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Abstract

Motivated by fair division applications, we study a fair connected graph partitioning problem, in which an undi-
rected graph withm nodes must be divided between n agents such that each agent receives a connected subgraph and
the partition is fair. We study approximate versions of two fairness criteria: α-proportionality requires that each agent
receives a subgraph with at least 1/α ·m/n nodes, and α-balancedness requires that the ratio between the sizes of
the largest and smallest subgraphs be at most α. Unfortunately, there exist simple examples in which no partition is
reasonably proportional or balanced. To circumvent this, we introduce the idea of charity. We show that by “donating”
just n− 1 nodes, we can guarantee the existence of 2-proportional and almost 2-balanced partitions (and find them in
polynomial time), and that this result is almost tight. More generally, we chart the tradeoff between the size of charity
and the approximation of proportionality or balancedness we can guarantee.

1 Introduction
The problem of fair division concerns the allocation of a set of goods (or chores) fairly between a set of agents. Perhaps
the most canonical model is cake-cutting, in which a heterogeneous divisible good, called cake, is divided between
n agents. Under minimal assumptions, this model allows providing compelling fairness guarantees. For example, one
can ensure proportionality [34], which demands that each agent’s value for her allocation be at least 1/n-th of her
value for the entire cake, or the stronger notion of envy-freeness [22, 25], which demands that no agent strictly prefers
another agent’s allocation to her own.

However, many real-world applications pose additional constraints, which often make such strong fairness notions
impossible to guarantee. A common constraint, which has received increasing attention recently, is indivisibility. Here,
one assumes that the goods cannot be split, i.e., each good must be allocated entirely to a single agent. For example,
when dividing an inheritance between heirs, goods such as a house or a piece of jewelry are indivisible. In this case,
one can no longer guarantee proportionality or envy-freeness; think of allocating a single indivisible good between two
agents. Nonetheless, “up to one good”-style relaxations can be guaranteed [8, 10, 18], which converge to providing
exact proportionality or envy-freeness when each individual good is negligible compared to the set of all goods.

The situation becomes more dire when we impose another common constraint: connectedness. Bouveret et al. [6]
introduced a model where the indivisible goods are nodes of a graph and the goal is to allocate to each agent a subset of
goods that forms a connected subgraph. Examples of real-world applications where connectedness is desirable include
allocation of offices to research groups in an academic building, land division [21], congressional redistricting1, power
grid islanding [33], and metadata partitioning in large-scale distributed storage systems [39].

*A preliminary version of this paper appeared in the proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI), 2022.
1This is the process of re-drawing electoral district boundaries. Formally, a graph of electoral precincts is divided into a fixed number of

connected subgraphs (districts) with approximately equal populations [37].

1



While many of these applications have identical goods (meaning that all agents have the same value for each
good), it is easy to see that even in this special case, no reasonable relaxation of proportionality or envy-freeness can
be guaranteed, even if each individual good is negligible compared to the set of all goods. For example, consider
m � n identical goods connected via a star graph with a hub node connected to m − 1 leaf nodes. Any way of
partitioning the nodes into n connected bundles will produce a highly imbalanced partition in which one very large
bundle has at least m− n+ 1 nodes while every other bundle has at most a single node.

This, in essence, is the fair graph partitioning problem that we study in this work. Formally, we are given an
undirected graph G = (V,E), where V is a set of m nodes and we want to partition it into (V1, . . . , Vn) such that
each Vi forms a connected subgraph. Borrowing from the fair division literature, we call this partition α-proportional
if mini α · |Vi| > m/n, and α-balanced if maxi |Vi| 6 α · mini |Vi|. It is easy to see that α-balancedness implies
α-proportionality.2 Balancedness and similar cardinality constraints have been investigated previously in various fair
division contexts [1, 5, 27, 30]; in our case, note that 1-balancedness is equivalent to envy-freeness.

While the aforementioned star graph example rules out any reasonably fair partition, note that if we could keep
just the hub node unallocated, we could partition the leaf nodes in a highly proportional and balanced manner. In the
fair division literature, the idea of keeping a few goods unallocated, termed charity, has been used to achieve fairness
guarantees that are even stronger than envy-freeness up to one good without the connectedness constraint [3, 9, 12, 13].
We borrow this idea and show that charity also helps improve fairness when connectedness is desired. In our context,
the unallocated nodes can also be viewed as shared between agents; e.g., in land division, these can be public land
accessible by all agents.

Formally, we seek a partition (V1, . . . , Vn, R) of V , where the set of unallocated (or excluded) nodes R is small
and each Vi is connected “via” R (i.e., there exists Ri ⊆ R such that Vi ∪ Ri is connected). While α-balancedness
definition remains unchanged, α-proportionality is now defined as α·mini |Vi| > (m−|R|)/n, so that α-balancedness
still implies α-proportionality. Revisiting the star graph example, we can see that if we divide a star graph with a hub
node connected to three leaf nodes between two agents, the best we can hope for with a single node exclusion is
2-balancedness and 1.5-proportionality. Generalizing this example, we later show (Theorem 1) that when dividing
a graph between n agents, the best we can hope for with n − 1 node exclusions is 2-balancedness and (2 − 1/n)-
proportionality. This leads to our main research questions:

Is a 2-balanced or (2 − 1/n)-proportional partition of a graph between n agents guaranteed to exist
with only n− 1 node exclusions? If so, can we find such a partition in polynomial time? More generally,
what is the tradeoff between the approximation of proportionality or balancedness we can achieve and
the number of nodes we need to exclude?

Since the number of nodes m can be much greater than n, following the fair division literature [13], we view
excluding O(n) nodes as “a little charity”.

1.1 Our Results
We begin by the case where at most n − 1 node exclusions are allowed. We prove a lower bound which shows that
α-balancedness and α-proportionality cannot be guaranteed for any α < 2 and α < 2−1/n, respectively (Theorem 1).

Next, for n ∈ {2, 3}, we show that this bound is tight and such partitions can be found in polynomial time
(Theorems 2 and 3). For higher values of n, we provide three efficient algorithms which obtain generally incompa-
rable approximation guarantees: one ensures (3 + O(n/m))-balancedness and 3-proportionality, another ensures 4-
balancedness and 2-proportionality, and the final one ensures (2+O(n2/m))-balancedness and (2−1/n+O(n2/m))-
proportionality. In particular, for fixed n, when m → ∞, the final result matches the lower bound from Theorem 1.
We conjecture that it should be possible to achieve 2-balancedness and (2− 1/n)-proportionality for any n and m.

We also consider the tradeoff between the charity (number of node exclusions allowed) and approximations to
balancedness or proportionality which can be guaranteed. While we provide almost tight bounds on this tradeoff when
more than n− 1 exclusions are allowed, we leave behind interesting open questions when fewer than n− 1 exclusions
are allowed. We also show hardness of checking the existence of balanced partitions with at most n− 1 exclusions or

2Actually, it implies (α− (α− 1)/n)-proportionality.
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approximately balanced partitions with no exclusions. In appendix, some miscellaneous extensions of our framework
can be found.

1.2 Related Work
Our work is related to various models studied in mathematics, theoretical computer science, and multiagent systems.

In theoretical computer science, the problem of partitioning the nodes of a graph into connected subgraphs is
well-studied. It is known that checking whether a partition into equal-sized connected subgraphs — hence, perfectly
proportional and balanced — exists is NP-hard [24]; hence, this literature focuses on designing approximation al-
gorithms for computing partitions that are close to optimal according to various criteria, such as maximizing the
minimum size (related to proportionality) [11, 15] and minimizing the maximum size [14]. However, when even the
optimal partitions are highly imbalanced, as in the star graph example from the introduction, such approximations are
also unsatisfactory. The focus of our work is to provide worst-case bounds on balancedness and proportionality by
allowing the exclusion of a few nodes (charity).

In mathematics, the related problem of partitioning the edges rather than nodes of a graph has received attention.
For the special case of trees, this problem was introduced by Wu et al. [38], who proved the existence of 3-balanced
and (2−1/n)-proportional edge partitions; note that this is without any edge exclusions. Later, Dye [23] improved the
balancedness approximation to 2 for n ∈ {2, 3, 4}, Chu et al. [16] extended this result to all values of n, and Chu et al.
[17] showed how to achieve this in linear time even when the edges are weighted. In Section 5, we make an connection
between edge partitions of trees with no edge exclusions and node partitions of general graphs with at most n−1 node
exclusions, allowing us to leverage the above results to obtain upper bounds for our problem.

Our primary motivation stems from the fair division literature in multiagent systems, where the goal is to partition
the available goods between agents in a way that each agent receives a connected subset. While envy-freeness and
proportionality can be achieved exactly when the goods are divisible, as in cake-cutting [35, 36], as illustrated in the
introduction, not even a reasonable approximation of these guarantees can be provided when the goods are indivisible,
modeled as nodes of a graph. Hence, this literature focuses on special families of graphs, such as path graphs, for which
such guarantees can be provided [2, 4, 6], and on the computational complexity of the existence of fair connected
allocations [20, 26, 29]. Our goal is to provide approximate fairness guarantees for general graphs, by using the idea
of charity, which has been explored recently for fair division without the connectedness constraint [3, 9, 12, 13].

We remark that connected fair division has also been studied for chores rather than goods, with both divisible
chores [19, 28] and indivisible ones [7].

2 Preliminaries
For q ∈ N, define [q] = {1, . . . , q}. Let G = (V,E) be a graph with |V | = m. We denote with G[X] the subgraph
induced by X ⊆ V . We say that (V1, . . . , Vn, R) is a pseudo n-partition of G if

1. V = (∪i∈[n]Vi) ∪R;

2. Vi ∩ Vj = ∅ for distinct i, j ∈ [n], and Vi ∩R = ∅ for all i ∈ [n]; and

3. |R| 6 n− 1.

When |R| = 0, we simply refer to it as an n-partition of G. A pseudo n-partition (V1, . . . , Vn, R) is called connected
if, for every i ∈ [n], there exists Ri ⊆ R such that the subgraph G[Vi ∪ Ri] is connected. Throughout the paper, we
assume that G is connected and m > n, otherwise there may not exist any connected pseudo n-partition of G.

