
Polymorphism and Genome Assembly

by

Nilgün Dönmez

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2012 by Nilgün Dönmez

Abstract

Polymorphism and Genome Assembly

Nilgün Dönmez

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2012

When Darwin introduced natural selection in 1859 as a key mechanism of evolution,

little was known about the underlying cause of variation within a species. Today we know

that this variation is caused by the acquired genomic differences between individuals.

Polymorphism, defined as the existence of multiple alleles or forms at a genomic locus,

is the technical term used for such genetic variations.

Polymorphism, along with reproduction and inheritance of genetic traits, is a neces-

sary condition for natural selection and is crucial in understanding how species evolve

and adapt. Many questions regarding polymorphism, such as why certain species are

more polymorphic than others or how different organisms tend to favor some types of

polymorphism among others, when solved, have the potential to shed light on important

problems in human medicine and disease research.

Some of these studies require more diverse species and/or individuals to be sequenced.

Of particular interest are species with the highest rates of polymorphisms. For instance,

the sequencing of the sea squirt genome lead to exciting studies that would not be possible

to conduct on species that possess lower levels of polymorphism. Such studies form the

motivation of this thesis.

Sequencing of genomes is, nonetheless, subject to its own research. Recent advances

in DNA sequencing technology enabled researchers to lead an unprecedented amount of

sequencing projects. These improvements in cost and abundance of sequencing revived a

ii

greater interest in advancing the algorithms and tools used for genome assembly. A ma-

jority of these tools, however, have no or little support for highly polymorphic genomes;

which, we believe, require specialized methods.

In this thesis, we look at challenges imposed by polymorphism on genome assembly

and develop methods for polymorphic genome assembly via an overview of current and

past methods. Though we borrow fundamental ideas from the literature, we introduce

several novel concepts that can be useful not only for assembly of highly polymorphic

genomes but also genome assembly and analysis in general.

iii

To dad,

- for always believing in me.

Acknowledgements

“So long, and thanks for all the fish.”

- Douglas Adams, 1984

I am grateful for the help of many people who have shaped my life as a PhD student.

First, I would like to thank my advisor Michael Brudno for his guidance and support. He

has been a great mentor and role model for me through this entire time. His positive at-

titude often provided me with the motivation I needed in the face of challenges. Without

his insights and extensive knowledge of the field, this thesis would not be possible.

In addition, I am greatly thankful to my past and present committee members: Ryan

Lilien, Richard Zemel, Mark Braverman, Quaid Morris, Derek Corneil and Asher Cutter.

Their insightful comments shaped the work presented in this thesis. Ryan Lilien, Richard

Zemel and Mark Braverman guided me during my transition from MSc to PhD, while

Quaid Morris, Derek Corneil and Asher Cutter helped build my research as a PhD

student. From my many meetings with them, I learned how to ask and answer the right

questions. I also would like to thank my external reviewer Daniel Brown for his many

suggestions about the manuscript of this thesis and my collaborators Georgii Bazykin

and Alexey Kondrashov for introducing me to an exciting research area, from which most

of the work in this thesis originates.

I owe many thanks to my friends and fellow colleagues at the University of Toronto:

Orion Buske, Matei David, Misko Dzamba, Marc Fiume, Justin Foong, Marta Girdae,

Yue Jiang, Aziz Mezlini, Maria Mirza, Izhar Wallach, Joe Whitney, Vladimir Yanovsky,

Recep Colak, Hilal Kazan, Sihui Asuka Guan and many others whose cheerful support

have made this long journey easier. Finally, I am grateful to my family for the relentless

love and support they have given me through the years. Their encouragement has been

invaluable to me, both as a person and a student.

v

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 Genomes and polymorphism . 2

