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• In this tutorial, we will NOT
➢ Assume any prior knowledge of fair division
➢ Walk you through tedious, detailed proofs
➢ Claim to present a complete overview of the entire fair division realm
➢ Present (recent) unpublished results

• Instead, we will
➢ Focus mostly on the case of “additive preferences” for coherence
o With some results for and pointers to domains with non-additive preferences

• If you spot any errors, missing results, or incorrect attributions:
➢ Please email nisarg@cs.toronto.edu or Rupert.Freeman@microsoft.com

mailto:nisarg@cs.toronto.edu
mailto:Rupert.Freeman@microsoft.com


Outline
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• Fairness Axioms
➢ Proportionality

➢ Envy-freeness

➢ Maximin share guarantee

➢ Groupwise fairness
o Core

o Group envy-freeness

o Groupwise MMS

o Group fairness

• Implications of fairness
➢ Price of fairness

➢ Interplay with strategyproofness 
and Pareto optimality

➢ Restricted cases

• Settings
➢ Cake-cutting

➢ Homogeneous divisible goods

➢ Indivisible goods



A Generic Resource Allocation Framework
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• A set of agents 𝑁 = {1,2, … , 𝑛}

• A set of resources 𝑀
➢ May be finite or infinite

• Valuations
➢ Valuation of agent 𝑖 is 𝑣𝑖 ∶ 2𝑀 → ℝ

➢ Range is ℝ+ when resources are goods, and ℝ− when they are bads

• Allocations
➢ 𝐴 = 𝐴1, … , 𝐴𝑛 ∈ Π𝑛 𝑀 is a partition of resources among agents
o 𝐴𝑖 ∩ 𝐴𝑗 = ∅, ∀𝑖, 𝑗 ∈ 𝑁 and ∪𝑖∈𝑁 𝐴𝑖 = 𝑀

➢ A partial allocation 𝐴 may have ∪𝑖∈𝑁 𝐴𝑖 ≠ 𝑀



Cake Cutting
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• Formally introduced by Steinhaus [1948]

• Agents: 𝑁 = {1,2, … , 𝑛}

• Resource (cake): 𝑀 = [0,1]

• Constraints on an allocation 𝐴
➢ The entire cake is allocated (full allocation)

➢ Each 𝐴𝑖 ∈ 𝒜, where 𝒜 is the set of finite 
unions of disjoint intervals

• Simple allocations
➢ Each agent is allocated a single interval

➢ Cuts cake at 𝑛 − 1 points



Agent Valuations
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• Each agent 𝑖 has an integrable density 
function 𝑓𝑖: 0,1 → ℝ+

• For each 𝑋 ∈ 𝒜, 𝑣𝑖 𝑋 = 𝑥∈𝑋׬
𝑓𝑖 𝑥 𝑑𝑥

• For normalization, we require 0׬

1
𝑓𝑖 𝑥 𝑑𝑥 = 1

➢ Without loss of generality

𝛼

𝜆𝛼

𝛼 β

β𝛼 + 𝛽



Agent Valuations
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• In this model, the valuations satisfy the 
following properties

• Normalized: 𝑣𝑖 0,1 = 1

• Divisible: ∀𝜆 ∈ [0,1] and 𝐼 = [𝑥, 𝑦],
∃𝑧 ∈ [𝑥, 𝑦] s.t. 𝑣𝑖 [𝑥, 𝑧] = 𝜆𝑣𝑖([𝑥, 𝑦])

• Additive: For disjoint intervals 𝐼 and 𝐼′,
𝑣𝑖 𝐼 + 𝑣𝑖 𝐼′ = 𝑣𝑖 𝐼 ∪ 𝐼′

𝛼

𝜆𝛼

𝛼 β

β𝛼 + 𝛽



Complexity
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• Inputs are functions
➢ Infinitely many bits may be needed to fully 

represent the input

➢ Query complexity is more useful

• Robertson-Webb Model
➢ Eval𝑖(𝑥, 𝑦) returns 𝑣𝑖 𝑥, 𝑦

➢ Cut𝑖(𝑥, 𝛼) returns 𝑦 such that 𝑣𝑖 𝑥, 𝑦 = 𝛼

𝑥 𝑦

𝛼

eval output

cut output



Three Classic Fairness Desiderata
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• Proportionality (Prop):  ∀𝑖 ∈ 𝑁: 𝑣𝑖 𝐴𝑖 ≥ Τ1
𝑛

➢ Each agent should receive her “fair share” of the utility.

• Envy-Freeness (EF):  ∀𝑖, 𝑗 ∈ 𝑁: 𝑣𝑖 𝐴𝑖 ≥ 𝑣𝑖(𝐴𝑗)
➢ No agent should wish to swap her allocation with another agent.

• Equitability (EQ):  ∀𝑖, 𝑗 ∈ 𝑁 ∶ 𝑣𝑖 𝐴𝑖 = 𝑣𝑗 𝐴𝑗

➢ All agents should have the exact same value for their allocations.

➢ No agent should be jealous of what another agent received.



Example
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• Agent 1 wants [0, Τ1
3] uniformly 

and does not want anything else

• Agent 2 wants the entire cake 
uniformly

• Agent 3 wants [ Τ2
3 , 1] uniformly 

and does not want anything else

• Value density functions

0 ൗ1
3

1ൗ2
3

1

2

3



Example

AAAI 2020 Tutorial on Recent Advances in Fair Resource Allocation – Rupert Freeman and Nisarg Shah 11

• Consider the following allocation

• 𝐴1 = 0, Τ1
9 ⇒ 𝑣1 𝐴1 = Τ1

3

• 𝐴2 = Τ1
9 , Τ8

9 ⇒ 𝑣2 𝐴2 = Τ7
9

• 𝐴3 = Τ8
9 , 1 ⇒ 𝑣3 𝐴3 = Τ1

3

• The allocation is proportional, 
but not envy-free or equitable

• Value density functions

0 ൗ1
3

1ൗ2
3

1

2

3



Example
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• Consider the following allocation

• 𝐴1 = 0, Τ1
6 ⇒ 𝑣1 𝐴1 = Τ1

2

• 𝐴2 = Τ1
6 , Τ5

6 ⇒ 𝑣2 𝐴2 = Τ2
3

• 𝐴3 = Τ5
6 , 1 ⇒ 𝑣3 𝐴3 = Τ1

2

• The allocation is proportional 
and envy-free, but not equitable

• Value density functions

0 ൗ1
3

1ൗ2
3

1

2

3



Example
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• Consider the following allocation

• 𝐴1 = 0, Τ1
5 ⇒ 𝑣1 𝐴1 = Τ3

5

• 𝐴2 = Τ1
5 , Τ4

5 ⇒ 𝑣2 𝐴2 = Τ3
5

• 𝐴3 = Τ4
5 , 1 ⇒ 𝑣3 𝐴3 = Τ3

5

• The allocation is proportional, 
envy-free, and equitable

• Value density functions

0 ൗ1
3

1ൗ2
3

1

2

3



Relations Between Fairness Desiderata
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• Envy-freeness implies proportionality
➢ Summing 𝑣𝑖 𝐴𝑖 ≥ 𝑣𝑖 𝐴𝑗 over all 𝑗 gives proportionality

• For 2 agents, proportionality also implies envy-freeness
➢ Hence, they are equivalent.

• Equitability is incomparable to proportionality and envy-freeness
➢ E.g. if each agent has value 0 for her own allocation and 1 for the other agent’s 

allocation, it is equitable but not proportional or envy-free.



Existence
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• Theorem [Alon, 1987]
Suppose the value density function 𝑓𝑖 of each agent valuation 𝑣𝑖 is 
continuous. Then, we can cut the cake at 𝑛2 − 𝑛 places and rearrange 
the 𝑛2 − 𝑛 + 1 intervals into 𝑛 pieces 𝐴1, … , 𝐴𝑛 such that

𝑣𝑖 𝐴𝑗 = ൗ1
𝑛 , ∀𝑖, 𝑗 ∈ 𝑁

• This is called a “perfect partition”
➢ It is trivially envy-free (thus proportional) and equitable

• As we will later see, this cannot be found with finitely many queries in 
Robertson-Webb model
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Proportionality



PROPORTIONALITY : 𝑛 = 2 AGENTS
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• CUT-AND-CHOOSE

➢ Agent 1 cuts the cake at 𝑥 such that 𝑣1 0, 𝑥 = 𝑣1 𝑥, 1 = Τ1 2

➢ Agent 2 chooses the piece that she prefers.

• Elegant protocol
➢ Proportional (equivalent to envy-freeness for 2 agents)

➢ Needs only one cut and one eval query (optimal)

• More agents?



PROPORTIONALITY: DUBINS-SPANIER
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• DUBINS-SPANIER

➢ Referee starts a knife at 0 and moves the knife to the right.

➢ Repeat: When the piece to the left of the knife is worth 1/𝑛 to an agent, the 
agent shouts “stop”, receives the piece, and exits.

➢ When only one agent remains, she gets the remaining piece.

• Can be implemented easily in Robertson-Webb model
➢ When [𝑥, 1] is left, ask each remaining agent 𝑖 to cut at 𝑦𝑖 so that 𝑣𝑖 𝑥, 𝑦𝑖 =

1/𝑛, and give agent 𝑖∗ ∈ arg min𝑖 𝑦𝑖 the piece [𝑥, 𝑦𝑖∗].