In our motivating fair division applications, the nodes of G are the goods, Vi is the set of goods allocated to agent
i, andR is the set of goods left unallocated (charity). We are typically interested in the case where n� m, so a charity
of n− 1 out of m nodes is very little.

With such little charity, our goal is to find a connected pseudo n-partition (V1 . . . , Vn, R) of G that is reasonably
fair. We consider the following fairness desiderata.
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Definition 1 (Balancedness). For α > 1, we say that a connected pseudo n-partition (V1, . . . , Vn, R) is α-balanced if
maxi∈[n] |Vi| 6 α ·mini∈[n] |Vi|. We refer to 1-balancedness simply as balancedness.

Definition 2 (Proportionality). Forα > 1, we say that a connected pseudo n-partition (V1, . . . , Vn, R) isα-proportional
if α ·mini∈[n] |Vi| > (m− |R|)/n. We refer to 1-proportionality simply as proportionality.

Note that if a connected pseudo n-partition (V1, . . . , Vn, R) is α-balanced, then we have m = |R|+
∑
i∈[n] |Vi| 6

|R| + |Vi| + (n − 1) · α · |Vi| for any i ∈ [n], which, after some simplification, implies that the partition is also
(α− (α− 1)/n)-proportional. In particular, 2-balancedness implies (2− 1/n)-proportionality.

We remark that the most difficult case of our problem is when G is a tree. Trivially, any lower bounds derived
for trees apply to the general case as well. But note that any upper bounds derived for trees can also be translated to
the general case. This is because, given any algorithm for trees and an input graph G, we can apply the algorithm to
any spanning tree of G (which can be computed efficiently). Any pseudo n-partition produced by the algorithm that is
connected under the spanning tree must also be connected under G. Hence, throughout the paper, we assume G to be
a tree without loss of generality.

We will often work with rooted trees. Given a tree G = (V,E) and a node v ∈ V , let T = (G, v) denote the tree G
rooted at v. Given a node u ∈ V , let ST (u, T ), c(u, T ), and p(u, T ) denote the subtree, the set of children nodes, and
the parent node of u, respectively (p(v, T ) is undefined); let level(u, T ) denote the length of the (unique) path from u
to the root v in T , with level(v, T ) = 1. Define the height of tree T as height(T ) = maxu∈V level(u, T ). We drop T
from the notation when it is clear from the context.

3 A Lower Bound
We begin by showing that we cannot hope to provide any guarantee better than 2-balancedness or (2−1/n)-proportionality.
This uses a generalization of the example used in the introduction to establish these lower bounds for n = 2. In later
sections, we design algorithms that (almost) achieve these bounds.

Theorem 1. There exists an instance in which no connected pseudo n-partition is α-balanced for any α < 2 or
α-proportional for any α < 2− 1/n.

Proof. Let ` > n be an integer. Consider the graph G = (V,E) that consists of 2n− 1 paths of length ` each, denoted
P1, . . . , P2n−1, and n − 1 additional “hub” nodes, denoted h1, . . . , hn−1. Hence, |V | = ` · (2n − 1) + n − 1. For
j ∈ [n − 2], hj is connected to hj+1 as well as to one of the endpoints of paths P2j−1 and P2j . Finally, hn−1 is
connected to one of the endpoints of paths P2n−3, P2n−2, and P2n−1.

First, we show that there is no connected pseudo n-partition (V1, ..., Vn, R) such that |Vi| > ` + 1 for all i ∈ [n].
For the sake of contradiction, assume that such a partition exists. We show that each path intersects at most one of
the parts. Indeed, if there exist j ∈ [2n − 1] and distinct i, i′ ∈ [n] such that Pj ∩ Vi 6= ∅ and Pj ∩ Vi′ 6= ∅, then
the part that contains the node in Pj ∩ (Vi ∪ Vi′) farthest from the hub that Pj is attached to would have size at most
` − 1, which is a contradiction. Since there are 2n − 1 paths and each intersects at most one part, by the pigeonhole
principle, there must exist i∗ ∈ [n] such that Vi∗ intersects with at most one path Pj∗ . Since |Vi∗ | > ` + 1, it must
contain at least one hub node v. Since each hub node is attached to at least two paths, v must be attached to a path Pj′
different from Pj∗ . Since |R| 6 n− 1 < ` = |Pj′ |, we have Pj′ 6⊆ R; hence, there must exist i′ ∈ [n] \ {i} such that
Vi′ ∩Pj′ 6= ∅. However, since the hub node v that Pj′ is attached to is allocated to Vi, by the connectedness constraint
we have Vi′ ⊆ Pj′ , implying |Vi′ | 6 `, which is a contradiction.

We have established that in any connected pseudo n-partition, there exists i ∈ [n] such that |Vi| 6 `. If it is
α-proportional, then we need

α · ` > m− |R|
n

>
(2n− 1) · `

n
,

which implies α > 2 − 1/n. Since α-balancedness implies (α − (α − 1)/n)-proportionality for any α > 1, the
impossibility of achieving α-proportionality for α < (2 − 1/n) implies the impossibility of getting α-balancedness
for α < 2.
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Algorithm 1: 2-balancedness and 1.5-proportionality for n = 2

Input: Tree G = (V,E) with |V | = m nodes.
Output: A connected pseudo 2-partition.

1: r ← arbitrary node in V
2: T ← tree (G, r) rooted at r
3: Find a node u∗ such that |ST (u∗, T )| > dm/3e > ST (v, T ) for every child v of u∗

4: if |ST (u∗, T )| = dm/3e then
5: (V1, V2, R)← (ST (u∗, T ), V \ ST (u∗, T ), ∅)
6: else
7: R← {u∗}, V1 ← ∅
8: for v ∈ c(u∗, T ) do
9: V1 ← V1 ∪ ST (v, T )

10: if |V1| > dm/3e then
11: break
12: end if
13: end for
14: V2 ← V \ (V1 ∪ {u∗})
15: end if
16: return (V1, V2, R)

4 Optimal 2-Partitions and 3-Partitions
In this section, we show that the lower bound from Theorem 1 is tight when n ∈ {2, 3}. For these cases, we design

efficient algorithms for finding connected pseudo n-partitions that are 2-balanced (and thus, (2− 1/n)-proportional).
The algorithm for n = 2, Algorithm 1, is of particular interest, as we will use it as a subroutine in the next section to
derive bounds for higher values of n.

Algorithm 1 returns a connected 2-balanced pseudo 2-partition with |R| 6 1 as follows. It roots the given tree
arbitrarily, and then finds a node u∗ at maximal depth whose subtree has at least dm/3e nodes. If the subtree has
exactly dm/3e nodes, it assigns the subtree as one part and the rest of the tree as the other part (not excluding any
node). Otherwise, it excludes u∗, and adds subtrees of its children iteratively to a part until the part has at least dm/3e
nodes. The remaining nodes form the other part. A similar trick has been used previously in the literature; see, e.g., [32]
and [31].

Theorem 2. When n = 2, Algorithm 1 runs in polynomial time and returns a connected pseudo 2-partition that is
2-balanced and, hence, 1.5-proportional.

Proof. We have already argued that Algorithm 1 can be implemented efficiently. It is also easy to check that it returns
a connected pseudo 2-partition. Now, we show that it achieves 2-balancedness, which implies 1.5-proportionality, as
argued in Section 2.

First, consider the case where |ST (u∗, T )| = dm/3e. In this case, since |R| = 0, we need to show that min(|V1|, |V2|) >
dm/3e. This is already satisfied for V1 = ST (u∗, T ), and we have |V2| = m− dm/3e > dm/3e.

Next, consider the case where |ST (u∗)| > dm/3e. In this case, since |R| = 1, we need to show that min(|V1|, |V2|) >
d(m− 1)/3e. For V1, this follows by its construction. Also, consider the last subtree ST (v, T ) added to V1 in Line 9.
Before adding this subtree, V1 must have had at most dm/3e − 1 nodes. Further, since u∗ is a node of maximal
height with |ST (u∗, T )| > dm/3e, we must have |ST (v, T )| 6 dm/3e − 1 for the child v of u∗. Hence, we have
|V1| 6 2(dm/3e − 1), implying that |V2| > m− 1− 2(dm/3e − 1) > d(m− 1)/3e. The theorem follows.

We make a note of the following fact established in the proof of Theorem 2, which we will use in the next section
when using Algorithm 1 as a subroutine and deriving bounds for higher values of n.

Corollary 1. Algorithm 1 returns a connected 2-partition (V1, V2, R) such that min(|V1|, |V2|) > d(m− |R|)/3e.
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Next, we establish a similar result for n = 3.

Theorem 3. When n = 3, there exists a connected pseudo 3-partition that is 2-balanced and, thus, 5/3-proportional,
and it can be computed in polynomial time.

Proof. For a tree G = (V,E) and node r ∈ V , let Gr denote G rooted at r. For a set S ⊆ V , let H(S,Gr) denote the
union of subtrees rooted at nodes in S in Gr, so |H(S,Gr)| =

∑
u∈S |ST (u,Gr)|. Note that this can be computed

efficiently. To make later analysis simpler, we will use the convention that |H(∅, Gr)| =∞. For a node u, a subset of
its children S ⊆ c(u, T ) is called “good” under Gr if |H(S,Gr)| > (m− 2)/4. For a root r, let Cu,r denote the good
subset of node u with the smallest |H(Cu, Gr)|, i.e.,

Cu,r = arg minS⊆c(u,Gr):|H(S,Gr)|>(m−2)/4 |H(S,Gr)|.

Note that if |ST (u,Gr)| − 1 > (m− 2)/4, then Cu,r 6= ∅, otherwise Cu,r = ∅. Note that computing Cu,r effectively
requires solving the subset sum problem. Since this can be solved in pseudopolynomial time in general and the ele-
ments of the set in our case — the sizes of the subtrees rooted at the children of u — are upper bounded by m, this can
be solved in polynomial time for our case.

