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Abstract

We study the problem of fairly allocating indivisi-
ble goods to agents. Existing literature that focuses
on the concept of envy inherently assumes that each
agent can observe which goods the other agents are
allocated before deciding if she envies them. In this
paper, we propose a novel policy in which the prin-
cipal hides from each agent the allocations made
to the other agents. Each agent now attempts to
infer these allocations, based on her knowledge of
her own allocation, the mechanism used to divide
the goods, and a prior over how the other agents
value the goods, and then decides whether she en-
vies them in expectation.
We propose eight measures for the total envy in the
system, and show that under six of them, our pol-
icy is guaranteed to (weakly) reduce the total envy,
for every mechanism on every instance. Our exper-
iments show reduction of envy on synthetic as well
as real-world data.

1 Introduction
In the mathematically rigorous study of fair division, which
dates back to the work of Steinhaus [1948], perhaps the most
difficult problem is to fairly divide a set of indivisible goods
— goods which cannot be split or shared, such as houses,
jewelry, or artwork — among a set of agents. The vast liter-
ature on fair division theory offers a slew of fairness desider-
ata such as envy-freeness [Foley, 1967], envy-freeness up to
one good [Lipton et al., 2004; Caragiannis et al., 2016], pro-
portionality, and the maximin share guarantee [Budish, 2011;
Procaccia and Wang, 2014]. Perhaps the most prominent of
them is envy-freeness, which informally requires that each
agent value her own allocation at least as much as she values
any other agent’s allocation, i.e., that no agent envy any other
agent. This definition inherently requires that every agent, in
addition to knowing what she received, must know what ev-
ery other agent received. We refer to this as the full informa-
tion case. Often, the agents receive this knowledge directly
from the principal making the division. What if the principal
instead chooses to provide incomplete information, wherein
each agent only knows her own allocation?

In some fair division applications, this can be simple to
implement. For instance, in a cluster environment where het-
erogeneous computing cores with different CPU, RAM, and
bandwidth configurations need to be divided among a set of
processing jobs, agents submitting the jobs often observe the
allocation of all cores through a digital interface, which can
easily be modified to show to each agent only the cores that
her own jobs received. In other applications, such as in es-
tate division among heirs, this could be legally challenging
because heirs have the legal right to obtain a copy of the will.

Nonetheless, it is interesting to consider the implications
that such a policy may have. It is evident that incomplete in-
formation would lead to increased privacy, not only because
agents are now oblivious to other agents’ allocations, but also
because they have less information to infer other agents’ pri-
vate valuations. But it is not apriori clear whether this policy
would affect the degree of envy in the system.

Let us consider a simple example in which a house, a car,
and a painting need to be divided among Alice, Bob, and
Charlie. Let us assume that Alice has no distinctive infor-
mation about how Bob or Charlie value the goods. In other
words, from Alice’s perspective every good that she does not
receive is equally likely to be allocated to Bob or Charlie.
Let us measure the total envy that Alice has by the number
of agents she envies. In one scenario, imagine that Alice
only wants the house, but does not receive it. With full infor-
mation, she would envy only one agent who gets the house.
But with incomplete information, she would envy both Bob
and Charlie because according to her, they each receive the
house with probability 1/2, which is better than not receiv-
ing it at all. Thus, incomplete information can increase the
total envy by Alice. On the other hand, imagine if Alice val-
ues the house at $100, 000 and the painting at $75, 000, does
not care about the car, and receives only the painting. With
full information, she would envy the agent who receives the
house. But with incomplete information, she would think that
Bob and Charlie each receive the house with probability 1/2,
have value $50, 000 for their allocations in expectation, and
not envy either of them. Thus, incomplete information can
also reduce the total envy by Alice.

In the above examples, we assumed specific allocations
to demonstrate that incomplete information can lead to both
increased and reduced envy. Can we always reduce (or in-
crease) envy if we are allowed to choose the allocation care-



fully? We also used a specific definition for the total envy
by Alice. What happens if we measure it differently, say by
paying attention to the difference in value observed by Alice?

1.1 Our Model and Results
We study fair division of goods in which there are n agents
and m goods, each agent places a value on each good, and
valuations are additive. In the standard framework, it is as-
sumed that each agent i observes the entire allocation of
goods to agents, and then envies an agent j if she values agent
j’s allocation more than she values her own allocation. We
study a setting with incomplete information, in which agent i
only knows her own allocation, infers about the allocations of
other agents using a prior over their valuations, and decides
her envy based on her expected value for their allocations.

