 𝐶𝑖 starts at the highest
equivalency class for 𝑖 and works its way down, this means that selecting all of each agent strictly
preferred to 𝐸𝑖𝑘 will not exceed𝐶𝑖 ’s quota 𝑞, and thus we must have that𝐶𝑖 (𝑦) 𝑗 = 𝐶𝑖 (𝑥) 𝑗 = 𝑥 𝑗 = 𝑦 𝑗

for all 𝑗 ∈ 𝐸𝑖𝑘′, 𝑘 ′ < 𝑘 .
Now consider the agents in 𝐸𝑖𝑘 . Note that for every 𝑗 ∈ 𝐸𝑖𝑘 , we must have that𝐶𝑖 (𝑥) 𝑗 ⩽ 𝑦 𝑗 ⩽ 𝑥 𝑗 .

From the definition of the DFDA choice function, we know that the choice function will select
agents from this class by continuously increasing the matched amount of all agents in this class
at an equal rate, only stopping the increase of an agent if that agent becomes full chosen, quota
becomes full, or the vector becomes fully chosen.

By the above arguments, we must have that𝐶𝑖 (𝑥) 𝑗 ≠ 𝐶𝑖 (𝑦) 𝑗 for some 𝑗 ∈ 𝐸𝑖𝑘 . If𝐶𝑖 (𝑥) 𝑗 > 𝐶𝑖 (𝑦) 𝑗 ,
then consider the exact time in the equivalent increasing process where 𝐶𝑖 (𝑦) finishes choosing 𝑗 .
At this point, note that we cannot have that the quota of𝐶𝑖 is full, as by the definition of the DFDA
choice function, at the same time in the increasing process for 𝐶𝑖 (𝑥), 𝑥 ⩾ 𝑦 implies that 𝐶𝑖 (𝑥) and
𝐶𝑖 (𝑦) will have chosen the same amount of all agents in 𝐸𝑖𝑘 up to that point, while𝐶𝑖 (𝑥) 𝑗 > 𝐶𝑖 (𝑦) 𝑗
continues increasing after this point. Therefore, it must be the case that 𝐶𝑖 (𝑦) 𝑗 has been fully
chosen by 𝑗 at this point, and thus 𝐶𝑖 (𝑦) 𝑗 = 𝑦 𝑗 . However, this fact along with 𝐶𝑖 (𝑥) 𝑗 > 𝐶𝑖 (𝑦) 𝑗
would contradict the fact that 𝐶𝑖 (𝑥) ⩽ 𝑦.

If instead we had 𝐶𝑖 (𝑥) 𝑗 < 𝐶𝑖 (𝑦) 𝑗 , then consider the exact time in the equivalent increasing
process where 𝐶𝑖 (𝑥) finishes choosing 𝑗 . At the same point during the process of 𝐶𝑖 (𝑦), we know
that 𝐶𝑖 (𝑦) must have chosen the exact same amount of every agent in 𝐸𝑖𝑘 . This is due to the fact
that 𝐶𝑖 (𝑥) ⩽ 𝑦. Thus, it cannot be the case that 𝐶𝑖 (𝑥) 𝑗 stops because its quota is full, so it must be
the case that it consumed the full amount of 𝑥 𝑗 . But 𝐶𝑖 (𝑥) 𝑗 = 𝑥 𝑗 and 𝐶𝑖 (𝑥) 𝑗 < 𝐶𝑖 (𝑦) 𝑗 ⩽ 𝑦 𝑗 would
contradict 𝑦 ⩽ 𝑥 .
This contradicts the fact that such a 𝑗 exists, and proves that the DFDA choice function is

consistent. □

Lemma 8. The DFDA choice function is persistent.

Proof. For contradiction, assume this is false. For some agent 𝑖 with a preference ordering of a
set of agents 𝐴, and agent 𝑖’s induced choice function 𝐶𝑖 over those agents with a quota of 𝑞, there
exists 𝑥,𝑦 ∈ R𝐴 with 𝑥 ⩾ 𝑦, and some 𝑗 ∈ 𝐴 such that 𝐶𝑖 (𝑦) 𝑗 < min

{
𝐶𝑖 (𝑥) 𝑗 , 𝑦 𝑗

}
.

Let 𝐸𝑖𝑘 be 𝑖’s lowest equivalency class containing some proposer that is positively chosen by
𝐶𝑖 (𝑥). First note that for all 𝑘 ′ < 𝑘 , and all 𝑗 ′ ∈ 𝐸𝑖𝑘′ it must be the case that 𝐶𝑖 (𝑦) 𝑗 ′ = 𝑦 𝑗 ′ . This
follows from the fact that since 𝑥 ⩾ 𝑦, we must have

∑
𝑘′<𝑘

∑
𝑗 ′∈𝐸𝑖𝑘′ 𝑥𝑖 𝑗 ′ ⩾

∑
𝑘′<𝑘

∑
𝑗 ′∈𝐸𝑖𝑘′ 𝑦𝑖 𝑗 ′ ,

meaning that by the definition of DFDA choice functions, since 𝐶𝑖 (𝑥) was able to fully choose
every 𝑗 ′ strictly preferred to 𝐸𝑖𝑘 , then 𝐶𝑖 (𝑦) will be able to as well.

Therefore, it must be that 𝑗 is in an equivalency class for 𝑖 at least as bad 𝐸𝑖𝑘 , and since 𝐶𝑖 (𝑦) 𝑗 <
min

{
𝐶𝑖 (𝑥) 𝑗 , 𝑦 𝑗

}
implies that 𝐶𝑖 (𝑥) 𝑗 > 0, then we know that 𝑗 ∈ 𝐸𝑖𝑘 must be true.

Since we must have that 𝐶𝑖 (𝑦) 𝑗 < 𝑦 𝑗 , it must be the case that 𝐸𝑖𝑘 is also 𝑖’s lowest equivalency
class containing some proposer that is positively chosen by 𝐶𝑖 (𝑦). With this in mind, we can see
that if 𝐶𝑖 (𝑥) 𝑗 ⩾ 𝑦 𝑗 were true, then by definition of the DFDA choice function, we should have that
𝐶𝑖 (𝑦) 𝑗 = 𝑦 𝑗 . This is due to the fact that since 𝑥 ⩾ 𝑦, when 𝐶𝑖 (𝑦) reaches the class 𝐸𝑖𝑘 , it will have
at least as much free weight to keep choosing as𝐶𝑖 (𝑥) 𝑗 did when it reached 𝐸𝑖𝑘 , and since 𝑦 𝑗 ′ ⩽ 𝑥 𝑗 ′

for all 𝑗 ′ ∈ 𝐸𝑖𝑘 , if the process that increases chosen weight in equal amounts for each agent in 𝐸𝑖𝑘
managed to consume 𝐶𝑖 (𝑥) 𝑗 of 𝑗 , then that process should certainly be able to consume at least
𝑦𝑖 ⩽ 𝐶𝑖 (𝑥) 𝑗 of 𝑗 when choosing from 𝑦.