Let (u1, r1) ∈ arg min(u,r)∈V |H(Cu,r, Gr)|. That is, over all possible combinations of roots and nodes, we find
that u1 has a good subset with the smallest total subtree size with root r1. First, we claim that |H(Cu1,r1 , Gr1)| <
(m−2)/2. Suppose for contradiction that |H(Cu1,r1 , Gr1)| > (m−2)/2. IfH(Cu1,r1 , Gr1) has at least two subtrees,
then the smallest subtree, say rooted at node v, has size at most |H(Cu1,r1 , Gr1)|/2. Hence, |H(Cu1,r1 \ {v}, Gr1)| >
|H(Cu1,r1 , Gr1)|/2 > (m − 2)/4. This violates the definition of Cu1,r1 because Cu1,r1 \ {v} is a good subset of
children of u1 with a smaller total subtree size. On the other hand, if H(Cu1,r1 , Gr1) consists of only one subtree, say
rooted at node v, then |ST (v,Gr1)|−1 = |H(Cu1,r1 , Gr1)|−1 > (m−2)/4. Hence,Cv,r1 6= ∅, so |H(Cv,r1 , Gr1)| <
|H(Cu1,r1 , Gr1)|, which contradicts the definition of u1.

Set V1 = H(Cu1,r1 , Gr1) and R = {u1}. As (m − 2)/4 6 |H(Cu1,r1 , Gr1)| < (m − 2)/2, we can write that
|H(Cu1,r1 , Gr1)| = (m− 2)/4 + x, where 0 6 x < (m− 2)/4.

First, suppose x < (3m+ 2)/20. Then, |H(Cu1,r1 , Gr1)| < (2m− 2)/5. Let T ′ = T \ (H(Cu1,r1 , Gr1)∪ {u1}).
Then, we have that |T ′| > (3m + 2)/5 − 1 = (3m − 3)/5. In this case, we run Algorithm 1 on T ′; let (V ′1 , V

′
2 , R

′)
be its output. We set V2 = V ′1 and V3 = V ′2 , and update R ← R ∪ R′. Then, from Corollary 1, we know that
|Vi| > d(m− 1)/5e for i ∈ {2, 3}. As |V1| = |H(Cu1,r1 , Gr1)| < (2m− 2)/5, we have that |V1| 6 b(2m− 2)/5c 6
2 · d(m − 1)/5e 6 2 · |Vi| for each i ∈ {2, 3}. Moreover, from Corollary 1, we have that for each i ∈ {2, 3},
|Vi| 6 2

3 · (|T
′| − |R′|) = 2

3 · (m− |V1| − 1− |R′|). Thus, we need to show 2 · |V1| > 2
3 · (m− |V1| − 1− |R′|), which

simplifies to 4|V1| > m− 1− |R′|. Because |V1| > (m− 2)/4, this holds.3

Next, we focus on the case where x > (3m+2)/20. We now change the root to u1. Recall that V1 = H(Cu1,r1 , Gr1).
With the root being u1, we have that for any u ∈ V \ V1, ST (v,Gu1

) ∩ V1 = ∅. We now repeat our search for a good
subset with the smallest total subtree size. Specifically, let

u2 ∈ arg minu∈V \V1
|H(Cu,u1

, Gu1
)|.

Note that |H(Cu2,u1
, Gu1

)| > |H(Cu1,r1 , Gr1)|, as otherwise we would have found (u2, u1) combination when
searching for (u1, r1).

Let us update R ← R ∪ {u2}. We partition H(Cu2,u1 , Gu1) into two parts, S1 and S2, such that each subtree in
H(Cu2,u1 , Gu1) is included entirely in one of the two parts and ||S1| − |S2|| is minimized among all such partitions.
Assume, without loss of generality, that |S1| > |S2|. Let T ′ = T \(H(Cu1,r1 , Gr1)∪H(Cu2,u1

, Gu1
)∪{u1}∪{u2}).

We set V2 = S1 and V3 = S2 ∪ T ′. We show that (V1, V2, V3, R) is a connected 2-balanced pseudo 3-partition.
First, we claim that |Vi| > (m− 2)/8 + x/2 for each i ∈ {2, 3}.

Suppose that |V2| = |S1| < (m− 2)/8 + x/2. As |S1| > |S2|, we have that

|S1|+ |S2| = |H(Cu2,u1
, Gu1

)| < (m− 2)/4 + x,

3This holds if |R′| = 1. When running Algorithm 1, we can force it to exclude a node by excluding an arbitrary node from the bigger part, as
long as the bigger part has at least two nodes, i.e., if the tree passed to Algorithm 1 has at least three nodes. We can force |T ′| > 3 if m > 6. For
m 6 5, it can be checked by brute force that the theorem holds.
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which contradicts |H(Cu2,u1 , Gu1)| > |H(Cu1,r1 , Gr1)|.
Now assume that |V3| < (m− 2)/8 + x/2. Then, we have that

|S1| = |V2| = |T \ (V1 ∪ V3 ∪ {u1, u2})|

> m−
(
m− 2

4
+ x+

m− 2

8
+
x

2
+ 2

)
=

5m+ 6

8
− 3x

2
− 2. (1)

Notice that either |S1| < (m− 2)/4 or |S1| > (m− 2)/4 + x, as otherwise in the first step we would find S1 instead
of H(Cu1,r1 , Gr1). If |S1| < (m− 2)/4, then from Equation (1) we get x > (m− 2)/4, which is impossible because
we derived x < (m− 2)/4 earlier. Thus, we have that |S1| > (m− 2)/4 + x. As each subtree in H(Cu2,u1

, Gu1
) has

size at most (m − 2)/4 − 1 (otherwise, we would be able to find a better good subset when finding C ′u2
), this means

that there must be at least two subtrees of H(Cu2,u1 , Gu1) in S1.4 We partition S1 into two parts, denoted by A1 and
A2, such that each subtree in S1 is fully contained in one of the two parts, and among all such partitions, ||A1| − |A2||
is minimized. Since S1 has at least two subtrees both parts must be non-empty. Assume, without loss of generality,
that |A1| > |A2|. As |S1| > (m− 2)/4 + x, we have that |A1| > (m− 2)/8 + x/2. Consider the following partition
(S′1, S

′
2) of H(Cu2,u1

, Gu1
): S′1 = A1 and S′2 = A2 ∪ S2. Since |S′1| = |A1| > (m − 2)/8 + x/2 > |S2|, where

the last inequality holds because |S2| 6 |V3| and we assumed |V3| < (m − 2)/8 + x/2 in this case. Further, since
|A2| > 0, we have |S′2| > |S2|. Hence, (S′1, S

′
2) is a different partition with a higher minimum size, implying that

||S′1| − |S′2|| < ||S1| − |S2||, which is the desired contradiction.
From all the above we have that |Vi| > (m − 2)/8 + x/2, and hence 2|Vi| > |V1|, for each i ∈ {2, 3}. Now, we

show that |Vi| 6 2((m− 2)/8 + x/2) for each i ∈ {2, 3}. Indeed, notice that

|V2| = |T \ (V1 ∪ V3 ∪ {u1, u2})|

6 m−
(
m− 2

4
+ x+

m− 2

8
+
x

2
+ 2

)
=

5m+ 6

8
− 3x

2
− 2

Plugging in x > (3m+2)/20, we get |V2| 6 2((m−2)/8+x/2). Since this argument is symmetric, we also similarly
have |V3| 6 2((m − 2)/8 + x/2). Thus, 2 · |V2| > |V3| and 2 · |V3| > |V2|, while |V1| > |Vi| for i ∈ {2, 3} and the
theorem follows.

The tightness of the lower bound from Theorem 1 for n ∈ {2, 3} leads us to make the following conjecture:

Conjecture 1. For any n > 2, every graph admits a connected pseudo n-partition that is 2-balanced (and hence,
(2− 1/n)-proportional), and it can be computed efficiently.

In the next section, we present a series of results which almost resolve this conjecture.

5 Upper Bounds for Higher n

We present three key upper bounds that hold for all n > 2. The first is via a fairly straightforward algorithm that
uses Algorithm 1 for n = 2 recursively to obtain (3 + O(n/m))-balancedness and 3-proportionality. The second
algorithm uses the key idea from Algorithm 1 of finding a subtree of some desired size, and iteratively applies it
to achieve 4-balancedness and 2-proportionality; while the balancedness approximation gets worse when n � m,
the proportionality approximation improves and matches the lower bound of 2 − 1/n from Theorem 1 in the limit
when n → ∞. Finally, by making an interesting connection to the literature on edge partitions of a tree, we show
that (2 + O(n2/m))-balancedness and (2 − 1/n + O(n2/m))-proportionality can be achieved, which matches the
respective lower bounds from Theorem 1 for each n in the limit when m→∞.

4The only exception is when H(Cu2,u1 , Gu1 ) is composed of a single subtree of size exactly (m − 2)/4 and S1 = H(Cu2,u1 , Gu1 ).
However, since |H(Cu2,u1 , Gu1 )| > |H(Cu1,r1 , Gr1 )| = (m− 2)/4+x, we have x = 0, so |V1| = |V2| = (m− 2)/4. In this case, we have
|V3| > m− |V1| − |V2| − 2 = m− (m− 2)/2− 2 = (m+ 2)/2 > (m− 2)/8, which is the desired contradiction.
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Algorithm 2: (3 +O(n/m))-balancedness and 3-proportionality for n > 2

Input: Tree G = (V,E) and integer n > 2.
Output: A connected pseudo n-partition.

1: C0 ← {G}; R0 ← ∅
2: for i = 1 to n− 1 do
3: T i ← largest tree in Ci−1 (break ties arbitrarily)
4: (V i1 , V

i
2 , R̂

i)← Call Algorithm 1 on T i

5: Hi
1 ← T i[V i1 ], Hi

2 ← T i[V i2 ]
6: if R̂i 6= ∅ then
7: Let ui ∈ R̂i {This is unique}
8: For j ∈ {1, 2}, if Hi

j has at least two neighbors of ui, connect an arbitrarily chosen neighbor to every other
neighbor {This ensures that Hi

j is now a tree}
9: end if

10: Ci ← Ci−1 ∪ {Hi
1, H

i
2} \ T i

11: Ri ← Ri−1 ∪ R̂i
12: end for
13: return (V1, . . . , Vn, R), where V1, . . . , Vn are the sets of nodes of the trees in Cn−1 and R = Rn−1.