In Section 2, we introduce eight measures for the total envy
in the system. In Section 3, we first observe that under “sym-
metric beliefs”, agents are envy-free with incomplete infor-
mation if and only if they receive their proportional share.
We also show that under six out of eight measures, total envy
(weakly) reduces due to incomplete information, while for
the other two measures, it could increase or decrease in the
worst-case.

In Section 4, we present experiments on synthetic data in
which we observe that in all our experiments, the average-
case total envy in the system reduces due to incomplete infor-
mation under all eight measures. For some cases, we also pro-
vide technical arguments establishing that the average-case
envy in the full information setting is indeed qualitatively
higher than in the incomplete information setting. We also
present experiments on real-world goods division data from
a fair division website Spliddit.org, in which we observe
that the average-case total envy may slightly increase under
two measures, but visibly reduces under the remaining six
measures.

1.2 Related Work
To the best of our knowledge, there is no prior work on as-
sessing envy in fair division when agents are oblivious to
other agents’ allocations, but have a prior over their valua-
tions. However, a similar setup has been used previously to
analyze other properties such as Bayesian incentive compati-
bility [Fujinaka, 2008].

The most closely related to ours is the work of Abebe et
al. [2017], who studied the classic cake-cutting setting with
a heterogeneous divisible good, but assume that the agents
are connected via a social network structure, and each agent
can only observe the allocations of her neighbors. They call
an allocation locally envy-free if no agent envies her neigh-
bors. As fully envy-free allocations (which are also locally
envy-free) are guaranteed to exist in their setting, they focus
on issues such as computational complexity and the price of
fairness. Bouveret et al. [2010] also studied a setting with
incomplete information, but in their setting it is the principal
that does not have full information about agents’ valuations,
and attempts to argue whether a given allocation is necessar-
ily or possibly envy-free.

We show that Bayesian envy-freeness coincides with pro-
portionality for symmetric beliefs (Corollary 1). Hill [1987]

demonstrated a lower bound on the minimum value each
agent can be guaranteed as a fraction of their total value for
all the goods, which can be viewed as an approximation to
proportionality because proportionality requires that this frac-
tion be at least 1/n. Later, Markakis and Psomas [2011] pro-
vided a polynomial time algorithm for finding allocations that
achieve this approximation, and Gourvès et al. [2014] pro-
vided improved guarantees in a more general setting. Clearly,
these results directly inform approximation results for our
Bayesian setting too. This also applies to results from the vast
literature on the Santa Claus problem [Bansal and Sviridenko,
2006; Feige, 2008; Asadpour and Saberi, 2010], which also
aims to approximate proportionality. We note that there is
also a growing body of literature on approximating or re-
laxing envy-freeness [Lipton et al., 2004; Caragiannis et al.,
2016; Budish, 2011; Nguyen and Rothe, 2013a], and that for
symmetric beliefs Bayesian envy-freeness (i.e., proportional-
ity) is also a relaxation of envy-freeness.

On a technical level, we use eight different measures for
the total envy in the system, based on how envy is aggregated
across different agents; this is inspired from similar defini-
tions by Nguyen and Rothe [2013b].

2 Model
For k ∈ N, define [k] , {1, . . . , k}. Let N = [n] denote a
set of agents, and M denote a set of m goods to be divided
among the agents. We assume that the goods are indivisible,
i.e., a good cannot be split or shared between multiple agents.
Each agent i is endowed with a valuation function vi : M →
R, where vi(g) denotes the value of agent i for good g. We
assume additive valuations: slightly abusing the notation, we
formally define vi(S) =

∑
g∈S vi(g) for all S ⊆M . We use

v = (vi)i∈N to collectively denote the valuation functions of
the agents.