Benjamin Cookson and Nisarg Shah 29

At the same time, if 𝑦 𝑗 ⩾ 𝐶𝑖 (𝑥) 𝑗 were true, then we would again reach a contradiction, since by
the definition of the DFDA choice function, we would have to have that 𝐶𝑖 (𝑦) 𝑗 ⩾ 𝐶𝑖 (𝑥) 𝑗 must be
true. To see this, again notice that once 𝐶𝑖 (𝑦) reaches equivalency class 𝐸𝑖𝑘 , it will have at least as
much free weight left to choose as 𝐶𝑖 (𝑥) did at that same point. Since 𝐶𝑖 (𝑦) 𝑗 < 𝐶𝑖 (𝑥) 𝑗 , observe
the point of the continuous increase in weight where 𝐶𝑖 (𝑦) 𝑗 first stops increasing. This cannot
be because the quota of 𝐶𝑖 (𝑦) was reached, or that would contradict the fact that 𝑦 ⩽ 𝑥 , but it
can also not be the case that 𝑦 𝑗 has been fully chosen, since we have 𝐶𝑖 (𝑦) 𝑗 < 𝐶𝑖 (𝑥) 𝑗 ⩽ 𝑦 𝑗 . These
contradictions prove that 𝐶𝑖 will be persistent. □

Next, we can show that due to the way that we defined DFDA choice function, being AG-Stable
with respect to the agents’ induced choice functions is exactly equivalent to doubly-strong ex-ante
stability.

Theorem 6. A matching is AG-stable with respect to the agents DFDA choice functions if and only

if it is doubly-strong ex-ante stable with respect to the agents’ ordinal preferences.

Proof. First, we will prove the forward direction.
For contradiction, assume this is false, some matching 𝑥 is AG-Stable with respect to agents’

induced choice functions, but not doubly-strong ex-ante stable.
First, we will assume it is not ex-ante stable, thus there exists 𝑖, 𝑖 ′ ∈ 𝑁 , 𝑗, 𝑗 ′ ∈ 𝑀 such that 𝑗 ≻𝑖 𝑗 ′,

𝑖 ≻𝑗 𝑖 ′, 𝑥𝑖 𝑗 ′ > 0, and 𝑥𝑖′ 𝑗 > 0. However, it is easy to see that this would violate the definition of
AG-Stability with respect to 𝑖 and 𝑗 . Since 𝑥𝑖 𝑗 ′ > 0 implies that 𝐶𝑖 (𝑥𝑖) must still have some free
space left after choosing 𝑗 ’s entire equivalency class. This means that if we increased 𝑗 by some
small amount in 𝑥𝑖 , the choice function would choose more, so 𝑖 is not 𝑗-satiated. Similarly, a
symmetric argument shows that 𝑗 is not 𝑖-satiated.
Next, we will assume there is ex-ante discrimination on the proposers side, thus there exists

𝑖, 𝑖 ′ ∈ 𝑁 , 𝑗, 𝑗 ′ ∈ 𝑀 such that 𝑗 ≻𝑖 𝑗 ′, 𝑖 ∼𝑗 𝑖 ′, 𝑥𝑖 𝑗 ′ > 0, and 𝑥𝑖′ 𝑗 > 𝑥𝑖 𝑗 . Again, in this case we can
see that 𝑖 is not 𝑗-satiated in the vector 𝑥𝑖 due to the fact that 𝑥𝑖 𝑗 ′ > 0. We can also observe that
𝑗 will not be 𝑖-satiated due to 𝑥𝑖′ 𝑗 > 𝑥𝑖 𝑗 . If 𝑖 and 𝑖 ′ are not members of the lowest equivalency
class matched to 𝑗 in 𝑥 𝑗 , then increasing 𝑖 in 𝑥 𝑗 will cause 𝐶 𝑗 (𝑥 𝑗) to select more of it in favor of
the lesser preferred proposer it is currently matched to. If 𝑖 and 𝑖 ′ are in the lowest equivalency
class for 𝑗 , then note that since 𝑥 is a perfect matching, at the point of 𝑗 ’s DFDA choice function
where the continuous increasing process has chosen 𝑥𝑖 𝑗 of 𝑖 , it will have not have chosen its entire
quota yet, since it still continues on to choose more of 𝑥𝑖′ 𝑗 . Thus, if 𝑥𝑖 𝑗 were to be increase, this
continuous process would choose at least some of that increase, and reach its quota slightly before
choosing the full amount of 𝑥𝑖′ 𝑗 . Note that deriving a contradiction when the matching has ex-ante
discrimination on the acceptors side would be a symmetrical argument to above.

Lastly, we will assume that the matching is not ex-ante indifference neutrality, thus there exists
𝑖, 𝑖 ′ ∈ 𝑁 , 𝑗, 𝑗 ′ ∈ 𝑀 such that 𝑗 ∼𝑖 𝑗 ′, 𝑖 ∼𝑗 𝑖 ′, 𝑥𝑖 𝑗 < 𝑥𝑖 𝑗 ′ , and 𝑥𝑖 𝑗 < 𝑥𝑖′ 𝑗 . In this case, we can show that
𝑖 is not 𝑗-satiated, and the fact that 𝑗 is not 𝑖-satiated follows from a symmetrical argument. If 𝑗
and 𝑗 ′ are not in 𝑖’s lowest equivalency class, then increasing 𝑗 will cause 𝑖 to accept it in favor of
the less preferred acceptor it is currently matched to. If 𝑗 and 𝑗 ′ are in 𝑖’s lowest equivalency class,
then in a identical argument to the previous paragraph, 𝑥𝑖 𝑗 < 𝑥𝑖 𝑗 ′ implies that increasing 𝑥𝑖 𝑗 will
cause 𝑖’s choice function to select more of 𝑗 as part of the equivalent increasing process.

This concludes the proof of the forward direction. We will next show the backwards direction. For
contradiction, assume that some matching 𝑥 is doubly-strong ex-ante stable, but is not AG-Stable
with respect to the agents’ induced choice functions.