Let us begin with our first result of this section. At a high level, Algorithm 2 works simply as follows: it starts
with the entire input tree as a single part, and repeatedly divides the largest existing part into two using Algorithm 1
until there are n parts. One issue is that when Algorithm 1 excludes a node, the two parts it returns may become
disconnected, preventing us from applying Algorithm 1 to them in future iterations; this is because Algorithm 1
assumes its input to be a tree. This is easily fixed by adding artificial edges between the neighbors of the excluded
node to ensure that the parts returned by Algorithm 1 become trees. This is not a problem because if a part returned
at the end of Algorithm 2 is connected due to the artificially added edges, it would also be connected via the excluded
nodes.

Theorem 4. When n > 2 and m > n · (n− 1), Algorithm 2 runs in polynomial time and returns a connected pseudo
n-partition that is (3 + 6n/m)-balanced and 3-proportional.

Proof. First, we argue that the algorithm is valid. Because we call Algorithm 1 once in each iteration and Line 8
converts any parts it returns into trees, we can see that Ci contains i+ 1 trees and Ri contains at most i nodes for each
i ∈ {0} ∪ [n − 1]. Since m > n, the largest tree T i in the i-th iteration has at least two nodes, allowing us to call
Algorithm 1. Finally, as argued above, the pseudo n-partition returned is connected since the use of any artficial edge
added by Line 8 can be replaced by a path that uses the excluded nodes. We now prove the fairness guarantees.

Using induction on i, we show that 3 · minT∈Ci |T | + 1 > maxT∈Ci |T | and minT∈Ci |T | > m−|Ri|
3(i+1) for i ∈

{0} ∪ [n− 1]. First, let us argue that this implies the desired approximations. The second part of the inductive claim,
applied at i = n−1, already yields 3-proportionality. Let Tmax and Tmin be the largest and the smallest trees in Cn−1,
respectively. Note that |Tmin| > m−n+1

3n > m
6n , where the first inequality follows from the proportionality guarantee

and the second inequality follows from the fact that m > 2n − 1. Now, with the former part of the inductive claim
applied at i = n− 1, we have

|Tmax| 6 3 · |Tmin|+ 1 6 3 · |Tmin|+
6n

m
· |Tmin|,

implying the desired approximation of balancedness.
It is easy to check that the induction claim holds in the base case of i = 0. Fix i ∈ [n− 1] and assume it holds for

iterations 1, . . . , i− 1. Consider iteration i.
For the first part, recall that we call Algorithm 1 on the largest tree T i in Ci−1. By Corollary 1, we have

that min(|V i1 |, |V i2 |) > d(|T i| − 1)/3e. Hence, 3 · min(|V i1 |, |V i2 |) + 1 > |T i|. By the first part of the induc-
tion hypothesis at iteration i − 1, we have that 3 · minT∈Ci−1 |T | > maxT∈Ci−1 |T | = |T i|. For Ci, note that
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minT∈Ci |T | > min(minT∈Ci−1 |T |, |V i1 |, |V i2 |), whereas maxT∈Ci |T | 6 maxT∈Ci−1 |T | = |T i|. Hence, the first
part of the induction hypothesis holds at iteration i.

For the second part, note that the second part of the induction hypothesis at iteration i− 1 already implies

minT∈Ci−1 |T | > m−|Ri−1|
3i > m−|Ri|

3(i+1) .

Hence, we only need to establish that min(|V i1 |, |V i2 |) >
m−|Ri|
3(i+1) as well. By the pigeonhole principle, the largest tree

T i in Ci−1 on which we call Algorithm 1 in the i-th iteration must have size at least m−|R
i−1|
i . Using Corollary 1, we

have

min(|V i1 |, |V i2 |) >
|T i| − |R̂i|

3
>

m−|Ri−1|
i − |R̂i|

3
.

When |R̂i| = 0, it is easy to see that this is at least m−|R
i−1|

3i > m−|Ri|
3(i+1) . Hence, assume |R̂i| = 1. Then, we need

m−|Ri−1|
i − 1

3
>
m− |Ri−1| − 1

3(i+ 1)
.

After some simplification, we see that this is equivalent tom > i2+|Ri−1|, which holds since |Ri−1| 6 i 6 n−1.

Next, we show how to achieve 4-balancedness and 2-proportionality. We use the key idea from Algorithm 1 of
finding a subtree of some desired size and iteratively apply it to separate out one part at a time from the tree. An
interesting detail, and the driving force behind the balancedness guarantee, is that because we cannot exactly control
the size of the parts being separated out, we keep adjusting the desired size of the next part based on the actual size of
the previous part created. This ensures that when ` parts are created, their total size stays close to ` ·m/n, leaving the
size of the remaining tree close to (n− `) ·m/n. In particular, after n− 1 parts are created, the remaining tree, much
of which forms the last part, is not too large.

To make our analysis work, we need to ensure that |R| = n − 1. Hence, we need m > 2n − 1, so that even
after removing n− 1 nodes, we can always create an n-partition with non-empty parts. We remark that Line 6 can be
implemented efficiently similarly to Line 3 of Algorithm 1.

When Line 20 of Algorithm 3 excludes node ui in iteration i, Ti may become disconnected as the subtrees rooted
at children of ui become disconnected from each other and from the rest of the tree. This is fixed by adding artificial
edges connecting every child of ui that remains in Ti to the parent of ui. As mentioned above, if a part is connected
using these artificial edges, it is also connected using excluded nodes instead. If ui is the root of the tree, we can
imagine creating an artificial new root node, connecting it to all children of ui, but not counting this artificial root node
in future computations of subtree sizes. Note that, unlike in Algorithm 2, we do not just connect an arbitrary neighbor
of ui in Ti to its remaining neighbors because this can alter the rooted tree structure, which we use in this algorithm.

Theorem 5. When n > 2 and m > 2n − 1, Algorithm 3 runs in polynomial time and returns a connected pseudo
n-partition that is 4-balanced and 2-proportional.

Proof. As explained above, the addition of artificial edges in Line 19 ensure that the remaining graphs (Ti-s) are trees
and the parts being created (Vi-s) are connected via the excluded nodes. Later, in Lemma 2, we will establish that for
i ∈ [n − 1], xi−1 6 1 and |Ti| > d(n − i) · se > dse > ds(1 + xi−1)/2e. Hence, the algorithm will be able to
successfully find node ui in every iteration i and proceed without any issues. Since at most a single node is added to
R in each of n− 1 iterations, we clearly have |R| 6 n− 1. This establishes that the algorithm is valid (i.e., it produces
a connected pseudo n-partition at the end. It is also easy to see that the algorithm runs in polynomial time). Hence, it
remains to establish its balancedness and proportionality guarantees.

As m > 2n− 1, we have that s = m−(n−1)
n > 1. Before proceeding further, we need the following observation.

Lemma 1. For any y > 0, s(1 + y) > ds(1 + y)/2e.

9



Algorithm 3: 4-balancedness and 2-proportionality for n > 2

Input: Tree G = (V,E) and integer n > 2.
Output: A connected pseudo n-partition.

1: r ← arbitrary node in V
2: T ← tree (G, r) rooted at r
3: R← ∅ ;∀i ∈ [n], Vi ← ∅
4: s← m−(n−1)

n , x0 ← 0, T1 ← T
5: for i = 1 to n− 1 do
6: Find a node ui such that |ST (ui, Ti)| > ds(1 + xi−1)/2e > |ST (v, Ti)| for all v ∈ c(ui, Ti)
7: if |ST (ui, Ti)| = ds(1 + xi−1)/2e then
8: Vi ← ST (ui, Ti)
9: Ti+1 ← Ti \ ST (ui, Ti)

10: else
11: R = R ∪ {ui}
12: for u′ ∈ c(ui, Ti) do
13: Vi ← Vi ∪ ST (u′, Ti)
14: if |Vi| > ds(1 + xi−1)/2e then
15: break
16: end if
17: end for
18: Ti ← Ti \ Vi
19: Connect each v ∈ c(ui, Ti) to p(ui, Ti)
20: Ti+1 ← Ti \ {ui}
21: end if
22: xi ← 1 + xi−1 − |Vi|/s
23: end for
24: S ← set of n− 1− |R| arbitrary nodes from Tn
25: Vn ← Tn \ S, R← R ∪ S
26: return (V1, . . . , Vn, R)

Proof. As s > 1 and y > 0, we have s(1 + y) > 1. Now, if s(1 + y) > 2, then we have

ds(1 + y)/2e 6 s(1 + y)/2 + 1 6 s(1 + y).

Otherwise, we have 2 > s(1 + y) > 1, so s(1 + y) > 1 = ds(1 + y)/2e.

Next, we prove the following lemma inductively, and establish several structural properties that hold during the
execution of the algorithm.

Lemma 2. For each i ∈ {0} ∪ [n− 1], the following hold:

• 0 6 xi 6 1,

• ds(1 + xi−1)/2e 6 |Vi| 6 s(1 + xi−1) if i > 1,

• | ∪j∈[i] Vj | = (i− xi) · s, and

• |Ti+1| > d(n− i) · se.

Proof. We prove the lemma using induction on i. The base case of i = 0 trivially holds because x0 = 0 and T1 = T .
Fix i > 1. Suppose the induction hypothesis holds for 0, 1, . . . , i− 1.

Note that |Vi| > ds(1+xi−1)/2e holds by construction (Lines 7 and 14). If the condition in Line 7 works, then we
have |Vi| = ds(1 + xi−1)/2e 6 s(1 + xi−1) by Lemma 1. Otherwise, since we keep adding subtrees of size at most
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ds(1 +xi−1)/2e−1 until |Vi| > ds(1 +xi−1)/2e (Line 14), we have |Vi| 6 2 · (ds(1 +xi−1)/2e−1) 6 s(1 +xi−1).
Hence, the second claim holds.

For the third claim, we use the fact that | ∪j∈[i] Vj | = | ∪j∈[i−1] Vj |+ |Vi| = (i− 1− xi−1) · s+ |Vi|. To establish
that this is equal to (i− xi) · s, we need |Vi| = (1 + xi−1 − xi) · s, which holds by the definition of xi in Line 22.

For the fourth claim, since at most n− 1 nodes are excluded at any point during the execution of the algorithm, we
have

|Ti+1| > m− (n− 1)− | ∪j∈[i] Vj |
= n · s− (i− xi) · s > (n− i) · s.

Since |Ti+1| is an integer, we also have |Ti+1| > d(n− i) · se.
For the first claim, recall that xi = 1+xi−1−|Vi|/s. But (1+xi−1)/2 6 |Vi|/s 6 1+xi−1 from the second claim.