An allocation A is a partition of the set of goodsM among
the set of agents N . We use Ai to denote the set of goods
received by agent i under A. The utility to agent i for her
allocation is vi(Ai). An allocation is called non-wasteful if
it allocates all the goods. We will assume non-wastefulness
throughout the paper. An allocation A is said to satisfy pro-
portionality if every agent receives her “proportional share”,
which is at least 1/n of her total value for the goods. In other
words, proportionality requires vi(Ai) > vi(M)/n for all
i ∈ N . Note that an agent only needs to know her own
allocation to assess whether she receives her proportional
share. An allocation A is called Pareto optimal if no alter-
native allocation can make an agent happier without mak-
ing some other agent strictly worse off, i.e., if for all al-
ternative allocations A′, ∃i ∈ N, vi(A

′
i) > vi(Ai) implies

∃j ∈ N, vj(A′j) < vj(Aj).
A mechanism takes as input the valuations of the agents

and returns a (deterministic) allocation. We say that a mecha-
nism satisfies a certain property (e.g., Pareto optimality, pro-
portionality, or envy-freeness, which we define below) if it
always returns an allocation satisfying the property.

Full information and envy-freeness. In the standard fair divi-
sion setting, it is assumed that every agent can observe the
entire allocation A. In this case, A is called envy-free if



vi(Ai) > vi(Aj) for all i, j ∈ N , i.e., if every agent values
her own allocation at least as much as she values any other
agent’s allocation.

Incomplete information and Bayesian envy-freeness. The fo-
cus of this paper is to study the effect of the agents having in-
complete information about other agents’ allocation on envy.
Specifically, each agent i knows her own valuation vi and her
allocation Ai (the mechanism used to divide the goods is also
public knowledge), but does not have direct access to the al-
locations made to the other agents.

Instead, she has a prior over the valuations of the other
agents: according to her, the valuation vj of agent j is sam-
pled (independently of other agents) from a distribution Di,j .
Given her knowledge of the mechanism h used to divide
the goods, and her own observed allocation Ai, she forms
a posterior in which the probability of an allocation A′ with
A′i = Ai is given by

Pr[A′|Ai] =
Pr{vj∼Di,j}j∈N\{i} [h(v) = A′]

Pr{vj∼Di,j}j∈N\{i} [h(v)i = Ai]
.

Let us denote this posterior distribution by Di. To as-
sess whether she envies another agent j, agent i now views
her utility for agent j’s allocation in expectation, where the
expectation is taken over her uncertainty about the alloca-
tion. That is, agent i does not Bayesian-envy agent j if
vi(Ai) > EA′∼Di

[vi(A
′
j)]. We say that an allocation A′ is

Bayesian envy-free if no agent envies another agent in expec-
tation.

Quantitative measures of envy. It is easy to see that neither
envy-freeness nor Bayesian envy-freeness can be guaranteed
(imagine a single good divided between two agents). We
therefore turn our attention to quantitative measures of the
total envy in the system. To distinguish between envy in the
full information and incomplete information cases, we call
the former full envy (FE), and the latter Bayesian envy (BE).

Similarly to the three-step approach of Nguyen and Rothe
[2013b], we take a four-step approach to define eight mea-
sures of the total envy in the system, starting from the envy of
agent i for agent j, aggregating across j to find the total envy
of agent i, and finally aggregating across i.

Step 1: The (basic) envy of agent i for agent j is given by

FE(i, j) = max
(
vi(Aj)− vi(Ai), 0

)
BE(i, j) = max

(
EA′∼Di [vi(A

′
j)]− vi(Ai), 0

)
.

Step 2: Next, we either use this quantitative envy (i.e., use
the identity operator I given by I(x) = x), or convert it into
a Boolean value (i.e., use the indicator operator 1 given by
1(x) = 1 if x > 0 and 0 otherwise). For E ∈ {FE,BE},

EI(i, j) = E(i, j), E1(i, j) = 1[E(i, j)].

Step 3: Next, to define the total envy of agent i, we ag-
gregate her envy for all other agents by either adding (i.e.,
applying the sum operator Σ) or by taking the maximum (i.e.,

applying the max operator max). Formally, for E ∈ {FE,BE}
and O3 ∈ {I,1},

EΣ,O3(i) =
∑

j∈N\{i} EO3(i, j),

Emax,O3(i) = maxj∈N\{i} EO3(i, j).

Step 4: Finally, the total envy in the system is computed
by aggregating the total envy of all agents, again, either
by adding or by taking the maximum. Formally, for E ∈
{FE,BE}, O2 ∈ {Σ,max}, and O3 ∈ {I,1},

EΣ,O2,O3 =
∑

i∈N EO2,O3(i),

Emax,O2,O3 = maxi∈N EO2,O3(i).