• Query complexity: Θ(𝑛2)



PROPORTIONALITY: EVEN-PAZ
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• EVEN-PAZ

• Input:
➢ Interval [𝑥, 𝑦], number of agents 𝑛 (assume a power of 2 for simplicity)

• Recursive procedure:
➢ If 𝑛 = 1, give [𝑥, 𝑦] to the single agent.
➢ Otherwise:
o Each agent 𝑖 marks 𝑧𝑖 such that 𝑣𝑖 𝑥, 𝑧𝑖 = 𝑣𝑖 𝑧𝑖 , 𝑦
o 𝑧∗ = Τ𝑛 2 th mark from the left.
o Recurse on [𝑥, 𝑧∗] with the left 𝑛/2 agents, and on [𝑧∗, 𝑦] with the right 𝑛/2 agents.

• Query complexity: Θ(𝑛 log 𝑛)



Complexity of Proportionality
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• Theorem [Edmonds and Pruhs, 2006]:
➢ Any protocol returning a proportional allocation needs Ω(𝑛 log 𝑛) queries in 

the Robertson-Webb model.

• Hence, EVEN-PAZ is provably (asymptotically) optimal!
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Envy-Freeness



Envy-Freeness : Few Agents
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• 𝑛 = 2 agents : CUT-AND-CHOOSE (2 queries)

• 𝑛 = 3 agents : SELFRIDGE-CONWAY (14 queries) Gets complex pretty quickly!



Envy-Freeness : Few Agents
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• [Brams and Taylor, 1995]
➢ The first finite (but unbounded) protocol for any number of agents

• [Aziz and Mackenzie, 2016a]
➢ The first bounded protocol for 4 agents (at most 203 queries)

• [Amanatidis et al., 2018]
➢ A simplified version of the above protocol for 4 agents (at most 171 queries)



Envy-Freeness
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• Theorem [Aziz and Mackenzie, 2016b]
➢ There exists a bounded protocol for computing an envy-free allocation with 𝑛

agents, which requires 𝑂(𝑛𝑛𝑛𝑛𝑛𝑛

) queries

➢ After 𝑂 𝑛2𝑛+3 queries, the protocol can output a partial allocation that is 
both proportional and envy-free

• What about lower bounds?



Complexity of Envy-Freeness
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• Theorem [Procaccia, 2009]
Any protocol for finding an envy-free allocation requires Ω(𝑛2)
queries.

• Theorem [Stromquist, 2008]
There is no finite (even unbounded) protocol for finding a simple 
envy-free allocation for 𝑛 ≥ 3 agents.

Open Problem

Bridge the gap between 𝑂(𝑛𝑛𝑛𝑛𝑛𝑛

) upper bound and 
Ω 𝑛2 lower bound for envy-free cake-cutting
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Equitability



Upper Bound: 𝑛 = 2 Agents
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• Existence
➢ Suppose we cut the cake at 𝑥 to form pieces [0, 𝑥] and [𝑥, 1]

➢ Let 𝑓 𝑥 = 𝑣1 0, 𝑥 − 𝑣2 𝑥, 1
o Note that 𝑓 0 = −1, 𝑓 1 = 1, and 𝑓 is continuous

➢ By the intermediate value theorem: ∃𝑥∗ such that 𝑓 𝑥∗ = 0

➢ Allocation 𝐴1 = [0, 𝑥∗] and 𝐴2 = [𝑥∗, 1] is equitable 

• Theorem [Cechlárová and Pillárová, 2012]
➢ Using binary search for 𝑥∗, we can find an 𝜖-equitable allocation for 2 agents 

with 𝑂 ln Τ1
𝜖 queries.



Upper Bound: 𝑛 > 2 Agents
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• Theorem [Cechlárová and Pillárová, 2012]
➢ This technique can be extended to 𝑛 agents to find an 𝜖-equitable allocation in 

𝑂 𝑛 ln Τ1
𝜖 queries.

• Theorem [Procaccia and Wang, 2017]
➢ There exists a protocol for 𝑛 agents which finds an 𝜖-equitable allocation in 

𝑂 Τ1
𝜖 ln Τ1

𝜖 queries.

➢ Intuition:
o If 𝑛 ≤ Τ1

𝜖, use above protocol for finding an equitable 𝜖-equitable allocation.

o If 𝑛 > Τ1
𝜖, use a variant of the Evan-Paz algorithm to find an anti-proportional allocation 

where 𝑛′ = Τ1
𝜖 agents get value at most 1/𝑛′, and the rest receive nothing.

• While this is a “bad” allocation, it is 𝜖-equitable.



Lower Bound
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• Theorem [Procaccia and Wang, 2017]
Any protocol for finding an 𝜖-equitable allocation must require 

Ω
ln Τ1

𝜖

ln ln Τ1
𝜖

queries.

• Theorem [Procaccia and Wang, 2017]
There is no finite (even if unbounded) protocol for finding an 
equitable allocation.
➢ Non-existence of bounded protocols follows from the previous result. 

➢ But their proof works for non-existence of unbounded protocols as well. 
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Price of Fairness



Price of Fairness
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• Measures the worst-case loss in social welfare due to requirement of 
a fairness property 𝑋

• Social welfare of allocation 𝐴 is the sum of values of the agents
➢ Denoted 𝑠𝑤 𝐴 = σ𝑖∈𝑁 𝑣𝑖 𝐴𝑖

• Let ℱ denote the set of feasible allocations and ℱ𝑋 denote the set of 
feasible allocations satisfying property 𝑋

𝑃𝑜𝐹𝑋 = sup
𝑣1,…,𝑣𝑛

max
𝐴∈ℱ

𝑠𝑤(𝐴)

max
𝐴∈ℱ𝑋

𝑠𝑤(𝐴)



Price of Fairness
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• Theorem [Caragiannis et al., 2009]
For cake-cutting, the price of proportionality is Θ 𝑛 , and the price 
of equitability is Θ 𝑛 .

• Theorem [Bertsimas et al., 2011]
For cake-cutting, the price of envy-freeness is also Θ 𝑛 . This is 
achieved by an allocation maximizing the Nash welfare Π𝑖 𝑣𝑖 𝐴𝑖 .

➢ Fun fact: The price of EF in cake-cutting was mentioned as an open question in 
a previous version of this tutorial, and was also believed to be open by many 
groups of researchers until recently.
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Efficiency



Efficiency
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• Weak Pareto optimality (WPO)
➢ Allocation 𝐴 is weakly Pareto optimal if there is no allocation 𝐵 such that 

𝑣𝑖 𝐵𝑖 > 𝑣𝑖(𝐴𝑖) for all 𝑖 ∈ 𝑁.

➢ “Can’t make everyone happier”

• Pareto optimality (PO)
➢ Allocation 𝐴 is Pareto optimal if there is no allocation 𝐵 such that 𝑣𝑖 𝐵𝑖 ≥

𝑣𝑖 𝐴𝑖 for all agents 𝑖 ∈ 𝑁, and at least one inequality is strict.

➢ “Can’t make someone happier without making someone else less happy”

➢ Easy to achieve in isolation (e.g. “serial dictatorship”)



PO+EF+EQ: (Non-)Existence
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• Theorem [Barbanel and Brams, 2011]
With two agents, there always exists 
an allocation that is envy-free (thus 
proportional), equitable, and Pareto 
optimal.
➢ Their algorithm has similarities to the more 

popular “adjusted winner” algorithm, 
which we will see later in the tutorial.

• With 𝑛 ≥ 3 agents, PO+EQ is 
impossible 0 1ൗ1

2

1

2



What about PO+EF?
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• Competitive Equilibrium from Equal Incomes (CEEI)
➢ At equilibrium: there is an additive price function 𝑃 on the cake, and each 

agent gets to buy their best piece from a budget of one unit of fake currency

➢ WCE: ∀𝑖 ∈ 𝑁, 𝑍 ⊆ 0,1 : 𝑃 𝑍 ≤ 𝑃 𝐴𝑖 ⇒ 𝑣𝑖 𝑍 ≤ 𝑣𝑖(𝐴𝑖)

➢ EI: ∀𝑖 ∈ 𝑁: 𝑃 𝐴𝑖 = 1

• Theorem [Weller, 1985]
For cake-cutting, a CEEI always exists. Every CEEI is both envy-free 
and weakly Pareto optimal. 



s-CEEI
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• Strong Competitive Equilibrium from Equal Incomes (s-CEEI)
➢ A positive slice 𝑍 is a subset of the cake valued positively by at least one agent
➢ Allocation 𝐴 is called s-CEEI allocation if there exists an additive price function 

𝑃 satisfying

➢ 𝑃 𝑍 > 0 iff 𝑍 is a positive slice

➢ SCE: ∀𝑖 ∈ 𝑁, and positive slices 𝑍 ⊆ [0,1] and 𝑍𝑖 ⊆ 𝐴𝑖:
𝑣𝑖(𝑍𝑖)

𝑃(𝑍𝑖)
≥

𝑣𝑖(𝑍)

𝑃(𝑍)

➢ EI: ∀𝑖 ∈ 𝑁: 𝑃 𝐴𝑖 = 1

• Theorem [Segal-Halevi and Sziklai, 2018]
For cake-cutting, an s-CEEI allocation always exists. Every s-CEEI 
allocation is envy-free and Pareto optimal. 

Maximum bang-per-buck



s-CEEI and Nash-Optimality
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• An allocation 𝐴∗ is called Nash-optimal if

𝐴∗ ∈ arg max𝐴 Π𝑖∈𝑁 𝑣𝑖 𝐴𝑖

• Theorem [Segal-Halevi and Sziklai, 2018]
For cake-cutting, the set of s-CEEI allocations is exactly the 
same as the set of Nash-optimal allocations.