Hence, 0 6 xi 6 (1 + xi−1)/2. Using xi−1 6 1 from the induction hypothesis, we get 0 6 xi 6 1 as desired.

Combining the first two claims from Lemma 2, we have that ds/2e 6 |Vi| 6 2s for i ∈ [n − 1]. Let us now
estimate |Vn|. From the third claim of Lemma 2 applied at i = n− 1, we have

|Tn| = |T \ (∪i∈[n−1]Vi ∪R)|
= m− (n− 1− xn−1) · s− |R|

Note that Vn = Tn \ S, where S is a set of n− 1− |R| arbitrary nodes from Tn. Hence,

|Vn| = m− (n− 1− xn−1) · s− (n− 1) = (1 + xn−1) · s,

where the second transition follows since m − (n − 1) = n · s. Using 0 6 xn−1 6 1 from Lemma 2, we have
s 6 |Vn| 6 2s. Hence, in conclusion, we have ds/2e 6 |Vi| 6 2s for all i ∈ [n], which clearly implies 4-balancedness.
Since we force |R| = n−1, we have s = (m− (n−1))/n = (m−|R|)/n, so this also implies 2-proportionality.

Next, we show that (2 +O(n2/m))-balancedness and (2− 1/n+O(n2/m))-proportionality can be obtained by
making a connection to the literature on edge partitions of trees. We say that (E1, . . . , En) is an n-edge-partition of
a tree G = (V,E) if Ei ∩ Ej = ∅ for all distinct i, j ∈ [n] and ∪i∈[n]Ei = E. We say that it is connected if, for
each i ∈ [n], the subgraph formed by the edges in Ei is connected (hence, also a tree). For α > 1, we say that it is
α-balanced if maxi∈[n] |Ei| 6 α ·mini∈[n] |Ei| and α-proportional if α ·mini∈[n] |Ei| > |E|/n, where |Ei| and |E|
refer to the number of edges in those sets. Observe that α-balancedness also implies (α− (α− 1)/n)-proportionality
in this context. In particular, 2-balancedness implies (2− 1/n)-proportionality.

Note that edge partitions are similar to node partitions, except we seek to partition the edges without excluding any
edges. For connected node partitions, we argued in Section 1, using the star graph as an example, that no reasonable
approximation of balancedness or proportionality can be obtained without excluding any nodes. However, it turns out
that there exist reasonably balanced and proportional edge partitions of a tree that do not require any edge exclusions.

Theorem 6 (16). For any n > 2, every tree admits a connected n-edge-partition that is 2-balanced and, hence,
(2− 1/n)-proportional, and such a partition can be computed in polynomial time.

In the following lemma, we show that a connected n-edge-partition of a tree (with no edge exclusions) can be used
to obtain a connected pseudo n-partition of the nodes (with at most n − 1 node exclusions) while almost preserving
the balancedness and proportionality guarantees.

Before we proceed further, recall that for node partitions, our assumption of the input graph being a tree was
without loss of generality because a connected pseudo n-partition of a spanning tree of the graph is also a connected
pseudo n-partition of the graph itself; both the graph and its spanning tree have the same set of nodes. This does not
hold for edge partitions. In particular, an n-edge-partition of a spanning tree of a graph is not even an n-edge-partition
of the graph, since the additional edges in the graph not included in the spanning tree also need to be partitioned. In
that sense, we are using the aforementioned result on edge partitions for the special case of trees to derive a result on
pseudo node partitions for general graphs.
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Lemma 3. For any n > 2, given a connected n-edge-partition (E1, . . . , En) of a treeG = (V,E), we can compute, in
polynomial time, a connected pseudo n-partition (V1, . . . , Vk, R) of V (i.e., with |R| 6 n−1) such that |Ei|+1−|R| 6
|Vi| 6 |Ei|+ 1 for each i ∈ [n].

Proof. Given a subset of edges E′, let V (E′) denote the set of nodes with at least one edge of E′ incident on them.
Construct a multigraph H with E1, . . . , En as nodes. For all distinct i, j ∈ [n] and v ∈ V (Ei) ∩ V (Ej), add an edge
between the nodes representing Ei and Ej with label ‘v’.

We argue that this multigraph is acyclic. For the sake of contradiction, suppose that it has a cycle (Ei1 , Ei2 , . . . , Ei` , Ei1).
For r ∈ [`], let vr be the label of the edge of the cycle connecting Eir to Eir+1

(or to Ei1 if r = `). For r ∈ [`], since
V (Er) includes both vr−1 (or v` if r = 1) and vr, there is a path between these vertices in G. Combining these paths
together, we obtain a cycle in G, which is impossible since G is a tree.

Hence, H is acyclic. Since it has n nodes, it must have at most n− 1 edges. Let R be the set of nodes appearing as
labels of edges inH . Then, |R| 6 n−1. Further, for each i ∈ [n], set Vi = V (Ei)\R. Recalling that |V (Ei)| = |Ei|+1
for a tree Ei, It is easy to see that |Ei|+ 1− |R| 6 |Vi| 6 |Ei|+ 1. Finally, since V (Ei) is connected, it follows that
withRi = V (Ei)∩R, Vi∪Ri = V (Ei) is connected, implying that (V1, . . . , Vn, R) is a connected pseudo n-partition
of G, as desired.

We now use Lemma 3 to translate the guarantee in Theorem 6 to our setting.

Theorem 7. When n > 2 and m > 4n2, every graph admits a connected pseudo n-partition of its nodes that is
(2 + 8n2/m)-balanced and (2− 1/n+ 8n2/m)-proportional, and one such solution can be computed in polynomial
time.

Proof. As mentioned before, for our node partition problem, we can assume the input graph G to be a tree. Note that
it has m nodes and m − 1 edges. Consider the connected pseudo n-partition (V1, . . . , Vn, R) of its nodes produced
by applying Lemma 3 to the n-edge-partition (E1, . . . , En) provided by Theorem 6. From Theorem 6, we have that
mini∈[n] |Ei| > m−1

2n−1 (the proportionality guarantee) and 2 mini∈[n] |Ei| > maxi∈[n] |Ei| (the balancedness guaran-
tee).

Using Lemma 3 and the fact that |R| 6 n− 1, we obtain that

min
i∈[n]
|Vi| > min

i∈[n]
|Ei|+ 1− (n− 1) >

m− 1

2n− 1
+ 2− n

=
m− (2n− 3)(n− 1)

2n− 1
>
m− 2n2

2n− 1
.

Because m > 4n2, we have that

min
i∈[n]
|Vi| >

m

2(2n− 1)
. (2)

It is also easy to check that when m > 4n2, we have that(
1 +

4n2

m

)
·
(

1− 2n2

m

)
= 1 +

2n2

m

(
1− 4n2

m

)
> 1.

Hence,

min
i∈[n]
|Vi| >

m− 2n2

2n− 1
=
m · (1− 2n2

m )

n · (2− 1/n)
>

m

n · (2− 1/n) · (1 + 4n2/m)
>

m

n · (2− 1/n+ 8n2/m)
,

which establishes the desired proportionality approximation. Now, for balancedness, we notice that

max
i∈[n]
|Vi| 6 max

i∈[n]
|Ei|+ 1 6 2 min

i∈[n]
|Ei|+ 1

6 2

(
min
i∈[n]
|Vi|+ n− 2

)
+ 1
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= 2 min
i∈[n]
|Vi|+ (2n− 3)

6 2 min
i∈[n]
|Vi|+

(2n− 3) · 2 · (2n− 1) ·mini∈[n] |Vi|
m

6 (2 + 8n2/m) · min
i∈[n]
|Vi|,

where the first and the third transitions follow from Lemma 3, the second transition follows from the balancedness
guarantee in Theorem 6, and the fifth transition follows from Equation (2). This completes the proof.

For fixed n, in the limit when m → ∞, Theorem 7 provides 2-balancedness and (2 − 1/n)-proportionality,
matching the lower bound from Theorem 1 and settling Conjecture 1. However, when m is not too large, the guarantee
provided by Theorem 4 or Theorem 5 can be better.

6 The Fairness-Charity Tradeoff
In this section, we consider the tradeoff between the limit on charity (the maximum number of nodes we are allowed
to exclude) and the approximations to balancedness and proportionality we can guarantee. Given a graph G = (V,E)
and d ∈ {0}∪N, (V1, . . . , Vn, R) is called a d-pseudo n-partition of G if it is a partition of V and |R| 6 d. As before,
we say that it is connected if, for each i ∈ [n], there exists Ri ⊆ R such that G[Vi ∪Ri] is a connected subgraph of G.

The next two results focus on d > n − 1 and provide an almost tight tradeoff. Let us introduce the lower bound
first.

Theorem 8. Fix any m,n > 2 and c > 0 such that ` = m−n+1
2n−1 ∈ N and ` > (c+ 1) · (n− 1). Then, there exists an

instance with m nodes in which no connected d-pseudo n-partition is (2− c/`)-balanced when d < (c+ 1) · (n− 1),
and no connected d-pseudo n-partition is α-balanced for any α < 2− c/` when d = (c+ 1) · (n− 1).

Proof. Consider the instance in the proof of Theorem 1. It can be checked that the first part of the proof holds whenever
|R| < ` (which holds because the theorem statement assumes that ` > (c + 1) · (n − 1) > d > |R|), and establishes
that any d-pseudo n-partition (V1, . . . , Vn, R) must admit i ∈ [n] such that |Vi| 6 `.

If this partition is α-balanced, then |Vj | 6 α · ` for all j ∈ [n] \ {i}. Using the definition of `, we have that

`+ (n− 1) · α · `+ d > |Vi|+
∑

j∈[n]\{i}

|Vj |+ |R| = m = (2n− 1)`+ (n− 1),

which implies

α > 2−
d

n−1 − 1

`
.

Hence, when d = (c + 1) · (n − 1), we get α > 2 − c/`, and when d < (c + 1) · (n − 1), we get α > 2 − c/`, as
needed.