For both the full information and the incomplete informa-
tion case, this defines eight measures for the total envy in the
system: EO1,O2,O3 for E ∈ {FE,BE}, O1, O2 ∈ {Σ,max},
and O3 ∈ {I,1}. We remark that taking the sum of envies
may be more meaningful when agents’ valuations are normal-
ized, i.e., if

∑
g∈M vi(g) = 1 for all agents i. Our results in

Section 3 hold both with and without such normalization.

3 Bayesian Envy versus Full Envy
In this section, we provide theoretical results comparing the
total envy in the system in the full information case versus
in the incomplete information case. For incomplete informa-
tion, we focus on the special case of symmetric beliefs, where
the prior that agent i has over the valuation function of agent
j may depend on i, but not on j. Formally, we assume that
Di,j = Di,j′ for all i ∈ N and j, j′ ∈ N \ {i}. We also
assume that the mechanism is neutral, i.e., it does not distin-
guish between agents. With incomplete information, agent
i now has no way to distinguish between the other agents.
Thus, according to her, every good she does not receive might
be allocated to each other agent with an equal probability.
This leads to the following simple observation.
Proposition 1. With incomplete information and symmetric
beliefs, we have vi(Ai) > E[vi(Aj)] if and only if vi(Ai) >
vi(M)/n, for all pairs of distinct agents i, j ∈ N .

Proof. The goods the agent i does not receive are collectively
valued vi(M)− vi(Ai) by agent i, and each other agent j re-
ceives each such good with probability 1/(n−1) according to
agent i. Hence, we have E[vi(Aj)] = (vi(M)−vi(Ai))/(n−
1). The desired result now follows by substituting this into
vi(Ai) > E[vi(Aj)] and simplifying. �

Note that vi(M)/n is the proportional share of agent i.
Proposition 1 states that agent i does not Bayesian-envy other
agents if and only if she receives her proportional share. As a
direct corollary, Bayesian envy-freeness is equivalent to pro-
portionality. Because envy-freeness with full information is
known to imply proportionality, we find it interesting that
with incomplete information it coincides with proportional-
ity, which uncovers a stronger connection between the two
classical fairness notions.
Corollary 1. With incomplete information and symmetric be-
liefs, Bayesian envy-freeness is equivalent to proportionality,
and is therefore implied by (full) envy-freeness.



We do not focus on randomized mechanisms in this pa-
per because the randomized Maximum Nash Welfare solu-
tion [Caragiannis et al., 2016], or equivalently, the compet-
itive equilibrium from equal incomes (CEEI) over random-
ized outcomes [Varian, 1974], is known to satisfy full envy-
freeness, and from Corollary 1, it would satisfy Bayesian
envy-freeness as well.

For deterministic mechanisms, on the other hand, neither
full envy-freeness nor Bayesian envy-freeness can be guaran-
teed, as we observe in Section 2. We therefore ask whether
the total amount of envy in the system can be reduced due to
incomplete information as compared to the full information
case. While zero full envy implies zero Bayesian envy (ac-
cording to any of the eight measures) due to Corollary 1, the
corollary makes no claim about the comparison of the total
full envy and the total Bayesian envy in the case where the
total full envy is not zero. In fact, in Section 1 we picked
a particular measure — the total number of pairs (i, j) such
that agent i envies agent j, i.e., EΣ,Σ,1 for E ∈ {FE,BE}—
and gave two instances of valuations and allocations such that
in one case, the total full envy was higher, while in the other,
the total Bayesian envy was higher. Our next result extends
this incomparability observation to two of our eight measures
and to (almost) all mechanisms, while showing that for the
remaining six measures, the total Bayesian envy is always at
most the total full envy, irrespective of the valuations or the
allocation.

Theorem 1. With symmetric beliefs and (O1, O2, O3) ∈
{Σ,max} × {Σ,max} × {I,1}:

1. If (O1, O2, O3) ∈ {Σ,max} × {Σ} × {1}, then
BEO1,O2,O3 and FEO1,O2,O3 are incomparable. For-
mally, for every n ∈ N and every Pareto optimal mecha-
nism, there exists an instance with n agents under which
BEO1,O2,O3 6 FEO1,O2,O3 , and for every n ∈ N and
every mechanism, there exists an instance with n agents
under which BEO1,O2,O3 > FEO1,O2,O3 .