Nash-Optimality Example
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• Due to PO, suppose: 
➢ Agent 1 gets 𝑥 fraction of [0, Τ2

3]

➢ Agent 2 gets 1 − 𝑥 fraction of [0, Τ2
3] and 

all of [ Τ2
3 , 1]

➢ 𝑣1 𝐴1 = 𝑥

➢ 𝑣2 𝐴2 = 1 − x ⋅ Τ2
3 + Τ1

3 = ൗ(3−2x)
3

• Maximize 𝑥 ⋅ ൗ(3−2x)
3 ⇒ 𝑥 = Τ3

4

➢ Nash-optimal allocation: 
o 𝐴1 = 0, Τ1

2 , 𝑣1 𝐴1 = Τ3
4

o 𝐴2 = Τ1
2 , 1 , 𝑣2 𝐴2 = Τ1

2

0 ൗ1
3

1ൗ2
3

1

1.5

𝑥 ∶ 1 − 𝑥

Allocated 
to agent 1

Allocated 
to agent 2



Nash-Optimality = s-CEEI
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• Still must be PO, so like before
➢ Agent 1 buys 𝑥 fraction of [0, Τ2

3]

➢ Agent 2 buys 1 − 𝑥 fraction of [0, Τ2
3] and 

all of [ Τ2
3 , 1]

• Prices: 𝑃 0, Τ2
3 = 𝑎, 𝑃 Τ2

3 , 1 = 𝑏
➢ Spending: 𝑎 ⋅ 𝑥 = 1, 𝑎 ⋅ 1 − 𝑥 + 𝑏 = 1
o Hence, 𝑎 + 𝑏 = 2

• Two cases: 𝑥 < 1 or 𝑥 = 1
0 ൗ1

3
1ൗ2

3

1

1.5

Allocated 
to agent 1

Allocated 
to agent 2

𝑥 ∶ 1 − 𝑥

Price = 𝑎 Price = 𝑏



Nash-Optimality = s-CEEI
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• 𝑥 < 1
➢ Agent 2 buys parts of both pieces

➢ MBB:

ൗ1
3

𝑏
=

ൗ2
3

𝑎
⇒ 𝑎 = 2𝑏 ⇒ 𝑎, 𝑏 = ൗ4

3 , ൗ2
3

➢ Substituting in 𝑎 ⋅ 𝑥 = 1, we get 𝑥 = Τ3
4

o Same as Nash-optimal solution

0 ൗ1
3

1ൗ2
3

1

1.5

𝑥 ∶ 1 − 𝑥

Allocated 
to agent 1

Allocated 
to agent 2

Price = 𝑎 Price = 𝑏



Nash-Optimality = s-CEEI
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• 𝑥 = 1
➢ Since 𝑎 ⋅ 𝑥 = 1, 𝑎 ⋅ 1 − 𝑥 + 𝑏 = 1, we get 

that 𝑎 = 𝑏 = 1

➢ Agent 2 buys the second piece, so by MBB:

ൗ1
3

𝑏
≥

ൗ2
3

𝑎
⇒ 𝑎 ≥ 2𝑏

➢ Contradiction!

➢ So there is no s-CEEI with 𝑥 = 1
0 ൗ1

3
1ൗ2

3

1

1.5

𝑥 ∶ 1 − 𝑥

Allocated 
to agent 1

Allocated 
to agent 2

Price = 𝑎 Price = 𝑏
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Strategyproofness



Strategyproofness (SP)
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• Direct-revelation mechanisms
➢ A direct-revelation mechanism ℎ takes as input all the valuation functions 

𝑣1, … , 𝑣𝑛, and returns an allocation 𝐴

➢ Notation: ℎ 𝑣1, … , 𝑣𝑛 = 𝐴, ℎ𝑖 𝑣1, … , 𝑣𝑛 = 𝐴𝑖

• Strategyproofness (deterministic mechanisms)
➢ A direct-revelation mechanism ℎ is called strategyproof if 

∀𝑣1, … , 𝑣𝑛, ∀𝑖, ∀𝑣𝑖
′ ∶ 𝑣𝑖 ℎ𝑖 𝑣1, … , 𝑣𝑛 ≥ 𝑣𝑖(ℎ𝑖 𝑣1, … , 𝑣𝑖

′, … , 𝑣𝑛 )

➢ That is, no agent 𝑖 can achieve a higher value by misreporting her valuation, 
regardless of what the other agents report



Strategyproofness (SP)
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• Strategyproofness (randomized mechanisms)
➢ Technically, referred to as “truthfulness-in-expectation”
o When referring to SP for randomized mechanisms, we will refer to this concept

➢ A randomized direct-revelation mechanism ℎ is called strategyproof if 

∀𝑣1, … , 𝑣𝑛, ∀𝑖, ∀𝑣𝑖
′ ∶ 𝐸 𝑣𝑖 ℎ𝑖 𝑣1, … , 𝑣𝑛 ≥ 𝐸 𝑣𝑖 ℎ𝑖 𝑣1, … , 𝑣𝑖

′, … , 𝑣𝑛

➢ That is, no agent 𝑖 can achieve a higher expected value by misreporting her 
valuation, regardless of what the other agents report
o Expectation is over the randomness of the mechanism



Deterministic SP Mechanisms
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• Theorem [Menon and Larson ’17, Bei et al. ‘17]
No non-wasteful deterministic SP mechanism is (even approximately) 
proportional.
➢ Since EF is at least as strict as Prop, SP+EF is also impossible subject to non-

wastefulness.

➢ Non-wastefulness can be replaced by a requirement of “connected pieces”, 
and the impossibility result still holds. 

Open Problem
Does the SP+Prop impossibility hold 

even without the non-wastefulness assumption?



Deterministic SP Mechanisms
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• SP+PO is easy to achieve 
➢ E.g. serial dictatorship

• SP+PO+EQ is impossible
➢ We saw that even EQ+PO allocations may not exist

Open Problem
Does there exist a direct revelation, deterministic SP+EQ mechanism?



Randomized SP Mechanisms

AAAI 2020 Tutorial on Recent Advances in Fair Resource Allocation – Rupert Freeman and Nisarg Shah 48

• We want the mechanism always return an allocation satisfying a 
subset of {EQ,EF,PO}, and be SP in expected utilities

• Recall: PO+EQ allocations may not exist
➢ Hence, we can only hope for SP+PO+EF or SP+EF+EQ

➢ The first is an open problem, but the second combination is achievable!

Open Problem
Does there exist a randomized SP mechanism which always 

returns a PO+EF allocation?



Randomized SP Mechanisms
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• Theorem [Mossel and Tamuz, 2010; Chen et al. 2013] 
There is a randomized SP mechanism that always returns an EF+EQ 
allocation.
➢ Recall: In a perfect partition 𝐵, 𝑣𝑖 𝐵𝑘 = Τ1

𝑛 for all 𝑖, 𝑘 ∈ 𝑁

➢ Algorithm: Compute a perfect partition and return allocation 𝐴 which 
randomly assigns the 𝑛 pieces to the 𝑛 agents

➢ SP: Regardless of what the agents report, agent 𝑖 receives each piece of the 
cake with probability 1/𝑛, and thus has expected value exactly 1/𝑛

➢ EF: Assuming agents report truthfully (due to SP), agent 𝑖 always receives a 
cake she values at 1/𝑛, and according to her, so do others.



Existential Summary
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SP+PO+EF+EQ

Rand

SP+PO+EF

Det

Rand

SP+PO+EQ

Rand

Rand

SP+EF+EQ

Det Rand

PO+EF+EQ

Det

SP+PO

Rand

SP+EF

Det

Rand

SP+EQ

Det

PO+EF

Det

EF+EQ

DetRand

PO+EQ

= Impossibility
= Possibility
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Special Cases



Piecewise Constant/Uniform Valuations
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0 1

Piecewise constant 
density function

Piecewise uniform 
density function

0 1

Special case of piecewise constant



Possibilities
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• Theorem [Chen et al., 2013]
For piecewise uniform valuations, there exists a deterministic SP 
mechanism which returns an EF+PO allocation.
➢ Recall that for general valuations, even deterministic SP+EF is impossible.

• Theorem [Aziz and Ye, 2014]
For piecewise constant valuations, an s-CEEI (i.e. Nash-optimal) 
allocation can be computed in polynomial time.
➢ Recall that this is EF (thus Prop) and PO.

➢ But this is not SP.



EF in Robertson-Webb
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• Theorem [Kurokawa et al., 2013]
If an algorithm computes an envy-free allocation for 𝑛 agents with 
piecewise uniform valuations with at most 𝑔(𝑛) queries, then it can 
also compute an envy-free allocation for 𝑛 agents with general 
valuations with at most 𝑔(𝑛) queries. 

➢ Let the same algorithm interact with general valuations 𝑣1, … , 𝑣𝑛 via CUT and 
EVAL queries and return an allocation 𝐴

➢ The proof constructs piecewise uniform valuations 𝑢1, … , 𝑢𝑛 which would have 
resulted in the same responses and 𝑢𝑖 𝐴𝑗 = 𝑣𝑖 𝐴𝑗 for all 𝑖, 𝑗 ∈ 𝑁



PO in Robertson-Webb

AAAI 2020 Tutorial on Recent Advances in Fair Resource Allocation – Rupert Freeman and Nisarg Shah 55

• Non-wastefulness
➢ An allocation 𝐴 is called non-wasteful if no piece of the cake that is valued 

positively by at least one agent is assigned to an agent who has zero value for it

➢ PO implies non-wastefulness

• Theorem [Ianovski, 2012; Kurokawa et al., 2013] 
No finite protocol in the Robertson-Webb model can always produce 
a non-wasteful allocation, even for piecewise uniform valuations.