1.1.2 Sequencing . 4

1.1.3 Genome assembly . 8

1.2 Outline . 11

1.2.1 Relations to other publications 12

2 Error correction in the presence of high polymorphism 13

2.1 Introduction . 13

2.1.1 Related work . 14

2.1.2 Motivation for error correction via sequence alignment 16

2.2 ENCORE algorithm . 18

2.2.1 Overlap computation . 18

2.2.2 Multiple sequence alignment . 23

2.2.3 The Naive-Bayes probabilistic model 23

2.2.4 Naive-Bayesian error correction 24

2.2.5 Complexity analysis . 27

2.3 Evaluation . 27

2.3.1 Datasets . 28

vi

2.3.2 Effect of sequence coverage on the accuracy of error correction . . 28

2.3.3 Assessment of error correction on different sequencing platforms . 30

2.4 Discussion . 34

2.4.1 Effect of the independence assumptions 35

3 Polymorphic genome assembly 36

3.1 Introduction . 36

3.1.1 Related work . 37

3.1.2 Hapsembler . 41

3.2 The overlap graph . 41

3.3 The mate pair graph . 45

3.3.1 Definitions . 46

3.3.2 Finding mate pair paths . 46

3.3.3 Detecting overlapping paths between mate pairs 48

3.3.4 Processing the mate pair graph 50

3.4 Contig and consensus generation . 51

3.5 Complexity . 52

3.6 Polymorphism and repeat resolution with the mate pair graph 54

3.7 Evaluation . 54

3.7.1 Assembly of E. coli . 54

3.7.2 Assembly of C. savignyi . 57

3.8 Discussion . 59

4 Scaffolding 60

4.1 Introduction . 60

4.1.1 Related work . 62

4.1.2 ScaRPA: Scaffolding Reads with Practical Algorithms 63

4.2 Preprocessing . 63

vii

4.3 Orientation . 66

4.3.1 Finding odd cycle transversals . 68

4.4 Ordering . 73

4.4.1 Spacing . 74

4.5 Evaluation . 75

4.5.1 Scaffolding bacterial genomes . 76

4.5.2 Hapsembler + ScaRPA . 80

4.6 Discussion . 82

5 Analysis of multiple substitution codons in Ciona Savignyi 83

5.1 Introduction . 83

5.2 Material and methods . 84

5.2.1 Aligning gene triplets . 84

5.2.2 Determination of the last common ancestor 85

5.3 Results . 86

5.4 Analysis . 89

5.4.1 Two-substitution polymorphisms due to positive selection 90

5.4.2 Two-substitution polymorphisms due to compensatory mutations 91

5.4.3 Biased misidentification of the ancestral codon 92

5.4.4 Other explanations . 94

5.5 Discussion . 95

6 Concluding Remarks 97

Bibliography 99

viii

List of Tables

1.1 The features of some available sequencing technologies at a glance. 5

2.1 Effect of coverage depth on error correction. 29

2.2 The effect of error correction on real Roche/454 and Sanger reads. Number

of reads mapped is calculated by counting the reads that map with at least

95% identity and 95% coverage. A read is considered to be perfect if the

entire read maps with 100% identity. The numbers in parenthesis denote

the number of discarded reads (by H-Shrec) that map in each category.

H-Shrec discards a total of 13,600 and 1,132 reads from the C. savignyi

and E. coli datasets respectively. 30

2.3 The effect of error correction on real Illumina reads. A read is considered

to be perfect if the entire read maps with 100% identity. A read is con-

sidered miscorrected if the read maps with lower identity after correction.

Time is reported as wall clock time in minutes. The number of threads is

set to 8 for both programs. 32

ix

3.1 Assembly of E.coli with Roche/454 reads. Only contigs longer than 500bp

are reported. Coverage and accuracy are computed by mapping contigs to

the E. coli reference sequence (4.6mbp) using MUMmer [38] with default

parameters. N50 is defined as the largest contig size such that the sum of

contigs at least as long is greater than half the genome size. “Velvet (ec)”