2. Otherwise, BEO1,O2,O3 6 FEO1,O2,O3 for all mecha-
nisms on all instances.

Before we proceed to the proof, we remark that the Pareto
optimality condition in part 1 of the theorem is weak and sat-
isfied by most compelling mechanisms. In absence of this
condition, the result may not hold. For example, consider the
dictatorship mechanism that always allocates all the goods to
agent 1. This violates Pareto optimality when there is a good
that agent 1 has no value for, but another agent has a positive
value for. Under this mechanism, agent 1 never envies an-
other agent, while every other agent envies exactly one agent
(agent 1) in the full information case and n− 1 agents in the
incomplete information case. Then, for every instance, we
have BEO1,Σ,1 > FEO1,Σ,1 for O1 ∈ {Σ,max}. Thus, part
1 of the theorem does not hold for this mechanism.

We also remark that our proof works both with and with-
out assuming normalized agent valuations that sum to a fixed
quantity; part 1 of the theorem is stronger when we insist on
normalized valuations whereas part 2 is stronger when we do
not assume normalized valuations.

Proof. Throughout this proof, let us denote BEO2,O3 by B
and FEO2,O3 by E. We first prove the incomparability result.
Fix O2 = Σ and O3 = 1, and let O1 ∈ {Σ,max}.

To show that Bayesian envy can be strictly greater than
full envy, consider an instance with n agents (N = [n])
and m goods (M = {g1, . . . , gm}) in which all agents de-
sire the same, single good. Formally, let the valuation of
every agent i be given by vi(g1) = 1 and vi(gj) = 0
for j 6= 1. In any allocation, the agent i∗ who receives
good g1 satisfies B(i∗) = E(i∗) = 0, whereas all other
agents i satisfy B(i) = n − 1 > E(i) = 1. It is easy to
see that this implies

∑
i∈N B(i) >

∑
i∈N E(i) as well as

maxi∈N B(i) > maxi∈N E(i), as required.
Next, we assume the mechanism is Pareto optimal, and

show that full envy can be at least as much as Bayesian envy.
Consider an instance with n agents (N = [n]) and n + 1
goods (M = {g1, . . . , gn, gn+1}), in which the valuation of
each agent i is given by vi(gi) = 1/n, vi(gn+1) = (n−1)/n,
and vi(gj) = 0 for j /∈ {i, n+ 1}.

The Pareto optimal mechanism must allocate good gi to
agent i for all i ∈ [n]. For the agent i∗ that receives good
gn+1, we have B(i∗) = E(i∗) = 0, and for every other agent
i, we have B(i) = 0 and E(i) = 1. One can now check
that

∑
i∈N B(i) <

∑
i∈N E(i) as well as maxi∈N B(i) <

maxi∈N E(i), as required.
We now show that for the remaining six measures, total

Bayesian envy is no more than total full envy for every mech-
anism on every instance. To prove this, we show that for
every (O2, O3) ∈ {(max,1), (Σ, I), (max, I)}, every in-
stance, and every allocation, B(i) 6 E(i) for every agent
i ∈ N . Note that the inequality will be preserved when ag-
gregation across the agents is performed by O1 ∈ {Σ,max}.

Fix an instance with valuations {vi}i∈N and an allocation
A. The argument for O2 = max and O3 = 1 is simple. For
an agent i, we have B(i), E(i) ∈ {0, 1}. Further, E(i) = 0
implies vi(Ai) > vi(Aj) for all j ∈ N \ {i}. Summing over
j, we get (n − 1)vi(Ai) > vi(M) − vi(Ai), i.e., vi(Ai) >
vi(M)/n, which in turn implies B(i) = 0 (Proposition 1).
Hence, E(i) > B(i), as required.

For O2 = max and O3 = I, we want to show

max
j∈N\{i}

max{vi(Aj)− vi(Ai), 0} > max

{
vi(M)− n vi(Ai)

n− 1
, 0

}
,

(1)

where the RHS follows from the fact that in the incomplete
information case, agent i has the same amount of envy for
every other agent j. This is given by (vi(M)− vi(Ai))/(n−
1) − vi(Ai), which simplifies to the expression on the RHS
above. For O2 = Σ and O3 = I, we want to show∑

j∈N\{i}

max{vi(Aj)− vi(Ai), 0}

> (n− 1) ·max

{
vi(M)− n vi(Ai)

n− 1
, 0

}
, (2)

which is equivalent to replacing maxj∈N\{i} in Equation (1)
with average over j ∈ N \ {i}. Because the maximum of
a set of numbers is no less than their average, this implies
Equation (1). For Equation (2), note that the LHS is trivially



at least 0. We also have that
1

n− 1

∑
j∈N\{i}

max{vi(Aj)− vi(Ai), 0}

>
1

n− 1

∑
j∈N\{i}

vi(Aj)− vi(Ai)