Let 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑀 , be the pair of agents that violates AG-Stability, i.e., we have that 𝑖 is not
𝑗-satiated, and 𝑗 is not 𝑖-satiated.

Benjamin Cookson and Nisarg Shah 30

Since 𝑖 is not 𝑗-satiated, this means that there exists some vector 𝑦𝑖 with 𝑦𝑖 𝑗 ′ = 𝑥𝑖 𝑗 ′∀𝑗 ′ ∈ 𝑀 \ { 𝑗}
and 𝑦𝑖 𝑗 = 𝑥𝑖 𝑗 + 𝜀 for some 𝜀 > 0, such that 𝐶𝑖 (𝑦𝑖) 𝑗 > 𝐶𝑖 (𝑥𝑖) 𝑗 . Similarly, we since 𝑗 is not 𝑖-satiated,
there must exist a symmetrically defined vector 𝑦 𝑗 such that 𝐶 𝑗 (𝑦 𝑗)𝑖 > 𝐶 𝑗 (𝑥 𝑗)𝑖 .

Since 𝑥 is a perfect matching, we must have that
∑

𝑗 ∈𝑀 𝑥𝑖 𝑗 = 1, and thus since the quota of each
agents’ choice function will be 1, and we have 𝐶𝑖 (𝑦𝑖) 𝑗 > 𝐶𝑖 (𝑥𝑖) 𝑗 , there must be some 𝑗 ′ ∈ 𝑀 such
that 𝐶𝑖 (𝑦𝑖) 𝑗 ′ < 𝐶𝑖 (𝑥𝑖) 𝑗 ′ . Similarly, there must be some 𝑖 ′ ∈ 𝑁 such that 𝐶 𝑗 (𝑦 𝑗)𝑖′ < 𝐶 𝑗 (𝑥 𝑗)𝑖′ . We
will now consider each possible case for 𝑖’s preference ordering over 𝑗 and 𝑗 ′, and 𝑗 ’s preference
ordering over 𝑖 and 𝑖 ′.

First, note that it cannot be the case that 𝑗 ′ ≻𝑖 𝑗 . By the definition of the DFDA choice function,
if 𝑗 ′ ≻𝑖 𝑗 is true, then since we have 𝐶𝑖 (𝑦𝑖) 𝑗 > 𝐶𝑖 (𝑥𝑖) 𝑗 ⩾ 0 we must also have that 𝐶𝑖 (𝑦𝑖) 𝑗 ′ = 𝑦𝑖 𝑗 ′ .
This follows since the only way 𝐶𝑖 (𝑦𝑖) 𝑗 ′ < 𝑦𝑖 𝑗 ′ would be true is if 𝑗 ′ is in the lowest equivalency
class chosen by 𝑖 in 𝐶𝑖 (𝑦𝑖). But, 𝐶𝑖 (𝑦𝑖) 𝑗 ′ < 𝐶𝑖 (𝑥𝑖) 𝑗 ′ ⩽ 𝑥𝑖 𝑗 ′ = 𝑦𝑖 𝑗 ′ contradicts this. Meaning that
𝑗 ≽𝑖 𝑗

′ must be true. By a symmetric argument, we can also say that 𝑖 ≽𝑗 𝑖 ′ must be true.
Case 1: j ≻i j′, i ≻j i′. In this case, note that 0 ⩽ 𝐶𝑖 (𝑦𝑖) 𝑗 ′ < 𝐶𝑖 (𝑥𝑖) 𝑗 ′ implies that 𝐶𝑖 (𝑥𝑖) 𝑗 ′ > 0 and

thus 𝑥𝑖 𝑗 ′ > 0. Symmetrically, we also have that 𝑥𝑖′ 𝑗 > 0. This implies that 𝑥 violates ex-ante stability
with respect to 𝑖 and 𝑗 , giving a contradiction.

Case 2: j ≻i j′, i ∼j i′. In this case, we again have that 𝑥𝑖 𝑗 ′ > 0, this means that 𝑥𝑖 𝑗 ⩾ 𝑥𝑖′ 𝑗 ,
otherwise this would mean that 𝑥 violates no ex-ante discrimination for the proposers. Note that
this means we have 𝑦 𝑗𝑖 > 𝑥𝑖 𝑗 ⩾ 𝑥𝑖′ 𝑗 = 𝑦 𝑗𝑖′ . But if this were true, we could not also have that
𝐶 𝑗 (𝑦 𝑗)𝑖′ < 𝐶 𝑗 (𝑥 𝑗)𝑖′ ⩽ 𝑥𝑖′ 𝑗 = 𝑦 𝑗𝑖′ and 𝐶 𝑗 (𝑦 𝑗)𝑖 > 𝐶 𝑗 (𝑥 𝑗)𝑖 . This follows from the definition of the
DFDA choice function. Since𝐶 𝑗 (𝑦 𝑗)𝑖′ < 𝑦 𝑗𝑖′ , it must be the case that 𝑖 ′, and thus 𝑖 , are in the lowest
equivalency class among accepted proposers in 𝐶 𝑗 (𝑦 𝑗). Since the only difference between 𝑥 𝑗 and
𝑦 𝑗 is that 𝑦 𝑗𝑖 > 𝑥𝑖 𝑗 , this means that the choice process will be identical up until the point where 𝑥𝑖 𝑗
of 𝑖 is chosen. Note at that point, due to 𝑖 ∼𝑗 𝑖 ′, and the DFDA choice function choosing all agents
in the lowest equivalency class at equal proportions, we must have that at that point in the choice
process, 𝐶 𝑗 will have chosen at least min

{
𝑥𝑖 𝑗 , 𝑦 𝑗𝑖′ = 𝑥𝑖′ 𝑗

}
= 𝑦 𝑗𝑖′ of 𝑖 ′, contradicting that fact that

𝐶 𝑗 (𝑦 𝑗)𝑖′ < 𝑦𝑖′ 𝑗 .
Case 3: j ∼i j′, i ≻j i′. This follows from a symmetric argument to that of Case 2. Since we have

𝑥𝑖′ 𝑗 > 0, we must have 𝑥𝑖 𝑗 ⩾ 𝑥𝑖 𝑗 ′ , but this produces a contradiction.
Case 4: j ∼i j′, i ∼j i′. By the argument presented in Case 2, we know that 𝑥𝑖 𝑗 ⩾ 𝑥𝑖 𝑗 ′ and 𝑖 ∼𝑗 𝑖 ′

leads us to a contradiction of the fact that 𝐶 𝑗 (𝑦 𝑗)𝑖′ < 𝐶 𝑗 (𝑥 𝑗)𝑖′ . So it must be true that 𝑥𝑖 𝑗 < 𝑥𝑖 𝑗 ′ .
However, we also know that using a symmetrical argument to case 3, 𝑥𝑖 𝑗 ⩾ 𝑥𝑖 𝑗 ′ and 𝑗 ∼𝑖 𝑗 ′ leads
to a contradiction of the fact that 𝐶𝑖 (𝑦𝑖) 𝑗 ′ < 𝐶𝑖 (𝑥𝑖) 𝑗 ′ , so it must also be true that 𝑥𝑖 𝑗 < 𝑥𝑖′ 𝑗 is true
as well. However, this would mean that 𝑥 violates ex-ante indifference neutrality, again causing a
contradiction.