contains the results achieved using Velvet when the reads are corrected

with ENCORE. 55

3.2 Running times in seconds taken by the assemblers on the E. coli dataset.

The read correction time taken by ENCORE is reported separately. Since

ENCORE and Hapsembler are multi-threaded, we give the wall-clock time

and report the total CPU time in paranthesis. 16 threads are used in each

case. For the other tools only the CPU times are reported. 56

3.3 Assembly of C.savignyi with Illumina reads. Only contigs longer than

200bp are reported. Coverage is computed by mapping contigs to the

diploid reference sequence (total size 336mbp) using MUMmer with de-

fault parameters. N50 is calculated as the largest contig size such that

the sum of contigs at least as long is greater than half the size of the to-

tal reference sequence. For SOAPdenovo and AbySS, we also report the

results (represented by “ec”) achieved by these tools when the reads are

first corrected with ENCORE. 57

3.4 Running times in minutes taken by the assemblers on the C. savignyi

dataset. The read correction time taken by ENCORE is reported sep-

arately. Since ENCORE, Hapsembler and SOAPdenovo support multi-

threading, we report both wall-clock and CPU times for all tools. 16

threads are used in each case. 58

x

4.1 Datasets used for evaluation. The accession codes for the E. coli and the

P. syringae datasets are SRX000429 and ERX000536 respectively. Assem-

blathon1 dataset consists of artificial paired-end Illumina reads simulated

with errors. 75

4.2 Scaffolding results for the E. coli dataset. We define NG50 as the largest

scaffold size such that the sum of scaffolds at least as long is greater than

half the genome size. N50 is calculated using the total scaffold size reported

by the scaffolder instead of the genome size. For each scaffolder, the second

row contains the statistics calculated without gaps. 77

4.3 Scaffolding results for the P. syringae dataset. We define NG50 as the

largest scaffold size such that the sum of scaffolds at least as long is greater

than half the genome size. N50 is calculated using the total scaffold size

reported by the scaffolder in place of the genome size. For each scaffolder,

the second row contains the statistics calculated without gaps. 78

4.4 Scaffolding results for the Assemblathon1 dataset. We define NG50 as the

largest scaffold size such that the sum of scaffolds at least as long is greater

than half the genome size. N50 is calculated using the total scaffold size

reported by the scaffolder in place of the genome size. The first section

reports the contig statistics and the second section reports the scaffold

statistics. 81

5.1 Divergence at codons where haplotypes A and B differ at one nucleotide

site. Percentages for lineage A and lineage B are given for the codons

where the last common ancestor (LCA) is known. 87

5.2 Divergence at codons where haplotypes A and B differ at two nucleotide

sites. Percentages for the first and second columns are for codons where

the last common ancestor (LCA) is known. 87

xi

5.3 Distribution of codons where haplotypes A and B differ with 2 non-synonymous

substitutions. 88

xii

List of Figures

1.1 Schematic view of a DNA molecule. Each Adenine molecule makes two

hydrogen bonds with a Thymine molecule, while each Guanine-Cytosine

pair make three hydrogen bonds. Every nucleotide pair (also called a base

pair) is connected to the next one by a phosphate-deoxyribo group on each

side. 2

2.1 A pairwise alignment of two reads with three mismatches. The base quali-

ties associated with the first two mismatches are high suggesting that these

might be genuine alleles. On the other hand, in the third mismatch, one

of the bases has a low score, which may or may not be due to a sequencing

error. 17

2.2 Modified Needleman-Wunsch algorithm. If we expect the best alignment

to occur along the diagonal arrow, we only compute the cells within a

distance d = lovlt from this diagonal, where lovl is expected the overlap

length and t is the error tolerance. 19

2.3 An example Multiple Sequence Alignment (MSA) using the star heuristic.

The pairwise alignments between the query and the other reads are com-

bined to generate a pairwise-consistent MSA. The columns that contain

disagreements are typed in boldface for visualization. Note that only the

parts of the reads that align to the query are used in generating the MSA. 22

xiii

2.4 Percentage of mapped (95% identity) and perfect (100% identity) reads

before and after correction in the E. coli and C. savignyi datasets. 31

3.1 Representation of read overlaps as a bidirected graph. The directed lines

to the right represent the reads where the arrowed end is the 3’ end while

the flat end is the 5’ end. The node weights, l1 and l2, are equal to the

lengths of the reads. The edge weights, w1 and w2, denote the lengths of

the read portions that are not covered by the overlap. 41

3.2 Transitive edge reduction. Since we can reach the node c from a via b, we

do not need the edge between a and c. During this procedure, we check

whether the two paths have the same overall length within a permissible

difference f , where f is defined as the total number of indels that are

present in the pairwise alignments associated with the overlaps. Otherwise,

the edge is not deleted. 43