=
1

n− 1

(
(vi(M)− vi(Ai))− (n− 1) · vi(Ai)

)
=
vi(M)− n vi(Ai)

n− 1
,

as required. �

4 Experiments
We now present experiments on synthetic data as well as real-
world data, in which we measure the total envy on average,
with full and incomplete information. To make the envy by
different agents comparable, we normalize valuations to sum
to 1 before calculating envy. To make the different measures
of total envy comparable, we replace summation by average;
note that this simply amounts to dividing the total envy by a
constant that depend on the number of agents, and does not
change the comparison between envy with full and incom-
plete information.

As the mechanism to allocate goods to agents, we use the
maximum Nash welfare (MNW) solution, which maximizes
the product of agents’ utilities. This mechanism is currently
being used in practice on the fair division website Spliddit.
org due to its attractive fairness guarantees [Caragiannis et
al., 2016]. Hence, the use of this mechanism tells us how in-
complete information would affect the total envy in practice.

For the special case of symmetric beliefs, Bayesian envy
has a simpler expression that only depends on the current al-
location (and not on the mechanism used), which allows us to
minimize this envy by solving an integer linear program.1 In
this case, for each combination of (O1, O2, O3), we addition-
ally compare the minimum possible full envy FEO1,O2,O3 to
the minimum possible Bayesian envy BEO1,O2,O3 , on aver-
age. In this case, we say the mechanisms used are the envy-
minimizing (or MinEnvy) mechanisms. This compares the
potential to reduce total envy under full and incomplete in-
formation, if we really sought to minimize it, but does not
provide comparison for a specific mechanism.

Synthetic data. We use three methods for generating syn-
thetic agent valuations. In each case, an agent’s prior for
other agents’ valuations accurately reflects the distributions
from which they were sampled. For each agent i and good g,
we independently sample vi(g) from the normal distribution
N (µi(g), 1), truncated below 0, because negative valuations
are not allowed. The methods differ in their choice of µi(g).

• Symmetric beliefs, homogeneous goods: µi(g) = 1/2
for all i, g, i.e., all agents and goods are apriori identical.

1For m = n, this can be accomplished in polynomial time solv-
ing maximum-weight bipartite matching when O1 = Σ or Linear
Bottleneck Assignment Problem (LBAP) when O1 = max, but we
omit the details due to lack of space.

• Symmetric beliefs, heterogeneous goods: µi(g) =
µ(g) ∼ U [0, 1] for all i, g, i.e., agents are apriori identi-
cal, but goods have different “market values” (µi(g)).

• Asymmetric beliefs: µi(g) ∼ U [0, 1] for all i, g, i.e., all
agents and goods are apriori different.

Due to space constraint, we only present graphs for the spe-
cial case of m = n. Results for m > n are similar, but the
difference between Bayesian and full envy is smaller. We also
omit the graphs for symmetric beliefs, heterogeneous goods,
which are similar to the homogeneous goods case.

Each datapoint in our graphs is averaged over 1, 000 ran-
dom valuations. For symmetric beliefs, we can quickly com-
pute total Bayesian envy, allowing us to test n = 10 to
n = 50. For asymmetric beliefs, we need a computationally
intensive step, in which for each agent i, we repeatedly sam-
ple valuations of other agents from her prior, run the MNW
solution until we find 100 samples in which agent i’s alloca-
tion coincides with her actual allocation, and take her average
value for other agents’ allocations. This restricts our simula-
tions to use n = 5 to n = 25.

Figures 1a and 1b show the comparison between full envy
(solid lines) and Bayesian envy (dashed lines) on average un-
der all eight measures, for MinEnvy and the MNW solution,
respectively. Note that we observe qualitatively less Bayesian
envy (which quickly drops to 0) than full envy (which either
remains a constant or drops very slowly). This trend holds
under asymmetric beliefs (Figure 1c) as well.