This shows that a contradiction occurs for every possible ordinal preference ordering of 𝑖 and 𝑗 ,
thus proving the statement. □

In the case of our matching problems, we can relate this proposer optimal matching under
AG-preferences back to our traditional notion of preferences through the following lemma:

Lemma 9. For any two doubly-strong ex-ante stable matchings 𝑥,𝑦, if 𝑥𝑖 ≽
AG

𝑖 𝑦𝑖 for some 𝑖 , then

𝑥𝑖 ≽
SD

𝑖 𝑦𝑖 .

Proof. For contradiction, assume this is false. For some matchings 𝑥,𝑦, we have 𝑥𝑖 ≽AG𝑖 𝑦𝑖 , and
thus 𝐶𝑖 (𝑥𝑖 ∨ 𝑦𝑖) = 𝑥𝑖 , but not 𝑥𝑖 ≽SD𝑖 𝑦𝑖 .

Thismeans that there is some equivalency class fo 𝑖 ,𝐸𝑖𝑘 , such that
∑

𝑘′<𝑘
∑

𝑗 ∈𝐸𝑖𝑘′ 𝑦𝑖 𝑗 >
∑

𝑘′<𝑘
∑

𝑗 ∈𝐸𝑖𝑘′ 𝑥𝑖 𝑗 .
By the fact that 𝑥 and 𝑦 are both perfect matchings, this implies that there exists some other equiv-
alency class 𝐸𝑖𝑘′ with 𝑘 ′ > 𝑘 such that

∑
𝑘′′<𝑘′

∑
𝑗 ∈𝐸𝑖𝑘′′ 𝑥𝑖 𝑗 >

∑
𝑘′′<𝑘′

∑
𝑗 ∈𝐸𝑖𝑘′′ 𝑥𝑖 𝑗 .

Benjamin Cookson and Nisarg Shah 31

From this, we are able to conclude that there exists some 𝑗 that 𝑖 places in at least class 𝐸𝑖𝑘 or
higher, such that 𝑦𝑖 𝑗 > 𝑥𝑖 𝑗 , and there is some 𝑗 ′ that 𝑖 places in at least class 𝐸𝑖𝑘′ or lower such that
𝑥𝑖 𝑗 ′ > 𝑦𝑖 𝑗 ′ . Since 𝑦𝑖 𝑗 > 𝑥𝑖 𝑗 , we must also have that (𝑥𝑖 ∨ 𝑦𝑖) 𝑗 = 𝑦𝑖 𝑗 > 𝑥𝑖 𝑗 . Thus, if 𝐶𝑖 (𝑥𝑖 ∨ 𝑦𝑖) = 𝑥𝑖 ,
then we must have that 𝐶𝑖 (𝑥𝑖 ∨ 𝑦𝑖) 𝑗 < (𝑥𝑖 ∨ 𝑦𝑖) 𝑗 . By the way the DFDA choice functions are
defined, this would imply that the equivalency class of 𝑗 is 𝑖’s lowest equivalency class that has any
matchings in 𝐶𝑖 (𝑥𝑖 ∨ 𝑦𝑖), but this would contradict the fact that 𝐶𝑖 (𝑥𝑖 ∨ 𝑦𝑖) 𝑗 ′ = 𝑥𝑖 𝑗 ′ > 0. □

ALGORITHM 6: The deferred-acceptance procedure of Alkan and Gale [2003] with the choice functions
in Algorithm 5.

1 𝐵0 ← 1𝑁×𝑀

2 𝑋 0 ← 1𝑁×𝑀

3 𝑌 0 ← 0𝑁×𝑀

4 𝑘 ← 0
5 while 𝑋𝑘 ≠ 𝑌𝑘

do

6 for 𝑖 ∈ 𝑁 do

7 𝑋𝑘+1
𝑖
← 𝐶𝑖 (𝐵𝑘)

8 end

9 for 𝑗 ∈ 𝑀 do

10 𝑌𝑘+1
𝑗
← 𝐶 𝑗 (𝑋𝑘+1)

11 end

12 for 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 do

13 if 𝑌𝑘+1
𝑖 𝑗

= 𝑋𝑘+1
𝑖 𝑗

then

14 𝐵𝑘+1
𝑖 𝑗

= 𝐵𝑘
𝑖 𝑗

15 end

16 else

17 𝐵𝑘+1
𝑖 𝑗

= 𝑌𝑘+1
𝑖 𝑗

18 end

19 end

20 𝑘 ← 𝑘 + 1
21 end

22 return 𝑋𝑘

As the final step of this process, in Theorem 1 of [Alkan and Gale, 2003], the authors provide an
algorithm (Algorithm 6) that produces the proposer-optimal matching among AG-preferences. We
can show that when agents have DFDA choice functions, this algorithm will be equivalent to the
DFDA algorithm.

Theorem 7. Algorithm 6 is equivalent to Algorithm 1.

Proof. We can show this equivalence explicitly, by walking through the execution of the DFDA
algorithm, while also keeping track of a new matrix 𝑏. After each step 𝑘 of Algorithm 1, we say
that for all 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑀 , 𝑏𝑘𝑖 𝑗 = 𝑥𝑘𝑖 𝑗 if any fraction of 𝑖 has been rejected by 𝑗 by that point of the
algorithm, and otherwise 𝑏𝑘𝑖 𝑗 = 1. Intuitively, 𝑏𝑘 represents the total fraction of each proposer that
has not yet been rejected from each acceptor.
For any 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , we can show that 𝑖’s tentative matching to 𝑗 at step 𝑘 − 1, 𝑥𝑘−1𝑖 𝑗 , plus

his tentative proposals to 𝑗 in round 𝑘 will equal 𝐶𝑖 (𝑏𝑘𝑖) 𝑗 .