3.3 Sprouts and bubbles. Top: A sprout is identified by a short dead-end path

(often a single node) splitting from a longer path. Bottom: A bubble is

a short alternative path, which eventually converges to the main path. . . 44

3.4 Calculation of path lengths. The length of the path from x to z is calculated

as w1 + w3, while the length from z to x is calculated as w4 + w2. 46

3.5 Finding overlapping mate pairs. By comparing the sets Saa′ and Sbb′ , we

can find whether the two mate pairs have overlapping paths. If such a

path exists, we create a bidirected edge between aa′ and bb′. The direction

of this edge is based on the (arbitrarily) assigned direction for each mate

pair and how they overlap. 48

3.6 Walking the overlap graph using mate pair edges. Every edge of the mate

pair graph corresponds to particular paths in the overlap graph. For in-

stance, to go from the mate pair node aa′ to the node bb′ above, we first

traverse the path from a to b′, then from b′ to a′ and finally from a′ to b. 51

xiv

3.7 Polymorphism and repeat resolution. Left: A diploid genome and paired

reads sampled from it. We do not know the exact distances between the

pairs but we assume that we are given an upper bound (in this case 13bp).

Middle: The overlap graph after removal of contained reads (i.e. GAA,

GCA and GCG) and transitive edge reduction. The nodes are labelled with

the mate pairs they belong to and arbitrarily numbered. The minimum

overlap size is set to 2bp. Right: The paths between the mate pairs

shorter than the given upper bound and the resulting mate pair graph.

In practice, we do not need the exact paths and we only compute the

set of nodes that lie on at least one path. Node d is removed since it is

contained by node c. In addition, the edge between f and i is removed

during transitive edge reduction. The resulting paths correspond to the

two haplomes. 53

4.1 Plotting the mapped distances between paired reads from a P. syringae

dataset reveals the highly skewed shape of the library distribution. Above,

the distances are computed using pairs mapping to the same contig in the

correct orientation. Mapping the reads to the reference genome instead of

the contigs results in a similar plot (data not shown). 64

4.2 Iterative insert size estimation. To estimate the mean and variance of a

skewed insert size distribution, we employ an iterative approach. First, we

calculate the sample mean as usual (denoted with m above). Using the

top percentile of the entire dataset as a cutoff, we determine a restricted

range of data points (m± v). This new range is used to calculate the next

mean and this procedure is iterated until convergence. 64

xv

4.3 Contig orientation. The relative orientation of contigs with respect to

each other is identified via paired read links. Here, we assume the correct

orientation of a read pair is forward-reverse (i.e. paired-end orientation). If

the orientation of the library is otherwise, reads are reverse complemented

to match this orientation. 67

4.4 Effect of misassembled contigs on contig orientation. Top: A genome con-

tains three copies of a repeat sequence (A), one of which has the opposite

orientation with respect to the other two. Bottom: The genome is assem-

bled into five contigs, including a contig that is misassembled due to the

collapsed repeat. To orient these contigs consistently, at least two paired

links must be discarded, whereas it is sufficient to discard one contig. In

this scenario, an algorithm that only discards paired read links will pro-

duce erroneous scaffolds, while an algorithm that can discard contigs may

remove the erroneous contig and produce correct scaffolds. 70

4.5 Formulation of the contig orientation problem as an odd cycle transversal

problem. a. We create two nodes for each contig corresponding to the

two ends of the contig and connect these nodes with an edge. Then the

paired read links are used to connect the ends of the contigs. Conflicting

links create odd length cycles in the resulting graph. b. In order to allow

removal of paired read links as well as contigs, we modify the graph by

adding two auxiliary nodes on each edge induced by these links. This

modification preserves the odd cycles of the original graph. 71

4.6 Ordering problem. Even though the given orientations of the contigs satisfy

the paired read links, there is no consistent ordering of these contigs due

to the cyclic nature of the links. 73

4.7 Scaffold accuracy versus N50 for the E. coli and P. syringae datasets. . . 76

xvi

4.8 Running times of the scaffolders for the E. coli and P. syringae datasets.

Mapping time is excluded for all scaffolders with the exception of SSPACE,

which runs Bowtie internally. As a comparison, the total wall-clock times

taken by Bowtie to index the reference and report read mappings are 288

seconds for E. coli and 94 seconds for P. syringae using 8 threads. 79

xvii

Chapter 1

Introduction

Launched in October 1990, the Human Genome Project (HGP) remains one of the largest

collaborative projects in the history of science. Since the working draft of the human

genome was announced in 2000, innovations in genome sequencing technologies along with

the rapid increase in computational power due to Moore’s Law suggest that sequencing

of new species may be routine experiments in the next decade.