One implication of this lower bound is that if we hope to achieve α-balancedness for any constant α < 2, then we
must have c = Ω(`), i.e., d = Ω(m). Hence, a little charity (o(m) exclusions) would not suffice for this purpose. This
shows that 2 is the best constant approximation to balancedness we can hope for with just a little charity. Next, we
provide an upper bound via a simple algorithm which starts with any α-balanced connected pseudo n-partition (i.e.,
with at most n − 1 exclusions) and repeatedly excludes a node from the largest part until either perfect balancedness
is achieved or a total of d nodes are excluded.

Theorem 9. Fix any m,n > 2, c > 0, d = (c + 1) · (n − 1), α > 1, and ˆ̀ = m−n+1
αn−(α−1) . Given any graph of m

nodes and any connected (n − 1)-pseudo n-partition of it that is α-balanced, we can efficiently compute a d-pseudo
n-partition that is (α− c/ˆ̀)-balanced.
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Proof. Let (V1, . . . , Vn, R) be a connected pseudo n-partition with R 6 n − 1 that is α-balanced. Then, we have
maxi∈[n] |Vi| 6 α ·mini∈[n] |Vi| and, since α-balancedness implies (α− (α− 1)/n)-proportionality, we also have

min
i∈[n]
|Vi| >

m− |R|
αn− (α− 1)

>
m− n+ 1

αn− (α− 1)
= ˆ̀. (3)

Now, let us repeatedly exclude a node from the largest part until either 1-balancedness is achieved or a total of
d = (c + 1) · (n − 1) nodes are excluded. Let (V̂1, . . . , V̂n, R̂) be the resulting d-pseudo n-partition. Trivially, note
that it is still connected. If it is 1-balancedness, we are done. Otherwise, note that we must have excluded at least
d− |R| > c · (n− 1) additional nodes. Since we never touch the smallest part, the size of the largest part must reduces
by at least 1 after every n− 1 exclusions. Thus, at the end, we must have

max
i∈[n]
|V̂i| 6 α · min

i∈[n]
|V̂i| − c

= α · min
i∈[n]
|Vi| − c

6 (α− c/ˆ̀) · min
i∈[n]
|Vi|

= (α− c/ˆ̀) · min
i∈[n]
|V̂i|,

where the second inequality follows from Equation (3). This is the desired result.

In Section 5, we established that α-balanced connected pseudo n-partitions exist for α ≈ 2 (in particular, with
α → 2 when m → ∞). Note that with α = 2, the upper bound from Theorem 9 would precisely match the lower
bound from Theorem 8. Thus, assuming that 2-balanced connected pseudo n-partitions exist, taking such a partition
and repeatedly excluding a node from the largest part provides optimal balancedness for any d > n− 1.

With d < n − 1, the situation becomes more complex as it does not seem easy to start from a connected pseudo
n-partition with (at most) n− 1 exclusions and re-include some nodes while maintaining n connected parts. First, we
show that decreasing the charity limit by just one increases the balancedness lower bound from 2 to 3.

Theorem 10. For any n > 2, d < n − 1, and ε > 0, there exists an instance in which no connected d-pseudo
n-partition is α-balanced for any α < 3− ε.

Proof. Let ` > n− 1 be an integer such that (n− 2)/` 6 ε. Consider the graph G = (V,E) that consists of 2n paths
of length ` each, denoted by P1, . . . , P2n, and n− 1 hub nodes denoted by h1, . . . , hn−1. Hence, |V | = 2`n+ n− 1.
For j ∈ [n − 2], hj is connected to hj+1; h1 is connected to one of the endpoints of paths P1, P2 and P3; for
j ∈ {2, . . . , n − 2}, hub hj is connected to one of the endpoints of the paths P2j and P2j+1; and hub hn−1 is
connected to one of the endpoints of the paths P2n−2, P2n−1 and P2n. Assume for contradiction that (V1, . . . , Vn, R)
is a connected α-balanced d-pseudo n-partition with α < 3− ε and d < n− 1.

First, we show that each Vi intersects with at most two paths. Assume for contradiction that for some i∗ ∈ [n], Vi∗
intersects r paths, denoted Pj1 , . . . , Pjr , with r > 3.

Suppose no other part intersects with any of the paths Pj1 , . . . , Pjr . Then, we have |Vi∗ | > 3` − (n − 2). Since
(V1, ..., Vn, R) is α-balanced with α < 3 − ε, we need |Vi′ | > ` for each i′ ∈ [n] \ {i∗}, given that (n − 2)/` 6 ε.
We show that for each i′ ∈ [n] \ {i∗}, Vi′ intersects with at least two paths from Pj1 , . . . , Pjr . If this is false for some
Vi′ , then it must contain at least one hub hj . Then, none of the paths attached to hj can intersect with any part other
than Vi′ , or else this part would have size at most `. Hence, each path attached to hub hj must be contained in Vi′ ∪R.
Since no path can be fully contained in R (as |R| < n − 1 6 `), each path attached to hj must intersect with Vi′ .
Since there are at least two paths connected to any hub, this contradicts Vi′ not intersecting with at least two paths.
Thus, we have that Vi∗ intersects with at least 3 paths, and every other Vi′ intersects with at least two paths. Further,
no two parts can intersect the same path, otherwise one of them would have size at most `. However, this requires at
least 3 + 2 · (n− 1) = 2n+ 1 paths in total, but we only have 2n paths. This is a contradiction.

Now, suppose that there are q parts, with q > 0, denoted Vi1 , . . . , Viq that intersect with at least one of the paths
Pj1 , . . . , Pjr . Since Vi∗ intersects with all of them, by the connectedness requirement, it must be the case that any Vip
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intersects with only one of these paths, and hence |Vip | 6 `−1 for any p ∈ [q]. If r > q+3, then Vi∗ intersects with at
least three paths that no other part intersects, and thus |Vi∗ | > 3`− (n−2). But then, (V1, ..., Vn, R) is not α-balanced
with α < 3− ε. Thus, r 6 q+ 2. But, then at least 2n− (q+ 2) paths remain and n− (q+ 1) parts can intersect with
them, and as 2n− q − 2 > 2 · (n− q − 1) when q > 0, from the pigeon-hole principle we have that there is part Vi′′
such that |Vi′′ | > 3`− (n− 2). But as |Vip | 6 `− 1 for any p ∈ [q], the partition is not α-balanced with α < 3− ε.

Hence, we have established that each Vi intersects with at most two paths. Now, assume that there exists a part Vi
that intersects with at most one path. Then, as each Vi′ ∈ [n] \ {i} intersects with at most two paths, this means that at
most 2n − 1 paths intersect with some part, and hence all the nodes of at least one path should be excluded which is
impossible as ` > n− 1 > d. Hence, we conclude that each Vi intersects with exactly two paths.

If h1 is not excluded, then as no part can intersect with one or three paths, all the nodes of at least one path
among P1, P2 and P3 should be excluded which is impossible as ` > n− 1 > d. Thus, h1 is excluded. With the same
arguments, we conclude that hn−1 should be excluded. Now, assume that some hj∗ with j ∈ [n−2]\1 is not excluded,
but instead hj∗ belongs to some Vi. Then, Vi should intersects with both P2(j−1)+2 and P2(j−1)+3, and any part that
intersects with ∪j∈[j∗−1]P2(j−1)+1∪P2(j−1)+1∪hj cannot intersect with ∪j∈{j∗+1,..,n−1}P2(j−1)+1∪P2(j−1)+1∪hj ,
due to connectivity constraints. But now we see that in the former set there is only an odd number of the paths, i.e. P1

to P2(j∗−1)+1 , and thus there is no way to assign them into parts such that each part intersects with exactly two of
them.

Next, we establish a different lower bound that is better when d < n/3.

Theorem 11. For any n > 2 and d < n, there exists an instance in which no connected d-pseudo n-partition is
α-balanced for any α < n/d.

Proof. Let ` > n − 1. Let L be a large integer (to be decided later). Consider the graph G = (V,E) that consists of
d + 1 hubs h1, . . . , hd+1 connected in a path, with each hub connected to an endpoint of L disjoint paths of length `
each. Thus, in total, the graph has m = (d + 1) · (L · ` + 1) nodes. Let (V1, . . . , Vn, R) be any connected d-pseudo
n-partition. Note that at least one of the hubs cannot be excluded. Suppose that hj ∈ Vi for some j ∈ [d + 1] and
i ∈ [n].

First, suppose that some other Vi′ intersects with at least one of the L paths connected to hj . Then, due to the
connectedness constraint, we have |Vi′ | 6 `. However, by the pigeonhole principle, there must exist i′′ such that
|Vi′′ | > (1/n) · ((d+ 1) · (L · `+ 1)− d). Hence,

|Vi′′ |
|Vi′ |

>
(1/n) · ((d+ 1) · (L · `+ 1)− d)

`
,

and the right hand side grows arbitrarily as L → ∞. Hence, for a sufficiently large L, this establishes a contradiction
with α-balancedness for α < n/(d+ 1).

Next, suppose no other part intersects with any of the L paths connected to hj . Then, we have |Vi| > L · `+ 1− d.
On the other hand, by the pigeonhole principle, there exists i′ such that |Vi′ | 6 (1/n) · (d+ 1) · (L · `+ 1). Hence,

|Vi|
|Vi′ |

>
L · `+ 1− d

(1/n) · (d+ 1) · (L · `+ 1)
.

As L→∞, this approaches n/(d+ 1), which establishes a contradition to α-balancedness for α < n/(d+ 1).

We believe that this bound is tight up to a constant factor; that is, it should be possible to achieve O(n/d)-
balancedness with d exclusions for any d < n. In particular, with a single exclusion, we believe it should be possible
to achieve O(n)-balancedness. Below, we prove a weaker result: O(n)-proportionality can be achieved with a single
exclusion. Note that this implies that the smallest part has size Ω(m/n2). Since the largest part can have size at most
m, this also implies O(n2)-balancedness.

Theorem 12. For any n > 2, every graph admits a connected 1-pseudo n-partition that is O(n)-proportional, and it
can be computed in polynomial time.
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Algorithm 4: 2(n− 1)-proportionality with R 6 1

Input: Tree G = (V,E) and integer n > 2.
Output: A connected pseudo n-partition with R 6 1.