Benjamin Cookson and Nisarg Shah 32

To see this, let 𝑃𝑖 be the set of agents that 𝑖 is proposing to in this step. Assume the acceptors in
𝑃𝑖 belong to the equivalency class 𝐸𝑖𝑘 . By definition of DFDA, 𝑖 must be rejected from all acceptors
in the class 𝐸𝑖𝑘′ for every 𝑘 ′ < 𝑘 . This means that for all such acceptors 𝑗 ′ ∈ ∪𝑘′<𝑘𝐸𝑖𝑘′ , we have that
𝑏𝑘−1
𝑖 𝑗 ′ = 𝑥𝑘−1

𝑖 𝑗 ′ . Since 𝑥
𝑘−1 is a valid matching, 𝐶𝑖 (𝑏𝑘−1𝑖) must choose the full amount of 𝑥𝑘−1

𝑖 𝑗 ′ for each
such 𝑗 ′. After the DFDA choice function has selected these matchings from all preferred equivalency
classes, it will select matchings from 𝐸𝑖𝑘 . Note that it must be the case for every 𝑗 ′ ∈ 𝐸𝑖𝑘 \ 𝑃𝑖 , 𝑖 must
have been rejected from 𝑗 ′, thus will have 𝑏𝑘−1

𝑖 𝑗 ′ = 𝑥𝑘−1
𝑖 𝑗 ′ . For all 𝑗

′ ∈ 𝑃𝑖 , we will have 𝑏𝑘−1𝑖 𝑗 ′ = 1. Now
we can simply observe how the DFDA choice function will choose matchings from this class.

Due to the properties of the DFDA algorithm, at each step of the algorithm, if 𝑗 ∼𝑖 𝑗 ′, 𝑗 ′ has
rejected 𝑖 before step 𝑘 and 𝑗 has not yet been rejected, then we must have 𝑥𝑘−1𝑖 𝑗 ⩾ 𝑥𝑘−1

𝑖 𝑗 ′ . This means
that every 𝑗 ∈ 𝑃𝑖 is matched to 𝑖 with at least as much weight as all the acceptors in 𝐸𝑖𝑘 \ 𝑃𝑖 .

We can note note that 𝐶𝑖 (𝑏𝑘−1𝑖) will choose the full available amount of every 𝑗 ′ ∈ 𝐸𝑖 𝑗 \ 𝑃𝑖 . This
follows from the fact that 𝑥𝑘−1 is a valid matching, and 𝑥𝑘−1𝑖 must not exceed 𝑖’s quota of 1. Thus, if
𝐶𝑖 (𝑏𝑘−1𝑖) was not able to choose full amount of some acceptor in 𝑗 ′ ∈ 𝐸𝑖 𝑗 \ 𝑃𝑖 this would contradict
that fact or the fact that all acceptors in 𝑃𝑖 must have a higher matching that 𝑗 ′ in 𝑥𝑘−1𝑖 .
Finally, note that in 𝑥𝑘−1, it must be true that for all 𝑗, 𝑗 ′ ∈ 𝑃𝑖 , we have that 𝑥𝑘−1𝑖 𝑗 = 𝑥𝑘−1

𝑖 𝑗 ′ , this
follows from the fact that neither of 𝑗 and 𝑗 ′ have been rejected yet, and thus by the definition of
the DFDA, every time 𝑖 proposed to one of them previously, it proposed to both of them the same
amount. Since it must be the case that the matching formed by 𝑥𝑘−1𝑖 and 𝑖’s proposals in step 𝑘

is perfect matching that exactly meets 𝑖’s quota, and we know that all agents other that those in
𝑃𝑖 from equivalency classes at least as good as 𝐸𝑖𝑘 will be chosen at exactly their 𝑥𝑘−1 matching
in 𝐶𝑖 (𝑏𝑘−1𝑖), it follows that the final part of the 𝐶𝑖 (𝑏𝑘−1𝑖) will be for 𝐶𝑖 to continue choosing the
acceptors from 𝑃𝑖 at an equal rate until it has chosen an amount of each of them exactly equal to
the amount at which they are matched to 𝑖 in 𝑥𝑘−1 plus 𝑖’s proposals, at which the quota of 𝑖 will
be filled, and it will stop.
One can also note that in each step of the DFDA algorithm, when each acceptor looks at the

tentative proposals it received in that step and makes it’s rejections, the matching it selects will be
identical to the vector selected by the DFDA choice function when run against the vector formed by
that acceptor’s tentative matching at step 𝑘 − 1 plus the proposals it received in step 𝑘 . Unlike the
previous statement, this does not require a nuanced proof, it follows trivially from the definition of
the DFDA choice function, and by the described way that the acceptors make their rejections in
the DFDA algorithm. It is easy to see that these are the exact same process.

With this in mind, it is easy to see that the Algorithm 6 is performing the exact same steps as the
DFDA algorithm. At every step, 𝐵𝑘−1 is defined equivalently to how we defined 𝑏, 𝑋𝑘 represents
the proposers tentative matchings plus their proposals at this step, and 𝑌𝑘 represents the acceptors
rejection choices. The final step of each iteration updates 𝐵𝑘 to reflect any rejections that happened
this step. From this, we can see that the tentative matching 𝑥𝑘 produced after step 𝑘 of the DFDA
algorithm will be equivalent to 𝑌𝑘 in Algorithm 6. □

From Lemma 9, we can conclude that the optimal matching that is guaranteed to exist for AG-
preferences is also optimal under our traditional notion of preferences, and through Theorem 7,
we can conclude that the process that is known to find this matching is equivalent to DFDA. This
completes the proof of Theorem 1, as it shows that DFDA will converge to a proposer-optimal
doubly-strong ex-ante stable matching.

D Missing Proofs from Section 5

Benjamin Cookson and Nisarg Shah 33

Lemma 1. For any acceptor 𝑗 ∈ 𝑀 , if at any point during the execution of Algorithm 2 we have��𝑥 𝑗 �� = 1, then
��𝑥 𝑗 �� = 1 will remain true for the rest of the algorithm.