Due to technical limitations, sequencing a genome requires the combination of lab

experiments with computational methods. Genome assembly, the name given to the

computational part of sequencing, is the main subject of this thesis.

Genome assembly has been the topic of great interest since the first sequencing method

was developed in 1975 [65], long before the HGP. While our work draws ideas from this

plethora of research, our methods target a specific challenge in genome assembly: the

presence of high polymorphism. Polymorphism, the existence of genetic variations within

a population, is a recurring theme in this thesis.

In this chapter, we introduce polymorphism and genome assembly as two underlying

subjects of this thesis and briefly explain how they relate to each other. In successive

chapters, these subjects are handled in greater detail. An outline of this thesis and related

publications are provided at the end of this chapter.

1

Chapter 1. Introduction 2

Figure 1.1: Schematic view of a DNA molecule. Each Adenine molecule makes two

hydrogen bonds with a Thymine molecule, while each Guanine-Cytosine pair make three

hydrogen bonds. Every nucleotide pair (also called a base pair) is connected to the next

one by a phosphate-deoxyribo group on each side.

1.1 Background

1.1.1 Genomes and polymorphism

From a computational perspective, a DNA (Deoxyribonucleic Acid) molecule can be

thought of as a word made of an alphabet of only four letters. These letters, in fact,

represent four distinct unit molecules: Adenine, Cytosine, Thymine and Guanine. Each

of these molecules is called a “nucleotide” or a “base” and is briefly denoted by its initial

(i.e. A, C, T, G). When a number of these nucleotides form a sequence by making

bonds, this larger molecule is referred to as a DNA molecule or sequence. In a DNA

Chapter 1. Introduction 3

molecule, nucleotides actually form two strands like the teeth of a zipper; where Adenine

always couples with Thymine and Cytosine with Guanine (see Figure 1.1). Because of

this coupling, DNA is typically measured in “base pairs”. Since the coupling of the

nucleotides is definitive, one strand of a DNA molecule completely determines the other

strand. The sequences of the two strands are called the “reverse complements” of each

other.

The genome of an organism is the name given to the DNA sequence contained in

each somatic1 cell of an organism. In prokaryotic organisms (e.g. bacteria) the genome

is typically present as a single sequence, while in eukaryotes (e.g. animals, plants, fungi)

the genome is divided into several chromosomes of varying sizes. In most eukaryotes,

each somatic cell contains multiple copies of these chromosomes. For instance, most

mammals have two copies of each chromosome, one inherited from each parent, while

many plants have more than two copies. This copy number is referred to as ploidy.

Organisms are often named by their ploidy as diploids (ploidy=2), triploids (ploidy=3),

tetraploids (ploidy=4) and so on. An organism with a ploidy number of one is called

haploid (e.g. bacteria, male bees and ants).

In the general sense, polymorphism refers to the existence of different “morphs” within

a population of a species. When these morphs are observable (e.g. fur color in cats, blood

type in human), they are called phenotypes. In this thesis, however, we focus on the

genetic morphs between individuals, called genotypes, and use the term polymorphism

to refer to these genotypic differences.

Genetic polymorphism in a population can exist in multiple forms. These can be

grouped under two broad categories: nucleotide diversity and structural variation. Nu-

cleotide diversity is largely based on nucleotide mutations called Single Nucleotide Poly-

morphisms (SNPs). These mutations emerge in gamete cells (i.e. egg or sperm cells) and

are thus passed along to the offspring. SNPs contribute to the overall genetic diversity

1For multi-cellular organisms, a somatic cell usually means any cell other than the reproductive cells.

Chapter 1. Introduction 4

to a variable extent in different species. For instance, the nucleotide diversity (a.k.a the

SNP rate) between humans is about 0.1%, while this rate can be as high as 3-5% in some

fish and other sea organisms.

Structural variations typically refer to large scale events and are mainly based on

sequence insertions, deletions and inversions. Like SNPs, these events have to emerge

in gamete cells in order to contribute to the polymorphism in a population. The scale

and rate of these events also vary across species yet their specifications are less well

understood. Nonetheless, it is believed that structural variations contribute more to the

overall genetic diversity than SNPs in complex organisms.

1.1.2 Sequencing

A substantial amount of research in biology today would not be possible without DNA

sequencing; that is, the experimental determination of the sequence of a DNA molecule.