• This is the reason we did not provide query complexity results when 
discussing PO
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Burnt Cake Division



Model
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• Same as regular cake, except agents now 
have non-positive valuation for every 
piece of the cake
➢ 𝑓𝑖 𝑥 ≤ 0, ∀𝑥 ∈ [0,1]

➢ Hence, 𝑣𝑖 𝑋 ≤ 0, ∀𝑋 ∈ 𝒜

• Equitability and perfect partitions carry 
over from the goods case
➢ Simply use −𝑓𝑖 and −𝑣𝑖



Dividing a Burnt Cake
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• Theorem [Peterson and Su, 2009]
For burnt cake division, there exists a finite (but unbounded) protocol 
for finding an envy-free allocation with 𝑛 agents.
➢ Builds upon the Brams-Taylor protocol for dividing a good cake

➢ But certain operations require non-trivial transformations to the world of 
chores

Open Problem
Is there a bounded envy-free protocol for burnt cake division?



(Homogeneous) 
Divisible Goods
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Model
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• Agents: 𝑁 = {1, 2, … , 𝑛}

• Resource: Set of divisible goods 𝑀 = 𝑔1, 𝑔2, … , 𝑔𝑚

• Allocation 𝐴 = 𝐴1, … , 𝐴𝑛

➢ 𝐴𝑖 = 𝐴𝑖,𝑗 𝑗∈[𝑚]

➢ ∀𝑖, 𝑗: 𝐴𝑖,𝑗∈ [0,1]

➢ ∀𝑗: σ𝑖 𝐴𝑖,𝑗 ≤ 1

• Assume additive valuations 𝑣𝑖 𝐴𝑖 = σ𝑗 𝐴𝑖,𝑗𝑣𝑖(𝑔𝑗)

• Special case of cake cutting (up to normalization)
𝑔1 𝑔3𝑔2

1

2

3



𝑛 = 2: Adjusted Winner Procedure
[Brams and Taylor 1996] 
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• Input: Normalized valuation functions

• Order the goods by ratio Τ𝑣1(𝑔) 𝑣2(𝑔).

• Divide the goods so that agent 1 receives goods 𝑔1, … , 𝑔𝑗−1, agent 2 
receives goods 𝑔𝑗+1, … , 𝑔𝑚 for some 𝑗, and 𝑣1 𝐴1 = 𝑣2 𝐴2

➢ 𝑔𝑗 is divided between the agents, if necessary

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔

𝒂𝟏 20 30 30 10 5 5

𝒂𝟐 10 15 20 15 10 30

Τ𝑣1(𝑔) 𝑣2(𝑔) high Τ𝑣1(𝑔) 𝑣2(𝑔) low

15

10



𝑛 = 2: Adjusted Winner Procedure
[Brams and Taylor 1996] 
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• Theorem [Brams and Taylor 1996]:
➢ The adjusted winner procedure is envy-free (and therefore proportional), 

equitable and Pareto optimal

• Breaks down for 𝑛 > 2
➢ As in cake cutting, EF + EQ + PO is impossible, what about two of the three?

➢ EF+EQ: Divide each good equally among agents (“perfect partition”)

➢ EQ + PO: Impossible

➢ EF + PO: Can achieve with CEEI

𝒈𝟏 𝒈𝟐

𝒂𝟏 1 0

𝒂𝟐 1 0

𝒂𝟑 0 1



CEEI
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• With a fixed set of items, the definition of s-CEEI (that we will now 
call just CEEI) becomes simpler.

• Equilibrium price 𝑝𝑗 > 0 for each good 𝑔𝑗

➢ Assume for simplicity that ∀𝑗 ∃𝑖 with 𝑣𝑖 𝑔𝑗 > 0

• CE: If 𝐴𝑖,𝑗 > 0 then 
𝑣𝑖(𝑔𝑗)

𝑝𝑗
≥

𝑣𝑖(𝑔𝑘)

𝑝𝑘
for all 𝑘

• EI: σ𝑗 𝑝𝑗𝐴𝑖,𝑗 = 1 for all 𝑖



Eisenberg-Gale convex program
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• Can compute a CEEI allocation as the solution to the Eisenberg-Gale 
[1959] convex program:

max ෍

𝑖∈𝑁

log 𝑢𝑖 𝑠. 𝑡.

∀𝑖: 𝑢𝑖 ≤ ෍

𝑔𝑗∈𝑀

𝐴𝑖,𝑗𝑣𝑖 𝑔𝑗

∀𝑗: ෍

𝑖∈𝑁

𝐴𝑖,𝑗 ≤ 1

∀𝑖, 𝑗: 𝐴𝑖,𝑗 ≥ 0

• Theorem [Orlin 2010, Végh 2012]:
➢ The Eisenberg-Gale convex program can be solved in strongly polynomial time.



Strategyproofness
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• CEEI solution is fair and efficient but not strategyproof.
➢ It is strategyproof in the large (SP-L) [Azevedo and Budish 2018] though

• Theorem [Han et al. 2011]:
➢ No strategyproof mechanism that always outputs a complete allocation can 

achieve better than a Τ1
𝑚 approximation to the optimal social welfare for large 

enough 𝑛.
o Social welfare = σ𝑖∈𝑁 𝑣𝑖(𝐴𝑖)

• Theorem [Cole et al. 2013]:
➢ There is a strategyproof partial allocation mechanism that provides every agent 

with a 1/𝑒 fraction of their CEEI utility.

➢ Allocation is envy-free but not proportional



SP + Prop + EF
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• SP + Prop + EF is trivial! Just allocate everyone an equal fraction of 
each good.
➢ What if we also want PO?

• Theorem [Schummer 1996]:
➢ It is impossible to achieve SP + Prop + PO.

➢ SP + PO: Serial dictatorship.

• SP + Prop + EF can also be achieved non-trivially [Freeman et al. 2019]
➢ Additionally achieves strict SP: agents always achieve strictly higher utility by 

reporting their beliefs truthfully than by lying.

➢ Exploits a correspondence between fair division and wagering mechanisms 
[Lambert et al. 2008] to utilize proper scoring rules (e.g. Brier score)
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Allocating Divisible Goods + Bads



Model
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• Agents: 𝑁 = {1, 2, … , 𝑛}

• Resources: Set of divisible “items” 𝑀 = 𝑜1, 𝑜2, … , 𝑜𝑚

• Allocation 𝐴 = 𝐴1, … , 𝐴𝑛

➢ 𝐴𝑖 = 𝐴𝑖,𝑗 𝑗∈[𝑚]

➢ ∀𝑖, 𝑗: 𝐴𝑖,𝑗∈ [0,1]

➢ ∀𝑗: σ𝑖 𝐴𝑖,𝑗 ≤ 1

• Assume additive valuations: 𝑣𝑖 𝐴𝑖 = σ𝑗 𝐴𝑖,𝑗𝑣𝑖(𝑜𝑗)

➢ However, 𝑣𝑖(𝑜𝑗) can be positive, zero, or negative

• We’ll refer to s-CEEI simply as CEEI in this case



Achieving EF+PO
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• Theorem [Bogomolnaia et al. 2017]
➢ There always exists a CEEI allocation, which is envy-free and Pareto optimal.

➢ The CEEI solution is “welfarist”, i.e., the set of feasible utility profiles is enough 
to identify the set of CEEI utility profiles.

➢ The CEEI utility profile is given by the following:
1. If it is possible to give a positive utility to each agent (who can receive a positive utility), 

then maximizing the Nash welfare gives the unique CEEI utility profile.

2. Else, if the all-zero utility profile is feasible and Pareto optimal, then it is the unique CEEI 
utility profile.

3. Else, there can be exponentially many CEEI utility profiles, which give non-positive utility to 
each agent.

➢ Their actual result is stronger and in a more general model



Not Covered
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• Nash equilibria of cake-cutting

• Optimal cake-cutting
➢ Algorithms for maximizing social welfare subject to fairness constraints

• Number of cuts and moving knives protocols
➢ Possibility and impossibility results for 𝑛 − 1 cuts

• Multidimensional cakes

• Randomized or strategyproof Robertson-Webb protocols

• Non-additive valuations

• …



Indivisible Goods
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Model
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• Agents: 𝑁 = {1, 2, … , 𝑛}

• Resource: Set of indivisible goods 𝑀 = 𝑔1, 𝑔2, … , 𝑔𝑚

• Allocation 𝐴 = 𝐴1, … , 𝐴𝑛 ∈ Π𝑛 𝑀′ is a partition of 𝑀′ for some 
𝑀′ ⊆ 𝑀.