Proof. To see this, it is sufficient to note constraint (5) of the LP, ∀𝑗 ∈ 𝑀,
��𝑥 𝑗 �� = 1 → 𝑧 𝑗 =∑

𝑖∈𝑁 𝑦𝑖 𝑗 .
Since

��𝑥 𝑗 �� = ∑
𝑖∈𝑁 𝑥𝑖 𝑗 , and after each execution of the LP, each 𝑥𝑖 𝑗 will be updated using the

formula 𝑥𝑡+1𝑖 𝑗 ← 𝑥𝑡𝑖 𝑗 + 𝑦∗𝑖 𝑗 − 𝑧∗𝑗𝑖 , we have that the value of
��𝑥 𝑗 �� gets updated by the formula

���𝑥𝑡+1𝑗

���←���𝑥𝑡𝑗 ���+∑𝑖∈𝑁 (𝑦∗𝑖 𝑗 − 𝑧∗𝑗𝑖) =
���𝑥𝑡𝑗 ���+∑𝑖∈𝑁 𝑦∗𝑖 𝑗 −𝑧∗𝑗 =

���𝑥𝑡𝑗 ��� = 1. With the first equality being directly implied
by constraints (7) and (8) of the LP. □

Lemma 10. For any 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , if at any point in 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 2, 𝑖 ∈ 𝑅 𝑗 \𝐴∗𝑗 is true, then it will

remain true for the rest of the algorithm.

Proof. From the logic of Algorithm 2, we can see that the only proposers in 𝑅 𝑗 who are matched
with positive weight to 𝑗 are those in 𝐴∗𝑗 . Thus, it must be the case that 𝑖 is not matched to 𝑗 with
any positive weight in this step, and thus, we must have that 𝑗 strictly prefers all the proposers it is
currently matched with to 𝑖 .

Since 𝑖 ∈ 𝑅 𝑗 is true in this step, it follows from the definition of 𝑃𝑖 that 𝑗 ∉ 𝑃𝑖 must be true. Thus,
from condition (4) of the LP, we know that the matching between 𝑖 and 𝑗 cannot increase while
𝑖 ∈ 𝑅 𝑗 is true.

Note that this same argument holds for any proposer 𝑖 ′ such that 𝑖 ≽𝑗 𝑖 ′. Thus, in the next step
of the algorithm, no such agent 𝑖 ′ will become positively matched with 𝑗 . Thus, after the next step,
𝑗 will still strictly prefer everyone in its matching to all such 𝑖 ′, thus 𝑖 ′ ∈ 𝑅 𝑗 will still be true.
We can continue this argument inductively, and conclude that after every step, 𝑗 will still prefer

everyone in its matching to 𝑖 and 𝑖 will never be positively matched to 𝑗 , thus 𝑖 will remain in
𝑅 𝑗 \𝐴∗𝑗 for the rest of the algorithm □

Lemma 11. For any 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , if at any point in Algorithm 2, 𝑖 ∈ 𝐴∗𝑗 is true, then 𝑖 will only
leave 𝐴∗𝑗 if it is fully rejected from 𝑗 , and enters 𝑅 𝑗 \𝐴∗𝑗 .

Proof. 𝐴∗𝑗 is defined as the set of proposers who are among the lowest equivalency class matched
to 𝑗 , and among those, the proposers with the highest weight matched to 𝑗 .
From Lemma 10, we know that this cannot happen because some other proposer from a lower

equivalency class becomes positively matched to 𝑗 . So, it must be the case that some proposer in
the same equivalency class to 𝑗 becomes matched to 𝑗 with a higher weight than 𝑖 .

For contradiction, assume that this happens, at some step of the algorithm 𝑖 ∈ 𝐴∗𝑗 is true, but in
the next iteration, after running an instance of the LP and updating the matching, 𝑖 is no longer in
𝐴∗𝑗 , and thus there is some 𝑖 ′ with 𝑖 ′ ∼𝑗 𝑖 who is matched to 𝑗 at a strictly higher amount than 𝑖 is.

By condition (7) of the LP, we can see that if 𝑖 ′ ∈ 𝐴∗𝑗 were also true, this would lead to a
contradiction. Condition (7) ensures that 𝑖 and 𝑖 ′ would be rejected from 𝑗 the exact same amount
during this iteration of the LP, and from the fact that they are in𝐴∗𝑗 , we can conclude that 𝑗 ∉ 𝑃𝑖 and
𝑗 ∉ 𝑃𝑖′ are also true, and thus 𝑦𝑖 𝑗 = 𝑦𝑖′ 𝑗 = 0 in the LP solution. Therefore, updating the matching
with such a solution could not cause 𝑖 ′’s matching with 𝑗 to exceed 𝑖 .

In the case where 𝑖 ′ ∉ 𝐴∗𝑗 , then by the fact that 𝑖 ′ ∼𝑗 𝑖 , we can conclude that 𝑖 ′ ∈ 𝐴 𝑗 \𝐴∗𝑗 must be
true, and we can easily see that this leads to a contradiction by observing condition (10) of the LP.
By condition (10) 𝑥𝑖 𝑗 − 𝑧 𝑗𝑖 ⩾ 𝑥𝑖′ 𝑗 + 𝑦𝑖′ 𝑗 must be true. Again we can conclude that 𝑦𝑖 𝑗 = 0 from the
fact that 𝑖 ∈ 𝐴∗𝑗 , and we can also conclude that 𝑧 𝑗𝑖′ = 0 from the fact that 𝑖 ′ ∉ 𝐴∗𝑗 , following from
condition (8) of the LP.

Benjamin Cookson and Nisarg Shah 34

This also shows that in this case, updating the matching with the LP solution will never cause
𝑖 ′’s matching with 𝑗 to exceed 𝑖’s. □

Lemma 2. For any 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , at any point of Algorithm 2, if 𝑖 ∈ 𝑅 𝑗 is true, then for all 𝑖 ′ ∈ 𝑁
such that 𝑖 ∼𝑗 𝑖 ′, 𝑥𝑖 𝑗 ⩾ 𝑥𝑖′ 𝑗 will remain true for the rest of the algorithm.

Proof. First note that if 𝑖 ∈ 𝑅 𝑗 \ 𝐴∗𝑗 is true, then it must be matched to 𝑗 with 0 weight, and
𝑗 must strictly prefer everyone in its current matching to 𝑖 . This implies that all 𝑖 ′ would have
to be matched to 𝑗 with 0 weight as well, and by Lemma 10, this would continue to hold for the
remainder of the algorithm.