Presently, no sequencing technology allows the identification of an entire genome. Se-

quencing is thus performed by first shearing a genome of interest into many fragments.

These fragments are then subjected to various procedures - depending on the technique

used, in order to determine their sequences. Each sequenced fragment is called a read.

Since its introduction in late 70s, sequencing has been dominated by the Sanger

method [65]. Also called “capillary sequencing”, the Sanger method starts by shearing

many copies of a genome into small fragments using enzymes. Using a host organism

such as bacteria, each fragment is cloned in large numbers. This procedure is called am-

plification. These cloned fragments are then read via a technique called primer extension

using nucleotides labeled with fluorescent dyes. The task of determining the nucleotide

sequence of a fragment by observing the light intensities of these dyes is called base call-

ing. Due to limitations of the cameras used in this process and other complicating factors,

base calling is not 100% accurate. Typically, Sanger reads contain low quality base calls

at the beginnings and ends. Experimental anomalies, especially due to the amplification

Chapter 1. Introduction 5

Table 1.1: The features of some available sequencing technologies at a glance.

Read length Throughput Costc

(bp) (mbp/day) ($/mbp)

Sanger 800 6 500

Roche/454 400 750 20

2010a Illumina 100 5000 0.5

SOLiD 50 5000 0.5

Roche/454 250 300 80

2008b Illumina 32 325 6

SOLiD 35 600 6

a Estimates based on [37]. b Estimates based on [45]. c Note that the estimates for the year

2008 also includes amortized costs such as sequencing instrument acquisition and maintenance.

step, also contribute to errors in the reads. These errors can emerge as substitutions (i.e.

miscalled bases) or indels (insertions/deletions).

The Sanger method allows sequencing of up to ∼400 reads in parallel, varying from

around 600 to 1000 base pairs (bp) in length. Currently, commercial instruments using

this technology can yield approximately 6 million base pairs (mbp) in one day, each

million costing about $500. Given these cost and throughput figures, sequencing of large

genomes have been expensive, long term projects and only performed by a small number

of specialized sequencing centers.

Developed in the recent years, a number of new technologies have revolutionized DNA

sequencing by increasing this throughput an order of magnitude higher while significantly

reducing the cost at the same time. Various features of these sequencing platforms are

summarized in Table 1.1.

Chapter 1. Introduction 6

The Roche/454 sequencing platform, commercially released in 2005, is based on a

technology called “pyrosequencing” [60]. The distinctive feature of this technology is

that, in each cycle, the four nucleotide types are read in order. For instance, in the first

cycle the instrument might read T:0, A:2, C:3, G:1 corresponding to AACCCG, in

the second cycle it might read T:3, A:1, C:0, G:1 corresponding to TTTAG and so

on. This sequential nature of this platform ensures that substitution errors are rare.

On the other hand, homopolymer (e.g. “AAAAA”) lengths can not be identified with

high accuracy and a large fraction of errors produced by this platform tend to be indels.

The read lengths are determined by the number of cycles and the composition of the

nucleotides in each fragment. Currently, Roche/454 instruments can perform around 200

flow cycles, producing an average read length of 400bp.

Following 454 Pyrosequencing, the Illumina Genome Analyzer was introduced as a se-

quencing platform based on the concept of “sequencing by synthesis”[6]. Unlike the tech-

nologies mentioned above, Illumina produces fixed length reads. Initially, this technology

was only capable of producing very short sequences (∼32) and had similar throughput

to Roche/454, however, a number of technical improvements now allow this technology

to produce >100bp long reads with higher throughput. In contrast with Roche/454, the

majority of the errors produced by this platform are substitutions.

A third sequencing technology, commercially available from Applied Biosystems with

the name SOLiD, is based on “sequencing-by-ligation”[68]. Unlike the other three tech-

nologies, this technology is based on reading overlapping “pairs” instead of single bases.

Although there are 16 possible nucleotide pairs, only four different dyes are used to iden-

tify them. Due to this limitation, SOLiD instruments output a sequence of “colors” which

can only be converted to nucleotide space using a known first letter. This unique “color

space” sequencing of the SOLiD platform, despite having a relatively higher error rate,

has some computational advantages when a reference sequence is available [61]. SOLiD

instruments have similar throughput to Illumina, though the read lengths are still limited

Chapter 1. Introduction 7

to ∼50bp.