• Each agent 𝑖 has a valuation 𝑣𝑖 ∶ 2𝑀 → ℝ+

➢ 𝑣𝑖 ∶ 2𝑀 → ℝ− in the case of bads, 𝑣𝑖 ∶ 2𝑀 → ℝ for both goods and bads



Valuation Functions
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• Additive: ∀𝑋, 𝑌 with 𝑋 ∩ 𝑌 = ∅: 𝑣𝑖 𝑋 ∪ 𝑌 = 𝑣𝑖 𝑋 + 𝑣𝑖 𝑌
➢ Equivalently: 𝑣𝑖 𝑋 = σ𝑔∈𝑋 𝑣𝑖(𝑔)
➢ Value for a good independent of other goods received

• Submodular: ∀𝑋, 𝑌 ∶ 𝑣𝑖 𝑋 ∪ 𝑌 + 𝑣𝑖(𝑋 ∩ 𝑌) ≤ 𝑣𝑖 𝑋 + 𝑣𝑖 𝑌
➢ Equivalently: ∀𝑋, 𝑌 with 𝑋 ⊆ 𝑌: 𝑣𝑖 𝑋 ∪ 𝑔 − 𝑣𝑖 𝑋 ≥ 𝑣𝑖 𝑌 ∪ 𝑔 − 𝑣𝑖(𝑌)

• Subadditive: ∀𝑋, 𝑌 with 𝑋 ∩ 𝑌 = ∅: 𝑣𝑖 𝑋 ∪ 𝑌 ≤ 𝑣𝑖 𝑋 + 𝑣𝑖 𝑌

• Submodular and subadditive definitions capture the idea of 
diminishing returns.

Most results for additive 
valuations unless stated 
otherwise



Need new guarantees!
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Envy-Freeness up to One Good
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Envy-Freeness up to One Good (EF1) 
[Lipton et al 2004, Budish 2011]
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• An allocation is envy-free up to one good (EF1) if, for all agents 𝑖, 𝑗, 
there exists a good 𝑔 ∈ 𝐴𝑗 for which

𝑣𝑖 𝐴𝑖 ≥ 𝑣𝑖(𝐴𝑗 ∖ 𝑔 )

• “Agent 𝑖 may envy agent 𝑗, but the envy can be eliminated by 
removing a single good from 𝑗’s bundle.”
➢ Note: We don’t consider 𝐴𝑗 = ∅ a violation of EF1.



• Fix an ordering of the agents 𝜎. 

• In round 𝑘 mod 𝑛, agent 𝜎𝑘 selects their most preferred remaining 
good.

• Theorem: Round robin satisfies EF1.

Phase 1 Phase 2

Round Robin Algorithm

Animation Credit: Ariel Procaccia
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Algorithm for Achieving EF1
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• Envy graph: Edge from 𝑖 to 𝑗 if 𝑖 envies 𝑗

• Greedy algorithm [Lipton et al. 2004]
➢ One at a time, allocate a good to an agent that no one envies

➢ While there is an envy cycle, rotate the bundles along the cycle.
o Can prove this loop terminates in a polynomial number of steps

• Removing the most recently added good from an agent’s bundle 
removes envy towards them.

• Neither this algorithm nor round robin is Pareto optimal.



EF1 with Goods and Bads [Aziz et al. 2019]
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• An allocation is envy-free up to one item (EF1) if, for all agents 𝑖, 𝑗, 
there exists an item 𝑜 ∈ 𝐴𝑖 ∪ 𝐴𝑗 for which

𝑣𝑖 𝐴𝑖 ∖ 𝑜 ≥ 𝑣𝑖(𝐴𝑗 ∖ 𝑜 )

• Round robin fails EF1

𝒐𝟏 𝒐𝟐 𝒐𝟑 𝒐𝟒

𝒂𝟏 2 1 -4 -4

𝒂𝟐 2 -3 -4 -4



Double Round Robin
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• Let 𝑂− = {𝑜 ∈ 𝑂: ∀𝑖 ∈ 𝑁, 𝑣𝑖 𝑜 ≤ 0} denote all unanimous bads and 
𝑂+ = {𝑜 ∈ 𝑂: ∃𝑖 ∈ 𝑁, 𝑣𝑖 𝑜 > 0} denote all objects that are a good 
for some agent.
➢ Suppose that |𝑂−| = 𝑎𝑛 for some 𝑎 ∈ ℕ. If not, add dummy bads with 𝑣𝑖 𝑜 =

0 for all 𝑖 ∈ 𝑁.

• Double round robin: 
➢ Phase 1: 𝑂− is allocated by round robin in order (1, 2, … , 𝑛 − 1, 𝑛)

➢ Phase 2: 𝑂+ is allocated by round robin in order (𝑛, 𝑛 − 1, … , 2, 1)

➢ Agents can choose to skip their turn in phase 2



Double Round Robin
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• Theorem [Aziz et al. 2019]:
➢ The double round robin algorithm outputs an allocation that is EF1 for 

combinations of goods and bads in polynomial time.

➢ Proof idea: Let 𝑖 < 𝑗. Agent 𝑖 can envy 𝑗 up to one item in phase 1 (but not vice 
versa), and agent 𝑗 can envy 𝑖 up to one item in phase 2 (but not vice versa)

𝒐𝟏 𝒐𝟐 𝒐𝟑 𝒐𝟒

𝒂𝟏 2 1 -4 -4

𝒂𝟐 2 -3 -4 -4

𝑂−𝑂+



Maximum Nash Welfare
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• Maximum Nash Welfare (MNW): Select the allocation that maximizes 
the geometric mean of agent utilities (more on this later).

𝐴 = arg max ෑ

𝑖

𝑣𝑖 𝐴𝑖

1/𝑛

➢ This is just Nash-optimality from earlier

• What if ς𝑖 𝑣𝑖 𝐴𝑖 = 0 for all allocations?
➢ Find an allocation that maximizes |{𝑣𝑖 𝐴𝑖 > 0}|, and subject to that 

maximizes 

ෑ

𝑖:𝑣𝑖 𝐴𝑖 >0

𝑣𝑖 𝐴𝑖

1/𝑛
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• Theorem [Caragiannis et al. 2016]: 
➢ The MNW allocation satisfies EF1 and PO.

➢ PO: A Pareto-improving allocation would have higher geometric mean of 
utilities for agents with non-zero utility or more agents with non-zero utility.

➢ EF1: Let 𝑔𝑖
∗ = arg max

𝑔∈𝐴𝑖

𝑣𝑖(𝑔). Not-too-hard proof shows 𝑣𝑗(𝐴𝑗) ≥ 𝑣𝑗(𝐴𝑖 ∖ 𝑔𝑖
∗)

for all 𝑗.

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔

𝒂𝟏 2 1 3 0 1 2

𝒂𝟐 10 1 1 1 2 5

𝒂𝟑 3 1 3 0 5 2
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• The MNW allocation is strongly NP-hard to compute (reduction from 
X3C).
➢ Actually, it’s APX-hard [Lee 2017].

• Special case: Binary valuations
➢ MNW allocation can be computed in polynomial time [Darmann and Schauer 

2015, Barman et al. 2018].

➢ However, round robin already guarantees EF1 + PO in this setting.
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• Theorem [Barman et al. 2018]: 
➢ There exists a pseudo-polynomial time algorithm for computing an allocation 

satisfying EF1 + PO

➢ Algorithm uses local search (sequence of item swaps and price rises) to 
compute an integral competitive equilibrium that is price envy-free up to one 
good.

➢ Price envy-free up to one good: ∀𝑖, 𝑘, ∃𝑗: 𝑝 𝐴𝑖 ≥ 𝑝(𝐴𝑘 ∖ 𝑔𝑗 )

➢ Need different entitlements because CEEI might not exist with indivisibilities
o Two agents, one item…
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Open Problem: 
Complexity of computing an EF1 + PO allocation

Open Problem: 
Does there always exist an EF1 + PO allocation for 

submodular valuation functions?



EF1 + PO for Bads
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• Theorem [Aziz et al. 2019]:
➢ When items can be either goods or bads and 𝑛 = 2, an EF1 + PO allocation 

always exists and can be found in polynomial time

Open Problem: 
Does an EF1 + PO allocation always exists for bads?



Proportionality up to One 
Good
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Proportionality up to One Good (Prop1)
[Conitzer et al. 2017]
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• An allocation is proportional up to one good (Prop1) if, for every 
agent 𝑖, there exists a good 𝑔 for which

𝑣𝑖 𝐴𝑖 ∪ 𝑔 ≥
𝑣𝑖 𝑀

𝑛

𝑣1 𝐴1 ∪ 𝑔2 = 4 ≥
7

2
=

𝑣𝑖(𝑀)

𝑛

𝒈𝟏 𝒈𝟐 𝒈𝟑

𝒂𝟏 1 3 3

𝒂𝟐 1 3 3
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• Any algorithm that satisfies EF1 + PO is also Prop1 + PO.
➢ MNW

➢ Barman et al. [2018] algorithm

• Theorem [Barman and Krishnamurthy 2019]: 
➢ An allocation satisfying Prop1 + PO can be computed in strongly polynomial 

time.

• Allocation is a careful rounding of the fractional CEEI allocation.
➢ In contrast, there exist instances in which no rounding of the fractional CEEI 

allocation will give EF1 [Caragiannis et al., 2016].



Envy-Freeness up to the Least 
Valued Good
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Envy-Freeness up to the Least Valued Good 
[Caragiannis et al. 2016]

AAAI 2020 Tutorial on Recent Advances in Fair Resource Allocation – Rupert Freeman and Nisarg Shah 92

• An allocation is envy-free up to the least valued good (EFX) if, for all 
agents 𝑖, 𝑗, and every 𝑔 ∈ 𝐴𝑗 with 𝑣𝑖 𝑔 > 0,

𝑣𝑖 𝐴𝑖 ≥ 𝑣𝑖 𝐴𝑗 ∖ 𝑔 .

𝒈𝟏 𝒈𝟐 𝒈𝟑

𝒂𝟏 10 5 5

𝒂𝟐 10 𝜖 𝜖
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• Leximin allocation:
➢ First, maximize the minimum utility any agent receives. Subject to this, 

maximize the second-minimum utility. Then the third-minimum utility, etc.