Next, from Lemma 11, we know that after the first step where 𝑖 ∈ 𝐴∗𝑗 is true, it will not leave 𝐴∗𝑗
until it is fully rejected by 𝑗 . Thus, at any point after it gets added to 𝐴∗𝑗 , but before it gets it gets
fully rejected, we will have that 𝑥𝑖 𝑗 ⩾ 𝑥𝑖′ 𝑗 must be true for all 𝑖 ′ such that 𝑖 ∼𝑗 𝑖 ′.
Next, observe that on the step where 𝑖 gets fully rejected from 𝑗 , it must be the case that this

step, all 𝑖 ′ will also be matched to 𝑗 with weight 0. If this were not true, then it is clear to see that 𝑖 ′
would have had to violate condition (7) of the LP (if it were in 𝐴∗𝑗), or condition (10) of the LP (if it
were in 𝐴 𝑗 \𝐴∗𝑗) to be positively matched to 𝑗 at this step.

From the fact that 𝑖 ∈ 𝐴∗𝑗 was true in the previous step, we know that all proposers who 𝑗 strictly
prefers 𝑖 to must in 𝑅 𝑗 \𝐴∗𝑗 , and thus by Lemma 10 will remain there for the rest of the algorithm.
By the above analysis, we can also conclude that on the step where 𝑖 gets fully rejected by 𝑗 , all
proposers in 𝑖’s equivalency class will be matched to 𝑗 with weight 0 as well, and thus is must
be the case that 𝑗 strictly prefers everyone in its matching to 𝑖 at this point. Thus, for all 𝑖 ′ such
that 𝑖 ′ ∼𝑗 𝑖 , we must have 𝑖 ′ ∈ 𝑅𝑖 \𝐴∗𝑗 , and by Lemma 10, they will all remain matched with 𝑗 at 0
forever. □

Lemma 3. For any 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 , at any point of Algorithm 2, if 𝑖 ∈ 𝑅 𝑗 becomes true, then 𝑖 ∈ 𝑅 𝑗

will remain true for the rest of the algorithm.

Proof. If at this point, 𝑖 ∈ 𝑅 𝑗 \𝐴∗𝑗 is true, then this immediately follows from Lemma 10.
If on the other hand, 𝑖 ∈ 𝐴∗𝑗 is true at this point, then we know from 𝐿𝑒𝑚𝑚𝑎 11, that it will

remain in 𝐴∗𝑗 until it is fully rejected, and it is implied by Lemma 2 that once 𝑖 is fully rejected, it
will enter 𝑅 𝑗 \𝐴∗𝑗 , and thus remain there forever. □

Lemma 5. Let 𝑦∗, 𝑧∗ be the variables after resolving some LP in Algorithm 2. The process of updating

the current matching using 𝑦∗, 𝑧∗ will change the proposer graph only if at least one of the conditions

(B), (C) or (D) are true.

Proof. For contradiction, assume this is false and that in an LP solution 𝑦∗, 𝑧∗ where conditions
(B), (C), and (D) are all false, but the corresponding updating of the matching changes the proposal
graph. Consider the different ways that the proposal graph can change.
First, observe the fact that for any 𝑗 ∈ 𝑀, 𝑖 ∈ 𝑁 , an edge from 𝑗 to 𝑖 can only change (either

appear or disappear) in the proposal graph if 𝐴∗𝑗 changed in this iteration. This follows immediately
from the fact that by definition, the edge (𝑗, 𝑖) exists in the proposal graph if and only if 𝑖 ∈ 𝐴∗𝑗 .
Slightly less trivially, we can observe that for any 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 , an edge from 𝑖 to 𝑗 can only

also change in the proposal graph if 𝐴∗
𝑗 ′ changed for some 𝑗 ′ ∈ 𝑀 in this iteration. For any fixed 𝑖 ,

the set of 𝑗 such that (𝑖, 𝑗) is an edge in 𝐺 will be the set of 𝑗 among 𝑖’s highest equivalency class
such that 𝑗 ∉ 𝑅𝑖 . Since we know from Lemma 3 that once some acceptor is placed into 𝑅𝑖 , it will
never be removed for the remainder of the algorithm, it must be the case that if some edge (𝑖, 𝑗) is
removed from the graph, then 𝑗 was added to 𝑅𝑖 , and similarly, if some edge (𝑖, 𝑗) is added to the
graph, then some 𝑗 ′ must have been added to 𝑅𝑖 that lowered the 𝑖’s highest unrejected equivalency

Benjamin Cookson and Nisarg Shah 35

class. Clearly, an acceptor 𝑗 ′ can only be added to 𝑅𝑖 if they are either directly added to 𝐴∗
𝑗 ′ , or if

the lowest equivalency class matched to 𝑗 changed, which would also cause 𝐴∗𝑗 to change.
Thus, it is sufficient to show that if conditions (B), (C), and (D) are all false after some iteration

of the LP, then 𝐴∗𝑗 will remain the same for all 𝑗 ∈ 𝑀 .
In our assumption for contradiction, let 𝑗 be the acceptor such that 𝐴∗𝑗 changes. First consider

the case that there is some 𝑖 that was 𝐴∗𝑗 in the previous step, but is not anymore. It cannot be the
case that 𝑖 was fully rejected from 𝑗 , otherwise that would violate condition condition (C). But
from Lemma 11, we know that once some 𝑖 is in 𝐴∗𝑗 , the only way it can leave 𝐴∗𝑗 is by being fully
rejected. So this cannot be the case.
Therefore, there must some 𝑖 that was not in 𝐴∗𝑗 previously, but is there now. It cannot be the

case that 𝑖 is part of a brand new equivalency class that was not in 𝐴∗𝑗 previously, as that could only
happen if 𝑗 just became full for the first time, which would violate condition (B), or the proposers
from some higher equivalency class were fully rejected in the previous step, violating the argument
from the last paragraph. Therefore, it must be the case that there are other proposers from the same
equivalency class in 𝐴∗𝑗 , and 𝑖 , previously being in 𝐴 𝑗 \𝐴∗𝑗 has become matched to 𝑗 at the same
weight as them. But clearly this could only happen if a violation of condition (D) occurred. □

E WhyWe Demand Proposers With Free Weights

Suppose there are proposers 𝑖, 𝑖 ′ and acceptors 𝑗, 𝑗 ′ with preferences shown on
the right, and suppose that at some point of the algorithm, we have 𝑥𝑖 𝑗 ′ > 0 and
𝑥𝑖′ 𝑗 > 0. Also, suppose that 𝑖 is rejected from 𝑗 ′ and one of the acceptors she
will propose to next is 𝑗 , and 𝑖 ′ is rejected by 𝑗 and one of the acceptors she will
propose to next is 𝑗 ′. Finally, suppose 𝑖 and 𝑖 ′ both have no free weight. This
would form the following cycle in our proposal graph: 𝑖 → 𝑗 → 𝑖 ′→ 𝑗 ′→ 𝑖 .