All current sequencers produce a quality score with each base. This “Phred” score,

named after the base calling tool [22] developed for Sanger sequencing in 1998, is based

on the estimated probability of the corresponding base being misidentified. Formally, the

relation between the Phred score and this probability of error is given by p = 10
−q
10 , where

p is the probability and q is the Phred score. By convention, Phred scores are always

discrete numbers. While the range of Phred scores varies slightly across platforms, they

usually fall between 0-60. Quality scores are useful in a variety of applications from SNP

detection to genome assembly and exploited by a number of tools (e.g. [35, 20]).

Apart from the aforementioned technologies, a few other sequencing platforms, such

as HeliScope by Helicos and SMRT by PacBio, have also been made available in the past

couple of years. These technologies target Single Molecule Sequencing (SMS), which

allows sequencing of DNA molecules without an amplification step; however, they have

significantly higher error rates. In this thesis, we focus on the general sequencing plat-

forms as described above. For an extensive review of these and other sequencing platforms

and their applications, we refer the reader to [45, 57, 37].

Paired sequencing

The new sequencing platforms are rapidly replacing the conventional Sanger sequencing

due to their dramatically reduced cost and high throughput. As Table 1.1 demonstrates,

these technologies are still developing. For example, between the years 2008-2010, the

read lengths have nearly doubled, the throughput increased several fold and the cost

dropped further. On the other hand, the read lengths are still significantly shorter than

Sanger sequencing, which complicates certain applications.

Paired sequencing protocols may help overcome some of the limitations of these short

reads. Paired sequencing involves determining the sequence of reads in pairs, where the

approximate separation between the reads is known. Paired reads can be generated using

Chapter 1. Introduction 8

either of the paired-end or mate-pair protocols.

The paired-end protocol is primarily performed in the Illumina platform. This pro-

tocol involves reading both ends of a fragment that is slightly larger than the read size.

Since this protocol is fairly easy to perform, almost all Illumina sequencing consist of

paired-end reads. On the other hand, the size of the fragments are limited to <1000bp.

The mate-pair protocol allows fragments to be much larger (e.g. 8, 12 or 20 kb),

yet, it requires the preparation of specific libraries and is more tedious. Furthermore,

depending on the technique, a fraction of the reads produced by this protocol may be

“chimeric”; meaning that the read is composed of two separate sequences mistakenly

concatenated. In principle, the mate-pair protocol can be applied to any of the four

sequencing technologies described above, although it is less frequently applied in the new

platforms due to the tedious library preparation stage.

In neither of these protocols, can the size of the fragments be determined with high

precision. In particular, this precision depends on the insert size (i.e. the intended

fragment size). As a result, the standard deviation is often stated as a percentage of the

mean insert size and typically lies in the range 10-20%.

1.1.3 Genome assembly

As discussed in the previous section, available sequencing technologies can read DNA

fragments of no more than several hundred base pairs. In contrast, most living organisms

have genomes orders of magnitude longer, ranging from a few million base pairs in bacteria

to billions in plants and mammals.

Determining the whole sequence of a genome requires combining these experimental

technologies with computational methods. As we have mentioned previously, sequencing

a genome involves shearing the genome into many small fragments. Though certain

biases exist, this shotgun sequencing process - as it is often called - can be viewed as a

random sampling of the genome. To ensure every base of the genome is covered by at

Chapter 1. Introduction 9

least one read with high probability, a level of over-sampling is necessary. The extent of

this over-sampling is called “coverage” and defined as the ratio of the total number of the

base pairs in reads to the length of the genome. For example, 60 million 100bp-length

reads sampled from a human genome (3 billion bp) implies 2× coverage.

The assembly problem is the in silico reconstruction of the whole genome given the

reads sampled as described above. The difficulty of genome assembly lies in several

factors. Arguably, the most important factor is the ratio of the size of the DNA fragments,

i.e. the length of the reads, to the length of the genome. Similar to a jigsaw puzzle, smaller

pieces imply a larger number of them is needed to construct a solution thus increasing

the complexity of the problem. In addition, this increase in complexity is non-linear;

that is, assembling a genome with reads of length 50bp is often more than twice as

hard as assembling the same genome with 100bp reads. This non-linearity is primarily

due to genomic repeats - stretches of DNA that appear in identical or near-identical

form at two or more locations in the genome. Repeats that are longer than reads pose

significant problems for genome assemblers. Yet, most eukaryotic genomes have large

(>1kbp) genomic repeats.