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔

𝒂𝟏 2 1 3 0 1 2

𝒂𝟐 10 1 1 1 2 5

𝒂𝟑 3 1 3 0 5 2
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• Theorem [Plaut and Roughgarden, 2018]: 
➢ The Leximin allocation satisfies EFX + PO for agents with (general) identical 

valuations.

• Theorem [Plaut and Roughgarden, 2018]: 
➢ The Leximin allocation satisfies EFX + PO for two agents with (normalized) 

additive valuations.

Open Problem: 
Does there always exist a complete allocation satisfying EFX?

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒

𝒂𝟏 4 1 2 2

𝒂𝟐 4 1 2 2

𝒂𝟑 4 1 2 2
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• What about partial allocations satisfying EFX?
➢ Easy! We can just throw all goods away and take the empty allocation.

• Theorem [Caragiannis et al. 2019]:
➢ There exists a partial allocation that satisfies EFX and achieves a 2-

approximation to the optimal Nash welfare.

➢ No (complete or partial) EFX allocation can achieve a better approximation.
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Existence Computation

Without PO With PO Without PO With PO

Envy-Freeness No No NP-hard NP-hard

EFX Open Open Open Open

EF1 Yes Yes Polytime Open

Prop1 Yes Yes Polytime Polytime
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Maximin Share [Budish 2011]
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• “If I partition the goods into 𝑛 bundles and receive an adversarially
chosen bundle, how much utility can I guarantee myself?”

• Define 𝑀𝑀𝑆𝑖
𝑘(𝑆) = max

(𝑃1,…,𝑃𝑘)∈Π𝑘(𝑆)
min

1≤𝑗≤𝑘
𝑣𝑖(𝑃𝑗)

• MMS allocation: One for which 𝑣𝑖 𝐴𝑖 ≥ 𝑀𝑀𝑆𝑖
𝑛(𝑀)

• Note that 𝑀𝑀𝑆𝑖
𝑛(𝑀) ≤

𝑣𝑖(𝑀)

𝑛
, so Proportionality implies MMS



Maximin Share [Budish 2011]
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𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔

𝒂𝟏 2 1 3 0 1 2

𝒂𝟐 10 1 1 1 2 5

𝒂𝟑 3 1 3 0 5 2

𝑀𝑀𝑆1
𝑛(𝑀) = min 3, 3, 3 = 3

𝑀𝑀𝑆2
𝑛(𝑀) = min 10, 5, 5 = 5

𝑀𝑀𝑆3
𝑛(𝑀) = min 4, 5, 5 = 4



Achieving Maximin Allocations
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• Theorem [Procaccia and Wang 2014]: 
➢ There exist instances for which no allocation satisfies MMS.

• Instead, consider approximations.
➢ c-MMS: allocation for which 𝑣𝑖 𝐴𝑖 ≥ 𝑐 ⋅ 𝑀𝑀𝑆𝑖

𝑛(𝑀)

➢ Guarantee 𝑣𝑖 𝐴𝑖 ≥ 𝑀𝑀𝑆𝑖
𝑘(𝑀) for some 𝑘 > 𝑛

• Theorem [Budish 2011]: 

➢ There always exists an allocation that satisfies 𝑣𝑖 𝐴𝑖 ≥ 𝑀𝑀𝑆𝑖
𝑛+1

(𝑀) for 
every agent 𝑖.



c-MMS Allocations

AAAI 2020 Tutorial on Recent Advances in Fair Resource Allocation – Rupert Freeman and Nisarg Shah 101

• Theorem [Procaccia and Wang 2014]: 
➢ A (2/3)-MMS allocation always exists.

• Theorem [Amanatidis et al. 2017]: 
➢ A (2/3-𝜖)-MMS allocation can be computed in polynomial time.

• Theorem [Ghodsi et al. 2018]: 
➢ A (3/4)-MMS allocation always exists and a (3/4-𝜖)-MMS allocation can be 

computed in polynomial time.



c-MMS Allocations
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Additive Submodular Subadditive

Lower bound 
(existence)

3

4

1

3

1

10
log 𝑚

Lower bound 
(polynomial algorithm)

3

4
− 𝜖

1

3
-

Upper bound 1−
1

𝑛𝑛+1

3

4

1

2

Open Problem: 
Close the gaps!

[Ghodsi et al. 2018]



c-MMS Allocations for Bads
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• Theorem [Aziz et al. 2017]:
➢ A 2-MMS allocation always exists and can be computed in polynomial time 

when dividing bads.

• Theorem [Barman and Krishnamurthy 2017]:
➢ A (4/3)-MMS allocation always exists and can be computed in polynomial time 

when dividing bads.



Groupwise MMS [Barman et al. 2018]
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• Idea: 𝑀𝑀𝑆𝑖
𝑘 should be guaranteed for all groups 𝐽 of agents of size 𝑘

and set of goods ∪𝑖∈𝐽 𝐴𝑖

• 𝑣3 𝐴3 ≥ 𝑀𝑀𝑆3
3(𝑀) but 𝑣3 𝐴3 < 𝑀𝑀𝑆3

2(𝐴1 ∪ 𝐴3)

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔

𝒂𝟏 5 5 5 + 𝜖 5 − 𝜖 5 + 𝜖 5 − 𝜖

𝒂𝟐 5 5 5 + 𝜖 5 − 𝜖 5 + 𝜖 5 − 𝜖

𝒂𝟑 10 10 0 0 𝜖 𝜖



Groupwise MMS [Barman et al. 2018]
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• Allocation 𝐴 satisfies Groupwise Maximin Share (GMMS) if,

∀𝑖: 𝑣𝑖 𝐴𝑖 ≥ max
𝐽⊆𝑁

𝑀𝑀𝑆𝑖
𝐽

(∪𝑗∈𝐽 𝐴𝑗)

• Theorem [Barman et al. 2018]:
➢ When valuations are additive, a 0.5-GMMS allocation exists and can be found 

in polynomial time.

➢ Algorithm: Select an agent who is not envied by any other agent, and allocate 
her her most preferred unallocated good.

➢ Small refinement of EF1 algorithm from earlier



(Relaxed) Equitability
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Equitability
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• Recall equitability:
∀𝑖, 𝑗 ∈ 𝑁: 𝑣𝑖 𝐴𝑖 ≥ 𝑣𝑗(𝐴𝑗)

• We can relax it in the same way we did for envy-freeness [Gourves et 
al. 2014, Freeman et al. 2019].

• Equitability up to one good (EQ1):

∀𝑖, 𝑗 ∈ 𝑁, ∃𝑔 ∈ 𝐴𝑗: 𝑣𝑖 𝐴𝑖 ≥ 𝑣𝑗(𝐴𝑗 ∖ {𝑔})

• Equitability up to any good (EQX):

∀𝑖, 𝑗 ∈ 𝑁, ∀𝑔 ∈ 𝐴𝑗: 𝑣𝑖 𝐴𝑖 ≥ 𝑣𝑗(𝐴𝑗 ∖ {𝑔})



Algorithm for Achieving EQX
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• Greedy Algorithm [Gourves et al. 2014]:
➢ Allocate to the lowest-utility agent the unallocated good that she values the 

most.

• Almost the same as EF1 algorithm, but achieves EQX!
➢ Compare to EFX, existence still unknown



EQ1/EQX + PO
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• Theorem [Freeman et al. 2019]:
➢ An allocation satisfying EQ1 and PO may not exist.

➢ Compare to EF1 + PO always exists

• Theorem [Freeman et al. 2019]:
➢ When valuations are strictly positive, the Leximin allocation is EQX + PO

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔

𝒂𝟏 1 1 1 0 0 0

𝒂𝟐 0 0 0 1 1 1

𝒂𝟑 0 0 0 1 1 1
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Beyond Individual Fairness
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Agents

Allocation 𝐴

Allocation B

𝑆 𝑇

Envy-Free up to One Good (EF1)



Group Fairness
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• An allocation A is group fair if for every non-empty 𝑆, 𝑇 ⊆ 𝑁 and 

every partition (𝐵𝑖)𝑖∈𝑆 of ∪𝑗∈𝑇 𝐴𝑗, 
𝑆

𝑇
⋅ (𝑣𝑖 𝐵𝑖 )𝑖∈𝑆 does not Pareto 

dominate (𝑣𝑖 𝐴𝑖 )𝑖∈𝑆

• “It should not be possible to redistribute the goods allocated to 
group T amongst group S in such a way that every member of group S 
is (weakly, with at least one strictly) better off, with utilities adjusted 
for group sizes”

• Group Fairness ⇒ EF + PO



Group Fairness Relaxations
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• Group Fairness up to One Good, After (GF1A) [Conitzer et al. 2019]
➢ “It should not be possible to redistribute the goods allocated to group T 

amongst group S in such a way that every member of group S is (weakly, with 
at least one strictly) better off, even when one good is removed from each 
agent in S, with utilities adjusted for group sizes”

Partition B

Agents

Allocation 𝐴

𝑆 𝑇



Group Fairness Relaxations
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• Group Fairness up to One Good, Before (GF1B) [Conitzer et al. 2019]
➢ “It should not be possible to redistribute the goods allocated to group T, with 

one good per agent in T removed, amongst group S in such a way that every 
member of group S is (weakly, with at least one strictly) better off,  with 
utilities adjusted for group sizes”

Partition B

Agents

Allocation 𝐴

𝑆 𝑇
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• Group Fairness up to One Good, Before (GF1B) [Conitzer et al. 2019]
➢ “It should not be possible to redistribute the goods allocated to group T, with 

one good per agent in T removed, amongst group S in such a way that every 
member of group S is (weakly, with at least one strictly) better off,  with 
utilities adjusted for group sizes”

Partition B

Agents

Allocation 𝐴

𝑆 𝑇
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• Locally Nash-optimal allocation: Product of utilities cannot be improved 
by moving a single good.
∀𝑖, 𝑗, 𝑔 ∈ 𝐴𝑗: 𝑣𝑗 𝑔 > 0 and 𝑣𝑖 𝐴𝑖 ⋅ 𝑣𝑗 𝐴𝑗 ≥ 𝑣𝑖 𝐴𝑖 + 𝑔 ⋅ 𝑣𝑗(𝐴𝑗 − 𝑔)

• Theorem [Conitzer et al. 2019]:
➢ Any locally Nash-optimal allocation satisfies GF1A and GF1B.