Preferences

𝑖: 𝑗 ′ ≻ 𝑗

𝑖 ′: 𝑗 ≻ 𝑗 ′

𝑗 : 𝑖 ≻ 𝑖 ′

𝑗 ′: 𝑖 ′ ≻ 𝑖

If we did not have the𝑤𝑖 > 0 condition, then the LP would maximize flow through this cycle,
swapping matched weight on (𝑖, 𝑗 ′) and (𝑖 ′, 𝑗) for equal weight on (𝑖, 𝑗) and (𝑖 ′, 𝑗 ′). However, this
leads to the proposers worsening. Also, it does not reflect any actual proposals and rejections that
would have happened in DFDA because 𝑖 and 𝑖 ′ had no free weights to kick them off. Adding the
condition to Line 7 that some proposer in 𝐶𝑡 must have free weight prevents such extra proposals
and rejections, thus bringing DFDA-SCC closer to mimicking DFDA.

F Incompatibility With Pareto Optimality

Consider the instance in Figure 5(a), where proposers 𝑖 and 𝑖 ′ are indifferent between acceptors 𝑗
and 𝑗 ′, and 𝑗 is also indifferent between 𝑖 and 𝑖 ′, but 𝑗 ′ strictly prefers 𝑖 to 𝑖 ′. The only Pareto optimal
matching is given in Figure 5(c), which makes 𝑗 ′—the only agent who is not completely indifferent—
maximally happy. However, this violates the requirement of ex ante indifference neutrality that
𝑥𝑖 𝑗 ⩾ min

{
𝑥𝑖 𝑗 ′, 𝑥𝑖′ 𝑗

}
. Note that DFDA and DFDA-SCC produce the matching shown in Figure 5(b)

because both proposers initially propose a weight of 1/2 to both acceptors, which accept them, and
the algorithms immediately terminate.

G Extended Discussion

Due to space constraints, the following discussion points are deferred here from Section 6.

One-sided matching with weak agent priorities. Two-sided matching includes one-sided
matching, also known as the house allocation problem [Hylland and Zeckhauser, 1979], as a special
case, where agents are matched to objects, agents have preferences over the objects, and we can
treat every object as being indifferent between all the agents. In this case, DFDA does not seem

Benjamin Cookson and Nisarg Shah 36

Preferences

𝑖, 𝑖 ′: 𝑗 ∼ 𝑗 ′

𝑗 : 𝑖 ∼ 𝑖 ′
𝑗 ′: 𝑖 ≻ 𝑖 ′

(a) Preferences.

𝑗 𝑗 ′

𝑖 1/2 1/2
𝑖 ′ 1/2 1/2

(b) DFDA matching.

𝑗 𝑗 ′

𝑖 0 1
𝑖 ′ 1 0

(c) Ordinally Pareto dominant.

Fig. 5. DFDA can be Pareto sub-optimal.

to coincide with any known algorithm. It cannot ordinally dominate its competitor, probabilistic
serial (PS) [Bogomolnaia and Moulin, 2001], because PS is ordinally efficient, but we are able to
produce instances where PS ordinally dominates DFDA. That said, DFDA yields a natural extension
to the case where both sides have weak preferences, whereas for PS, extensions are known only
when either agents have weak preferences [Katta and Sethuraman, 2006] or objects have weak
priorities [Han, 2024], but not both.
Tradeoffs with other criteria. As mentioned in Section 1, there are various other criteria for
fractional two-sided matchings studied in the literature, such as ordinal fairness [Han, 2024], envy-
freeness and justified envy-freeness [Tröbst and Vazirani, 2024],11 and popular matching [Huang
and Kavitha, 2021]. It is worth exploring the tradeoff between our criteria (particularly, ex ante
stability) and these other criteria as well as with utilitarian welfare [Caragiannis et al., 2019a] in
two-sided matching.
Best-of-both-worlds guarantees. As mentioned in Section 1, fractional matchings can be imple-
mented as lotteries over integral matchings due to the Birkhoff-von Neumann theorem [Birkhoff,
1946]. This simply finds an arbitrary lottery under which the marginal probability of agents 𝑖 and 𝑗

being matched is precisely 𝑥𝑖 𝑗 for all 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 . Recently, there is a growing literature on
implementing fractional solutions as lotteries while providing “best-of-both-worlds” guarantees:
ex ante guarantees on the fractional solution and ex post guarantees on every integral solution
in the support [Aziz et al., 2023a,b, Feldman et al., 2024, Hoefer et al., 2024]. These often use
strengthened versions of the Birkhoff-von Neumann theorem such as the bihierarchy extension due
to Budish et al. [2013]. Whether the fractional matchings returned by DFDA or DFDA-SCC can be
implemented while obtaining some ex post guarantees (such as stability of the integral matchings
in the support) is an exciting question for the future.
Many-to-many integral matchings. Following the discussion on multi-unit capacities from
Section 6, when agents on both sides have multi-unit capacities it is also interesting to investigate
integralmatchings with approximate fairness guarantees: Freeman et al. [2021] do so for a relaxation
of envy-freeness called EF1, leaving open the question of whether a matching satisfying EF1 for
both sides always exists under additive cardinal utilities, but we are not aware of any work doing
so for relaxations of stability-inspired criteria.

11It should be noted that the justified envy-freeness criterion of Tröbst and Vazirani [2024] is different from the no justified
envy criterion common in the deferred acceptance literature that coincides with stability for one-to-one matching.

	Abstract
	Contents
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Stability and Fairness Criteria
	2.2 Proposer-Optimal Matchings

	3 The Fault in Our Stars: Strong Ex Ante Stability in Finite Time?
	4 Doubly-Fractional Deferred Acceptance
	5 A Polynomial-Time Algorithm for Doubly-Strong Ex Ante Stable Matching
	5.1 Analysis of DFDA-SCC

	6 Discussion
	References
	A Algorithms FDA and FDA-Cycle
	B Failure of FDA-Cycle on Our Counterexample
	C Alkan-Gale Stability
	C.1 Alkan-Gale Matching Model
	C.2 Doubly-Strong Ex-Ante Stability Through Choice Functions

	D Missing Proofs from Section 5
	E Why We Demand Proposers With Free Weights
	F Incompatibility With Pareto Optimality
	G Extended Discussion