1: r ← arbitrary node in V
2: T0 ← tree (G, r) rooted at r
3: s← 2(n− 1)
4: i← 0
5: while there exists u with m/(n · s) 6 |ST (u, Ti)| 6 m/n do
6: i← i+ 1
7: Vi ← ST (u, Ti−1)
8: Ti ← Ti−1 \ Vi
9: end while

10: u∗ ← r
11: if i < n− 1 then
12: while true do
13: if there exists u ∈ c(u∗, Ti): ST (u, Ti) > m/(n · s) then
14: u∗ ← u
15: else
16: break
17: end if
18: end while
19: R← {u∗}
20: for j = i+ 1 to n− 1 do
21: for u ∈ c(u∗, Ti) do
22: Vj ← Vj ∪ ST (u, Ti)
23: if |Vj | > m/(n · s) then
24: Ti ← Ti \ Vj
25: break
26: end if
27: end for
28: end for
29: Vn = Ti \ {u∗}
30: else
31: Vn ← Ti
32: end if
33: return (V1, . . . , Vn, R)
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Proof. Consider Algorithm 4. First, we argue that the algorithm is valid. We see that if Lines 6 to 8 are repeated i
times, then i parts are created with m/(n · s) 6 |Vj | 6 m/n for j ∈ [i]. If i = n− 1, then the last part consists of the
remaining tree. Clearly, these parts are connected since they are subtrees of the main tree and also each of them has
size at least m/(n · s). If i < n − 1, then |Ti| = |T \ ∪j∈[i]Vi| > 2 ·m/n. Next, we find node u∗ that is as close to
the root as possible such that |ST (u∗, Ti)| > m/n, while |ST (u, Ti)| < m/(n · s) for any u ∈ c(u∗, Ti). Such a node
always exists. Indeed, as |ST (r, Ti)| > m/n, then if some subtree that is rooted to one of r’s child, say u, has size at
least m/(n · s), then it should has size more than m/n, since otherwise the iteration in Lines 6 to 8 would not have
stopped. Then, the algorithm considers the subtrees that rooted to children of u and if some of them has size at least
m/(n · s), by following the same arguments as above the algorithm checks the sizes of subtrees that rooted to children
of this child of u and so on. It is obvious that this procedure should stop before we reach a leaf of the tree.

Then, we construct each Vj with j ∈ [i+ 1, n− 1] by adding subtrees rooted to nodes in ST (u∗, Ti) until the size
of Vj becomes at least equal to m/(n · s). As each such subtree has size at most m/(n · s) − 1 and before the last
subtree added to Vj , Vj’s size was at most m/(n · s)− 1, we get that |Vj | 6 2 · (m/(n · s)− 1). Hence

| ∪j∈[i,n−1] Vj | 6 | ∪j∈[1,n−1] Vj | < (n− 1) · 2 ·m
n · 2 · (n− 1)

= m/n.

Thus, as ST (u∗, Ti) > m/n, we can construct up to n − 1 parts by using subtrees that are rooted to u∗. Clearly all
these parts are connected through node u∗. Moreover, since ST (r, Ti) > 2 ·m/n, and | ∪j∈[i,n−1] Vj | 6 m/n, then
at least m/n nodes left after constructing the first n − 1 parts which can consist the last part. Again, the last part is
connected using u∗.

Regarding proportionality, we see that any part has size at least m/(n · s) and the statement follows.

7 Complexity
In this section, we contemplate the complexity of checking whether an (approximately) balanced connected pseudo
partition exists. To that end, we present two hardness results. The first one considers exact balancedness when n − 1
exclusions are allowed.

Theorem 13. Checking whether a balanced connected pseudo n-partition (with at most n − 1 exclusions) exists is
NP-complete.

Proof. We use a reduction from 3-Partition problem which is defined as following. We are given 3n integers a1,...,a3n
and a value A such that A

4 < ai <
A
2 for any i ∈ [3n] and

∑
i∈[3n] ai = n · A. A 3-Partition problems admits a

solution if the numbers can be partitioned into n triples such that each triple adds up to A. The problem is strongly
NP-complete which means that it is NP-complete even when all ai-s and A are polynomially bounded.

Given an instance I of 3-Partition problem, we construct a graphGI = (VI , EI) as following. Let L = (n−3) ·A.
We create (n − 1) · n paths, denoted by Pi for i ∈ [(n − 1) · n] such that, for i ∈ [3n], |Pi| = ai + L, while all
the remaining paths have size equal to A + L. Moreover, we add n − 1 nodes denoted by s1, ..., sn−1 such that sj is
connected with sj+1 for each j ∈ [n − 2]. Next, we connect each sj to one of the endpoints of paths Pn(j−1)+`, for
` ∈ [n]. We show that GI admits a balanced pseudo n-partition with |R| 6 n− 1 if an only if I admits a solution.

If I admits a solution, then we can construct a balanced pseudo n-partition by settingR = {s1, ..., sn−1}, assigning
to the same part every two paths Pj and Pj′ if and only if aj and aj′ are assigned to the same triple in the solution of
I , and assigning n− 4 paths of size A+ L to each Vi.

Now, assume that (V1, ..., Vn, R) is a balanced pseudo m-partition with |R| 6 n− 1. First, notice that∑
i∈[n(n−1)]

|Pi|

=
∑
i∈[3n]

|Pi|+
[n(n−1)]∑
i=3n+1

|Pi|

17



=
∑
i∈[3n]

(ai + L) +

[n(n−1)]∑
i=3n+1

(A+ L)

= nA+ 3nL+ ((n− 4) · n)(A+ L)

= n(A+ 3L+ (n− 4)(A+ L)).

Let B = A+ 3L+ (n− 4)(A+ L) = (n2 − 3n) · A. Notice that for each Pi it holds that A/4 + L < Pi 6 A+ L,
as for each ai we have that A4 < ai <

A
2 , and since

A/4 + L = A/4 + (n− 3) ·A > B/n = (n− 3) ·A

and

A+ L = A+ (n− 3) ·A = (n− 2) ·A < B/(n− 2)

= n(n− 3) ·A/(n− 2),

we conclude that B/n < |Pi| < B/(n−2) for each i ∈ [n · (n−1)]. Notice that |VI | = n ·B+(n−1). We show that
|Vi| = B for each i ∈ [n]. Indeed, if |Vi| > B+1 for each i ∈ [n], this means that we need at least n ·B+n nodes, but
|VI | = n ·B+n−1 < n ·B+n which is impossible. On the other hand, if |Vi| 6 B−1, then |∪i∈[n] Vi| 6 n(B−1)
and then it should hold that |R| > n− 1 which is also impossible. Now, note that if there are two parts Vi and Vi′ and
v, u ∈ Pj such that u ∈ Vi and v ∈ Vi′ , then either |Vi| < B/(n − 2) or |Vi′ | < B/(n − 2) which is impossible.
Hence, the nodes of each path Pj are assigned either to one Vi or R. Next, we show that |R ∩ (∪j∈[n−1]sj)| > 0.
Let Qj = ∪`∈[n]Pn(j−1)+`. Notice that when some sj does not belong in R, there are two possibilities. Either there
is |Vi| < B/(n − 2) as Vi consists of at most one path of Qj , which is not possible, or all the nodes in Qj ∪ sj
are assigned to some Vi and R. As |Qj ∪ sj | > B + 2 and |Vi| = B, it should hold that |Qj ∩ R| > 2. Hence, if
|R ∩ (∪j∈n−1sj)| = 0, then we have that for any j ∈ [n − 1], |Qj ∩ R| > 2, which means that |R| > 2(n − 1), but
|R| 6 n−1. Now, we show that each sj belongs toR. Suppose for contradiction that there exists sj that is not included
in R. With the same reasoning as above, we have that |Qj ∩ R| > 2 which means that there exists sj′ that does not
belong in R. But as |Qj′ ∩R| > 2, then there are two other sj′′ and sj′′′ that do not belong in R, but as |Qj′′ ∩R| > 2
and |Qj′′′ ∩R| > 2 then there are four other sj-s that do not belong in R and so on. By continuing with this reasoning,
we conclude that |R ∩ (∪j∈n−1sj)| = 0, which we show above that it is impossible. Hence, R = ∪j∈[n−1]sj . Now,
we show that a part Vi can have size B if at most n−4 paths of size A+L are assigned to it. Assume for contradiction
that Vi contains (n− 3) such paths. Then,

|Vi| = B = A+ 3L+ (n− 4) · (A+ L)

= 2L+ (n− 3) · (A+ L).

Now, notice Vi cannot contain one path Pi of size less than A + L , as |Pi| < A/2 + L < 2L, cannot contain two
such paths as Pi and Pi′ as Pi + Pi′ > A/2 + 2L > 2L, and obviously cannot contain more than two such paths. If
Vi contains (n− 2) paths of size A+ L, then

|Vi| = B = A+ 3L+ (n− 4) · (A+ L)

= L+ (n− 2) · (A+ L)−A.

and then Vi cannot contain any other path as |Pi| > L for any i ∈ [n · (n−1)]. Similarly, we see that Vi cannot contain
more that n − 2 paths of size A + L. As there are n(n − 4) such paths and each Vi should contain at least n − 4
of them, we conclude that each Vi contains exactly n − 4 paths of size A + L. Now, it is clear that each Vi has size
B = A+ 3L+ (n− 4) · (A+ L), if I admits a solution.

The second result considers exact as well as approximate balancedness when no exclusions are allowed.

Theorem 14. For any α < 2, checking whether an α-balanced connected n-partition (with no exclusions) exists is
NP-complete.
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Proof. We use a polynomial-time reduction from 2P2N-3SAT problem, the variant of 3SAT, in which each variable
appears twice as positive and twice as negative literal. Let φ be an instance of 2P2N-3SAT which consists of r boolean
variables, denoted by x1, ..., xr, and a 3-CNF formula with t clauses.

Let T be an integer. Given φ, we construct an instance with n = 4r agents and a graph Gφ with m = 12rT nodes,
which has the following properties:

• If φ is satisfiable, then G has a balanced connected n-partition.

• If φ is not satisfiable, then any connected n-partition is at least 2-balanced.