➢ Can be computed in pseudo-polynomial time by local search

➢ When valuations are identical, an allocation is locally Nash-optimal iff it is EFX/EQX.

Open Problem: 
Can we compute a locally Nash-optimal allocation in polynomial time?



Known Groups
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• When we want to provide guarantees for all subsets of agents, “up to 
one good per agent” guarantees are the best we can give.

Agents

Allocation 𝐴

𝑆 𝑇

Open Problem: 
Can we give stronger guarantees when 𝑆 and 𝑇 are fixed in advance?



Nash Welfare Approximation
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Nash Welfare Approximation
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• We have seen that MNW satisfies several nice properties.
➢ GF1A/B (⇒ EF1) + PO

➢ Scale-free

➢ Natural fairness/efficiency tradeoff

• But NP-hard to optimize. Can we approximate?

• Theorem [Lee 2017]
➢ Computing an allocation that maximizes the geometric mean of agent utilities 

under additive valuation functions is APX-hard.

➢ Approximating to within a factor of 1.00008 is NP-hard.



Nash Welfare Approximation
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• Theorem [Cole and Gkatzelis 2015, Cole et al 2017]:
➢ There exists a polynomial time algorithm that approximates the MNW 

objective to within a constant multiplicative factor of 2.

• Theorem [Barman et al. 2018]:
➢ There exists a polynomial time algorithm that approximates the MNW 

objective to within a constant multiplicative factor of 1.45. 

Open Problem: 
Close the gap between the 1.00008 lower bound and 1.45 upper bound.



Nash Welfare Approximation
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• Approximate MNW solutions may not retain the nice properties of 
the exact solution.

• Theorem [Garg and McGlaughlin 2019]:
➢ There exists a polynomial time algorithm that approximates the MNW 

objective to within a constant multiplicative factor of 2 and achieves Prop1, 
(1/2n)-MMS and PO.

• And recall, there exists a partial allocation that satisfies EFX and is a 
2-approximation to MNW objective [Caragiannis et al 2019].



Price of Fairness
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Price of Fairness
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• What effect does requiring a fairness property have on the social 
welfare?

• Price of Fairness [Bertsimas et al. 2011, Caragiannis et al. 2012]: 
➢ The price of fairness of fairness property P is defined as the ratio of the 

maximum possible social welfare and the maximum social welfare of an 
allocation that satisfies P.

• Strong Price of Fairness [Bei et al. 2019]: 
➢ The strong price of fairness of fairness property P is defined as the ratio of the 

maximum possible social welfare and the minimum social welfare of an 
allocation that satisfies P.

• Cf. Price of Stability and Price of Anarchy



Price of Fairness
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• Theorem [Caragiannis et al. 2012]:
➢ The price of fairness for proportionality, envy-freeness and equitability are:

• Caragiannis et al. also studied divisible items, and bads.

Indivisible Goods Cake Cutting

Proportionality Θ(𝑛) Θ( 𝑛)

Envy-freeness Θ(𝑛) Θ( 𝑛)

Equitability ∞ Θ 𝑛



Price of Fairness
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• Theorem [Bei et al. 2019]:
➢ Bounds on the (strong) price of fairness for indivisible goods

Price of P Strong Price of P

EF1 LB: Ω 𝑛 , UB: 𝑂(𝑛) ∞

Round Robin 𝑛 𝑛2

Max Nash Welfare Θ(𝑛) Θ(𝑛)

Leximin Θ(𝑛) Θ(𝑛)

Pareto optimality 1 Θ(𝑛2)

Open Problem: Close the gap for EF1



Strategyproofness
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Adding Strategyproofness
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• None of the rules we have considered so far are strategyproof

• For divisible goods, structure of strategyproof mechanisms is fairly 
rich
➢ Impossibilities from the divisible realm carry over

• What about indivisible goods?

𝒈𝟏 𝒈𝟐 𝒈𝟑

𝒂𝟏 1 𝑥 0

𝒂𝟐 0 𝑦 1



Picking-Exchange Mechanisms
[Amanatidis et al. 2017]
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• Picking Mechanism:
➢ Partition 𝑀 = 𝑁1 ∪ 𝑁2

➢ Agent 1 receives a subset of offers 𝑂1 ⊆ 2𝑁1. Let 𝑆1 = arg max
𝑆∈𝑂1

𝑣1(𝑆).

➢ Agent 2 receives a subset of offers 𝑂2 ⊆ 2𝑁2 . Let 𝑆2 = arg max𝑆∈𝑂2
𝑣2(𝑆).

➢ 𝐴1 = 𝑆1 ∪ (𝑁2 ∖ 𝑆2) and 𝐴2 = 𝑆2 ∪ (𝑁1 ∖ 𝑆1)

• 𝑁1 = 𝑔1, 𝑔2, 𝑔3, 𝑔4 , 𝑁2 = 𝑔5, 𝑔6

• 𝑂1 = 𝑔1, 𝑔2 , 𝑔2, 𝑔3 , 𝑔4 , 𝑂2 = { 𝑔5 , 𝑔6 }

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔

𝒂𝟏 3 5 5 10 4 2

𝒂𝟐 2 3 6 1 5 3



Picking-Exchange Mechanisms
[Amanatidis et al. 2017]
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• Exchange Mechanism:
➢ Partition 𝑀 = 𝐸1 ∪ 𝐸2

➢ Set of exchange deals D = { 𝑆1, 𝑇1 , … , 𝑆𝑘 , 𝑇𝑘 }, where each 𝑆, 𝑇 ⊆ (𝐸1, 𝐸2)

➢ Agent 𝑖 receives allocation 𝐸𝑖 by default, with exchanges performed if they are 
mutually beneficial

• 𝐸1 = 𝑔1, 𝑔2, 𝑔3 , 𝐸2 = 𝑔4, 𝑔5

• 𝐷 = ( 𝑔2, 𝑔3 , 𝑔4 )

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓

𝒂𝟏 6 2 3 7 1

𝒂𝟐 1 6 1 4 7
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• Picking-Exchange Mechanism: Run a picking mechanism on 𝑁1 ∪
𝑁2 ⊆ 𝑀 and an exchange mechanism on 𝐸1 ∪ 𝐸2 ⊆ 𝑀, where 𝑁1 ∪
𝑁2 ∪ 𝐸1 ∪ 𝐸2 = 𝑀 and 𝑁1, 𝑁2, 𝐸1, 𝐸2 are pairwise disjoint.
➢ Up to tiebreaking technicalities… 
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• Theorem [Amanatidis et al. 2017]:
➢ For 𝑛 = 2 an allocation mechanism that allocates all goods is strategyproof if 

and only if it is a picking-exchange mechanism

• Corollary [Amanatidis et al. 2017]:
➢ For 𝑛 = 2, any strategyproof mechanism that allocates all goods does not 

achieve any positive approximation of the minimum envy or best 
proportionality guarantee.

➢ For 𝑛 = 2 and 𝑚 ≥ 5, no strategyproof mechanism can allocate all items and 
satisfy EF1.

➢ For 𝑛 = 2, no strategyproof mechanism guarantees better than 
1

𝑚/2
-MMS.

o This is a tight bound [Amanatidis et al. 2016]
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Open Problem: 
What is the structure of strategyproof mechanisms for 𝑛 > 2? 

Open Problem: 
What is the structure of strategyproof mechanisms for 𝑛 = 2 when not 

all goods have to be allocated? 
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• Envy-freeness up to one less-preferred item (EFL) [Barman et al. 
2018]
➢ Stronger than EF1 and guaranteed to exist

➢ Existence of EFL + PO allocations is an open question

• Various constraints and additional features
➢ Agent social network structure

➢ Connectivity constraints when items lie on a graph

• Asymptotic results

• …
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• Instead of valuation functions, take in preference orderings ≽𝑖 over 
items
➢ E.g. 𝑔2 ≽𝑖 𝑔3 ≽𝑖 𝑔1 ≽𝑖 𝑔4

• Agents are assigned fractions of each item
➢ 𝐴 = 𝐴𝑖,𝑗 𝑖∈ 𝑛 ,𝑗∈[𝑚]

➢ Can be interpreted as lotteries over integral allocations
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• Partial preferences over bundles defined via stochastic dominance 
extension

𝐴 ≽𝑖
𝑆𝐷 𝐵 iff ∀𝑘: σ𝑗≽𝑖𝑘 𝐴𝑖,𝑗 ≥ σ𝑗≽𝑖𝑘 𝐵𝑖,𝑗

• Many other extensions possible
➢ Upper/downward lexicographic [Cho 2012]
➢ Pairwise comparison [Aziz et al. 2014]
➢ Bilinear dominance [Aziz et al. 2014]

• Can also elicit ordinal information over subsets directly [Bouveret et 
al. 2010]
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• Random Priority
➢ Select a random ordering of the agents. Agents select their favorite 𝑚/𝑛 goods 

in order.