For MinEnvy under symmetric beliefs, the results can be
explained theoretically. For m = n, Suksompong [2016]
shows that under mild conditions, the probability that a pro-
portional (i.e., Bayesian envy-free) allocation does not ex-
ist drops exponentially with n. Given the polynomial up-
per bound on the maximum amount of envy, we see that the
expected (minimum possible) Bayesian envy must also drop
exponentially with n. In contrast, there is at least a constant
probability that no envy-free allocation exists [Dickerson et
al., 2014]. At least for some of the measures, it is possible to
use this result to derive an at most polynomially decreasing
lower bound on the expected (least possible) full envy.

Theorem 1 ensures that Bayesian envy can never be more
than full envy for six measures under symmetric beliefs. For
the remaining two measures, it was still lower in more than
95% of our simulations except for n = 10. Under asymmetric
beliefs, we have no theoretical guarantee, but observe that
Bayesian envy is again lower than full envy under all eight
measures in more than 90% of our simulations, except for
one measure at n = 5.

Real-world data. We use data from the fair division website
Spliddit.org that allows fairly allocating a mix of divis-
ible and indivisible goods. In particular, we use the 2, 028
instances created so far in which only indivisible goods were
used. Unlike the synthetic data, this no longer has m = n.
The number of agents n vary from 2 to 15, while the number
of goods m vary from 2 to 93.

Because the valuations are already given, we only need to
decide the priors. Both the “homogeneous goods” and “het-
erogeneous goods” priors (e.g., with µi(g) = avgi vi(g) as
the “market value” of good g) lead to symmetric beliefs, and
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Fig. 1: Experiments on synthetic data with symmetric beliefs (homogeneous goods) and asymmetric beliefs. Solid and dashed
lines represent total envy with full and incomplete information, respectively.
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Fig. 2: Experiments on real-world data from Spliddit.org with symmetric beliefs and asymmetric beliefs. The eight envy
measures, left to right, are in the same order as they appear in the legend of Figure 1, top to bottom.

with the valuations already fixed, lead to identical results. For
asymmetric beliefs, we set µi(g) = vj(g), i.e., priors are dis-
tributed around the true valuations. Figures 2a and 2b present
the results for symmetric beliefs under the MinEnvy and the
MNW solution, respectively, while Figure 2c presents the re-
sults for asymmetric beliefs under the MNW solution.

First, note that for asymmetric beliefs, Bayesian envy is
still less than full envy on average under all eight measures
(in fact, in more than 90% of simulations in each compari-
son). For symmetric beliefs, this comparison is guaranteed
to always hold for six measures, and we observe a significant
reduction under some of them. However, Bayesian envy is
slightly higher on average than full envy under the two mea-
sures captured in part 1 of Theorem 1, for which envy in the
two cases is incomparable in the worst case. Surprisingly,
in more than 80% of the simulations, Bayesian envy is ac-
tually lower. A closer investigation revealed that data from
Spliddit contains instances with “concentrated” valuations, in
which more than one agent want the same good, and value
other goods negligibly. The agent who does not receive this
good envies only one agent in the full information case, but
n − 1 agents in the incomplete information case. Each such
instance creates a dramatic increase in Bayesian envy when
O2 = Σ and O3 = 1. While such concentrated valuations
may be common in some of the applications that Spliddit
caters to (e.g., estate division), in other applications such as

resource allocation in clusters, it is far less common because
all cores with similar configuration are valued similarly.

5 Discussion
In this paper, we considered the problem of fair allocation of
indivisible goods, proposed a novel policy wherein the princi-
pal hides from each agent the allocations of the other agents,
and showed that it helps reduce the amount of total conflict
(measured by aggregating envy of agents in different ways)
both in theory and in practice.

We remark that such a policy could have additional bene-
fits. For example, hiding the allocations of other agents can
not only lead to increased privacy for the allocation, but can
also make it harder for agents to infer the private valuations
of other agents. An interesting direction for future work is
to quantify the amount of privacy added by using notions of
privacy such as differential privacy [Dwork et al., 2006] or
(information-theoretic) min-entropy leakage [Smith, 2009],
which are closely related to each other [Alvim et al., 2012].

We also foresee challenges in implementing this policy in
the real world. First, effectively hiding information from
the agents may require use of cryptographic schemes for se-
cure multi-party computation [Yao, 1982] that provide pri-
vacy with respect to both inputs and outputs [Bresson et al.,
2006]. It would be interesting to study if outcomes under
classic fair division mechanisms such as the MNW solution
can be computed in a secure way.
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