In our reduction, we define a core graph, whose nodes are either light or heavy. The actual instance is then obtained
by attaching a path of T − 1 nodes to each light core node and 2T − 1 nodes to each heavy core node. The core graph
has a variable cycle of eight light nodes for each variable, one heavy node for each clause (called the clause node),
and 2r − t heavy nodes, which we call the garbage collectors. The light nodes in the variable cycle corresponding
to variable xi are denoted by ci,1, yi,1, di,1, yi,1, ci,2, yi,2, di,2, and yi,2; the cycle has edges connecting consecutive
nodes in this ordering as well as the edge (yi,2, ci,1). We refer to the nodes yi,1, yi,2, yi,1, and yi,1 as literal nodes. For
each literal xi (similarly for xi), we distinguish between the first and the second clauses in which this literal appears.
The literal node yi,1 (respectively, yi,2) is connected to the clause node corresponding to the first (respectively, second)
clause in which literal xi appears. Similarly, node yi,1 (respectively, yi,2) is connected to the node corresponding to the
first (respectively, second) clause in which literal xi appears. All the literal nodes are also connected to all the garbage
collectors.

We will first show that in any better than 2-balanced connected n-partition, an agent who gets a light or a heavy
node should get the whole path attached to this node as well. First assume that some agent is allocated a light node but
not the whole path attached to it. Then, some other agent should get the remaining at most T − 1 nodes in the path
(and no other node, due to connectivity). On the other hand, since the total number of nodes is 12rT and there are 4r
agents, some agent gets at least 3T nodes. Hence, this allocation cannot be even 3-balanced.

So, any agent who is allocated a light node should get its whole path as well. Now assume that there is some agent
who gets some heavy node but not the whole path attached to it. Partition all agents into groups as follows. Consider
an agent a who is allocated a light or heavy node together with its whole path attached. Agent a may also include
some heavy nodes but not the whole path attached to them. We group this agent together with the agents who use part
of paths attached to heavy nodes used by agent a. The crucial observation is that in the full paths allocated to agent
a, the number of nodes cannot be 4T ; this would imply that the allocation is not better than 2-balanced. So, agent a
has at most 3T nodes in full paths, k > 0 additional heavy nodes with part of the paths attached to them, which are
also allocated to (at least) k other agents. So, the total number of nodes allocated to these (at least) k + 1 agents is at
most (3 +2k)T , which gives an average of 3+2k

k+1 T per agent. This holds for all groups of agents, including at least one
group with k > 0 (by our assumption above). Hence, the average number of nodes per agent is strictly smaller than
3T , contradicting the fact that all the 12rT nodes are allocated to the 4r agents.

We have completed the proof that any better than 2-balanced connected n-partition should allocate a core node
together with its attached path to the same agent. Then, a better than 2-balanced connected n-partition should actually
be a balanced connected n-partition, allocating either three light nodes or one light and one heavy node per agent. This
gives 2r agents who are allocated one heavy and one light node and 2r agents who get three light nodes each. There
is additional structure such an allocation should have. As the light nodes in different variable cycles are not adjacent
and are connected only through heavy node, exactly two agents get three light connected nodes each from a variable
cycle. Notice that these allocations should leave either the two positive or (exclusive) the two negative literal nodes in
each variable cycle unallocated, so that there are 2r unallocated nodes in variable cycles that are literal nodes which
can be matched with the 2r clause nodes and garbage collectors. Hence, a balanced n-partition simulates a boolean
assignment to the variables (depending on whether the light nodes in a variable cycle that are not bundled together
with two other light nodes are the positive or the negative literal nodes).

Now, notice that each clause node has an incident unallocated literal node if and only if there is a satisfying
assignment for φ. If such an assignment exists, then t of the literal nodes can be bundled together with the clause nodes
and the remaining unallocated 2r − t literal nodes will be bundled together with the garbage collectors. Otherwise, if
a satisfying assignment for φ does not exist, some clause node has no adjacent light node unallocated and no balanced
n-partition exists.
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8 Discussion
Our work leaves open a number of directions for the future. For example, does there always exist a 2-balanced and
(2 − 1/n)-proportional connected pseudo n-partition with at most n − 1 node exclusions? While we chart out a
tight fairness-charity tradeoff when more than n − 1 exclusions are allowed, what happens when fewer exclusions
are allowed? In particular, does there always exist an O(n)-balanced connected pseudo n-partition with at most a
single exclusion? Do restricted families of graphs (especially those with higher connectivity) admit better fairness
guarantees?

It would also be interesting to consider natural extensions and modifications of our model. What if, instead of
excluding nodes, we are allowed to assign a few nodes to multiple parts? What if we allow nodes to have weights, and
redefine proportionality and balancedness in terms of the total node weights of the different parts? In the appendix,
we provide some guarantees in both these cases when n = 2. More broadly, it would be exciting to investigate the
effectiveness of charity in the general fair division framework, where agents can have heterogeneous valuations for the
nodes.
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Appendix

A Node-Weighted Graphs
In this section, we focus on the case that it is given a vertex-weighted connected graph G = (V,E,w) where w : V →
R>0. For every V ′ ⊆ V , w(V ′) =

∑
v∈V ′ w(v). With a slight abuse of notation, given a vertex-weighted connected

graph G = (V,E,w), we denote with w(G) the total weight of the graph, i.e. let w(G) =
∑
v∈V w(v). In this case,

balancedness is defined using the weights of the different parts. However, if the graph consists of m − 1 nodes of
negligible weight and one node that has a huge weight, then we can cannot guarantee any finite approximation of
balancedness. Hence, here we introduce an approximation notion which is aligned with the the notion envy-freeness
up to ` items in the classic fair division literature.

Definition 3. A connected pseudo n-partition (V1, ..., Vn, R) is called envy-free up to ` nodes (EF`) for ` > 0, if for
every i, j ∈ [n], there exists S ⊆ Vj with |S| 6 ` such that

w(Vi) > w(Vj)− w(S).

Next, we show that when n = 2 is cases that we cannot achieve 2-balancedness, envy-freeness up to one ` nodes
is possible and vice versa.

Theorem 15. If n = 2 then for any vertex-weighted connected graph G = (V,E,w) there exists a connected pseudo
2-partition (V1, V2, R), with R 6 1 which is either 2-balanced or EF1.

Proof. Let G′ be a spanning tree of G and let T = (G′, r) be a tree rooted to an arbitrary node r. Moreover, we denote
with W the total weight of the graph, i.e. W = w(G) Starting from the highest level (the leaves) of T , we find the first
node, say u∗, such that w(ST (u∗)) > W/3. Notice that every subtree that is rooted in a child of u∗ has weight less
than W/3, as otherwise the procedure would stop to a child of u∗. We distinguish into two cases.
Case I: w(ST (u∗))−w(u∗) > W/3. If w(T \ST (u∗)) >W/3, then we set V1 = ST (u∗) and V2 = T \ST (u∗).
Then, since |V1| 6W/3 and |V2| 6W/3, the theorem follows. Now, we focus on the case thatw(T \ST (u∗)) < W/3.
Let T ′ = (G′, u∗). In this case, notice that all the subtrees that rooted to a node that is located at the second level of
T ′ has weight less than W/3. We partition all the subtrees in Q = {ST (u′, T ′) : u′ ∈ c(u∗, T ′)} into two sets
S1 and S2 such that |w(S1) − w(S2)| is minimized5. Without loss of generality, assume that w(S1) > w(S2). If
w(S1) 6 2 · w(S2), then we set V1 = S1, V2 = S2 and R = {u∗}, and (V1, V2, R) is clearly 2-balanced. Next, we
assume that w(S1) > 2 · w(S2). If S1 consists of at least two subtrees, we denote with Smin the subtree with the
smallest size in S1. Then, if we set S′1 = S1 \ Smin and S′2 = S2 ∪ Smin, we have that w(S′1) > w(S1)/2 > w(S2),
while w(S′2) > w(S2) which means that |w(S′1)−w(S′−2)| < |w(S′1)−w(S′−2)| which is a contradiction. On the
other hand, if S1 consists of only one subtree rooted to a child of u∗, then we set V1 = S1 and V2 = T \S1 = S2∪{u∗}.
Then, as w(S1) > w(S2), we have that w(V1) > w(V2)−w(u∗). Moreover as any subtree in Q has size at most W/3,
we get that w(S1) 6W/3 and hence w(V1) 6 w(V2). Thus, (V1, V2, R) is EF1.
Case II: w(ST (u∗))−w(u∗) < W/3. If w(ST (u∗)) 6 2 ·W/3, then we set V1 = ST (u∗) and V2 = T \ST (u∗),
and then (V1, V2, R) is clearly 2-balanced. Otherwise, we have that w(u∗) > W/3, while w(T ′)− w(ST (u∗, T ′)) <
W/3. Let S = {T ′ \ ST (u∗, T ′), ST (u∗, T ′) \ {u∗}}. If we set

V1 = {u∗} ∪ arg min
S∈S

w(S)

and

V2 = arg max
S∈S

w(S),

then since w(V2) 6W/3 and w(V2) > w(V1)− w(u∗), we conclude that (V1, V2, R) is EF1.
5This can be done in polynomial time using classic techniques from dynamic programming
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B Node Sharing
In this section, we consider a modified model where instead of excluding nodes, we allow a few nodes to be assigned
to multiple parts. More formally, we say that (V1, . . . , Vn) is a shared pseudo n-partition of G if

1. V = (∪i∈[n]Vi); and

2. ∩i∈nVi 6 n− 1.

A shared pseudo n-partition (V1, . . . , Vn) is called connected if eachG[Vi] is connected. The definition of balancedness
remains the same. Next, we show that a slightly modified version of Algorithm 1 returns a connected shared pseudo
2-partition that is 2-balanced, but with a larger guaranteed size for each part.

Theorem 16. When n = 2, a modified version Algorithm 1 of returns a connected shared pseudo 2-partition (V1, V2)
that is 2-balanced and min(|V1|, |V2|) > dn/3e.

Proof. Consider Algorithm 1 but in Line 7 instead of assign u∗ to R, u∗ is assigned to V1 and V2 as well.
The first case where |ST (u∗, T )| = dm/3e, the algorithm does the same operation and in a similar way as in the

proof of Theorem 2, we get that min(|V1|, |V2|) > dn/3e.
Next, consider the case where |ST (u∗)| > dm/3e. With similar arguments as in the proof of Theorem 2, we

conclude that dm/3e 6 |V1| 6 2(dm/3e − 1. Thus, we have that |V \ V1| > m− 1− 2(dm/3e − 1) > d(m− 1)/3e.
But as V2 = V \ V1 ∪ {u∗}, the theorem follows.
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