• Probabilistic Serial [Bogomolnaia and Moulin 2001]
➢ Agents “eat” at a constant (equal) rate. At any time, agents eat their most 

preferred good that is not completely consumed.

• ≽1: 𝑔1 ≽1 𝑔2 ≽1 𝑔3 ≽1 𝑔4 ≽2: 𝑔2 ≽2 𝑔3 ≽2 𝑔1 ≽2 𝑔4

𝑔1 𝑔2 𝑔3 𝑔4

𝑎1 1 1/2 0 1/2

𝑎2 0 1/2 1 1/2

𝑔1 𝑔2 𝑔3 𝑔4

𝑎1 1 0 1/2 1/2

𝑎2 0 1 1/2 1/2

Random Priority Probabilistic Serial



SD-efficiency

AAAI 2020 Tutorial on Recent Advances in Fair Resource Allocation – Rupert Freeman and Nisarg Shah 138

• SD-efficiency: There should not exist an alternative allocation that all 
agents weakly prefer and some agent strictly prefers.

• Theorem [Bogomolnaia and Moulin 2001]:
➢ Probabilistic Serial satisfies SD-efficiency

• Random Priority is not SD-efficient
➢ ≽1: 𝑔1 ≽1 𝑔2 ≽1 𝑔3 ≽1 𝑔4 ≽2: 𝑔2 ≽2 𝑔1 ≽2 𝑔4 ≽2 𝑔3

𝑔1 𝑔2 𝑔3 𝑔4

𝑎1 1/2 1/2 1/2 1/2

𝑎2 1/2 1/2 1/2 1/2
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• SD-strategyproofness: No agent should be able to improve their 
allocation by misreporting their preferences.

• Theorem:
➢ Random Priority is SD-strategyproof.

• Probabilistic Serial is not SD-strategyproof
➢ ≽1: 𝑔1 ≽1 𝑔2 ≽1 𝑔3 ≽1 𝑔4 ≽2: 𝑔2 ≽2 𝑔3 ≽2 𝑔1 ≽2 𝑔4

𝑔1 𝑔2 𝑔3 𝑔4

𝑎1 1 0 1/2 1/2

𝑎2 0 1 1/2 1/2

𝑔2 ≽1 𝑔1

𝑔1 𝑔2 𝑔3 𝑔4

𝑎1 1 1/2 0 1/2

𝑎2 0 1/2 1 1/2
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• Theorem [Bogomolnaia and Moulin 2001]:
➢ No mechanism satisfies SD-efficiency, SD-strategyproofness, and equal 

treatment of equals

• We can get SD-efficiency + SD-envy-freeness
➢ SD-envy-freeness: ∀𝑖, 𝑗: σ𝑗=1

𝑚 𝐴𝑖,𝑗𝑔𝑗 ≽𝑖
𝑆𝐷 σ𝑗=1

𝑚 𝐵𝑖,𝑗𝑔𝑗

➢ Probabilistic Serial is SD-envyfree
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• Set of agents 𝑁

• Set of issues 𝑇

• Each issue has associated set of alternatives 𝐶𝑡 = {𝑐1
𝑡 , … , 𝑐𝑘𝑡

𝑡 }

• Agents have utility functions 𝑢𝑖
𝑡: 𝐴𝑡 → ℝ+

Issue 1 Issue 2

…

Issue T

𝒄𝟏
𝟏 𝒄𝟐

𝟏 𝒄𝟑
𝟏 𝒄𝟏

𝟐 𝒄𝟐
𝟐 𝒄𝟑

𝟐 𝒄𝟏
𝑻 𝒄𝟐

𝑻 𝒄𝟑
𝑻

𝒂𝟏 3 1 0 2 5 1 6 5 5

𝒂𝟐 2 2 1 3 4 1 2 4 3

𝒂𝟑 0 0 4 4 3 2 5 4 5
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• Set of agents 𝑁

• Set of issues 𝑇

• Each issue has associated set of alternatives 𝐶𝑡 = {𝑐1
𝑡 , … , 𝑐𝑘𝑡

𝑡 }

• Agents have utility functions 𝑢𝑖
𝑡: 𝐴𝑡 → ℝ+

Monday Tuesday

…

Sunday

𝒂𝟏 3 1 0 2 5 1 6 5 5

𝒂𝟐 2 2 1 3 4 1 2 4 3

𝒂𝟑 0 0 4 4 3 2 5 4 5
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• Define the set of issues 𝑇 = 𝑀 = 𝑔1, … , 𝑔𝑚

• Alternatives 𝐶𝑡 = 𝑁 = {𝑎1, … , 𝑎𝑛}

• 𝑢𝑖
𝑡 𝑎𝑗 = ቊ

𝑣𝑖 𝑔𝑡 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

𝒈𝟏 𝒈𝟐 𝒈𝟑

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟏 𝒂𝟐 𝒂𝟑

𝒂𝟏 5 0 0 2 0 0 3 0 0

𝒂𝟐 0 0 0 0 3 0 0 1 0

𝒂𝟑 0 0 2 0 0 3 0 0 4

𝒈𝟏 𝒈𝟐 𝒈𝟑

𝒂𝟏 5 2 3

𝒂𝟐 0 3 1

𝒂𝟑 2 3 4
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• Envy-freeness (and relaxations) not sensible in the general case
➢ Decisions are public, all agents receive the same outcome

• Proportionality is still sensible
➢ Each agent should receive their “dictator utility” multiplied by 1/𝑛

• Proportionality up to one issue (Prop1)
➢ Each agent would receive their proportional share if they were allowed to 

change the outcome on a single issue

• Theorem [Conitzer et al. 2017]:
➢ The MNW outcome satisfies Prop1 + PO in the public decisions setting

• Other fairness desiderata ((approximate) core, round robin share,…)
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Issue 1 Issue 2

𝒄𝟏
𝟏 𝒄𝟐

𝟏 𝒄𝟑
𝟏 𝒄𝟏

𝟐 𝒄𝟐
𝟐 𝒄𝟑

𝟐

𝒂𝟏 3 1 0 2 5 1

𝒂𝟐 2 2 1 3 4 1

𝒂𝟑 0 0 4 4 3 2

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔

𝒂𝟏 3 1 0 2 5 1

𝒂𝟐 2 2 1 3 4 1

𝒂𝟑 0 0 4 4 3 2

• Generalizes public decisions

• A set of public goods {𝑔1, … , 𝑔𝑚}
➢ Each good can give a positive utility to multiple agents simultaneously

• Constraints on which subsets of public goods are feasible
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Issue 1 Issue 2

𝒄𝟏
𝟏 𝒄𝟐

𝟏 𝒄𝟑
𝟏 𝒄𝟏

𝟐 𝒄𝟐
𝟐 𝒄𝟑

𝟐

𝒂𝟏 3 1 0 2 5 1

𝒂𝟐 2 2 1 3 4 1

𝒂𝟑 0 0 4 4 3 2

𝒈𝟏 𝒈𝟐 𝒈𝟑 𝒈𝟒 𝒈𝟓 𝒈𝟔

𝒂𝟏 3 1 0 2 5 1

𝒂𝟐 2 2 1 3 4 1

𝒂𝟑 0 0 4 4 3 2

• Public decision example:
➢ Exactly one of {𝑔1, 𝑔2, 𝑔3} and exactly one of {𝑔4, 𝑔5, 𝑔6} must be chosen

➢ Partition matroid constraint
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• (𝛿, 𝛼)-Core
➢ An allocation of public goods 𝐶 is in (𝛿, 𝛼)-core if for every subset of agents 

𝑆 ⊆ 𝑁, there is no feasible allocation of public goods 𝐶′ such that 
𝑆

𝑛
⋅ 𝑢𝑖 𝐶′ ≥ 1 + 𝛿 ⋅ 𝑢𝑖 𝐶 + 𝛼

for all 𝑖 ∈ 𝑆, and at least one inequality is strict.

• Valuations are normalized so that max
𝑗

𝑢𝑖 𝑔𝑗 = 1

• Core (i.e. (0,0)-core) generalizes proportionality 
➢ (0,1)-core generalizes a guarantee very similar to Prop1
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• Matroid constraints
➢ Public goods are ground set elements

➢ Feasible allocations are basis of a matroid

➢ Generalizes public decisions (thus goods allocation) and multiwinner voting

• Theorem [Fain et al. 2018]
➢ For matroid constraints, a (0,2)-core allocation exists, and for constant 𝜖 > 0, 

a (0,2 + 𝜖)-core allocation can be computed in polynomial time.

➢ Algorithm: Maximize smooth Nash welfare ς𝑖∈𝑁 1 + 𝑢𝑖 𝐶

➢ For 𝜖 > 0, (0,1 − 𝜖)-core allocations may not exist.

Open Problem: Does there always exist a (0,1)-core allocation?
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• Theorem [Fain et al. 2018]
➢ For “matching  constraints” and constant 𝛿 ∈ (0,1], a (𝛿, 8 + 6/𝛿)-core 

allocation can be computed in polynomial time.

➢ Algorithm: Maximize a slightly different smooth NW ς𝑖∈𝑁 1 + 4/𝛿 + 𝑢𝑖 𝐶

➢ For 𝛿 > 0 and 𝛼 < 1, a (𝛿, 𝛼)-core allocation may not exist.

➢ Open problem: Does there always exist a (0,1)-core allocation?

• A slightly worse guarantee with logarithmically large 𝛼 in case of 
“packing constraints”
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