A second factor that contributes to the complexity of genome assembly is sequencing

inaccuracy. As we note in the previous section, all sequencing technologies produce a

certain fraction of errors. This inaccuracy may be mitigated via additional coverage. On

the other hand, increasing coverage not only adds to the cost and time of sequencing

but also creates technical challenges due to the increased volume of sequencing data

that need to be stored and processed in disk/memory. Consequently, many genome

assemblers have specialized methods to deal with sequencing errors [9, 79, 20]. Several

stand-alone error-correction tools are also available for use either as a precursor to an

assembler or simply to improve sequencing data accuracy prior to downstream analyses

(e.g. [62, 29, 35, 64, 32]).

A less recognized, yet fundamental, factor that affects genome assembly is polymor-

Chapter 1. Introduction 10

phism. Though genomic differences between species do not play a role in sequencing

and assembly, with the exception of metagenomics [41], a high level of within-population

polymorphism may significantly increase the complexity of genome assembly.

For diploid or polyploid organisms, the population level of polymorphism is reflected

within each individual’s genome as each cell contains two or more copies of the chromo-

somes. In a general context, it is not possible to sequence these chromosomes separately

and the sequencing data includes reads from all copies. If the differences between these

copies involve only a small fraction of the bases, they have little impact on the assembly

process. Indeed, for most organisms sequenced to date, polymorphism has been ignored

and a single reference sequence is produced, which is usually a mosaic of the parental

chromosomes. Different types of polymorphism are then detected via sequencing of ad-

ditional individuals or other experimental techniques and added to specialized databases

such dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/).

If the parental chromosomes differ in a large fraction of bases, genome assembly is

negatively affected since the differences can no longer be ignored. Several sequencing

projects in the past few years revealed a number of organisms with polymorphism levels

higher than previously observed [14, 74, 72]. The assembly of these genomes using off-

the-shelf tools proved difficult, requiring extensive manual intervention and modification

of existing algorithms [76, 73].

As increasing read lengths is solely in the realm of experimental improvements, the

methods we present in this thesis target the latter two challenges; namely, sequencing

errors and polymorphism. In particular, we will see that these challenges interact with

each other in a way that each challenge makes the solution of the other problem harder.

Another factor that may significantly impact genome assembly is paired sequenc-

ing. Unlike the challenges described above, paired reads, when available, have a positive

impact on genome assembly. When the separation between the pairs is long enough,

paired reads have the potential to resolve more repeats, thus creating better assemblies.

Chapter 1. Introduction 11

Another use of paired reads is “jumping” across coverage gaps. This task is called scaf-

folding and is performed as a post processing step. Scaffolding allows longer sequences to

be assembled. In this thesis, we present novel methods for both uses of paired sequencing.

1.2 Outline

In the next chapter, we review the existing sequencing error correction methods and

present a novel method based on Naive-Bayes that can handle high polymorphism rates.

We evaluate our method, named ENCORE, using both simulated and real reads in dif-

ferent platforms. In Chapter 3, we review common approaches to genome assembly and

introduce a novel structure called the “Mate Pair Graph” that is designed to exploit

paired read information in order to resolve repeats and polymorphism. We evaluate

Hapsembler, our genome assembler that implements this approach, on a highly poly-

morphic sea ascidian named Ciona savignyi. We also compare Hapsembler to existing

genome assemblers on a haploid genome.

We complete our discussion of genome assembly in Chapter 4, where we summarize

the available scaffolding methods and present novel algorithms to perform this task. We

compare these algorithms, implemented as a stand-alone scaffolder named ScaRPA, to

several other scaffolders on two bacterial genomes. In addition, we evaluate the combined

performance of Hapsembler and ScaRPA against another genome assembler that has

support for scaffolding.

In Chapter 5, we showcase a study of polymorphism in C. savignyi. This case study

illustrates the diversity of research applications that can be performed on such highly

polymorphic genomes, providing a motivation for the methods presented in the previous

chapters. Finally, Chapter 6 concludes this thesis with a brief note.

Chapter 1. Introduction 12

1.2.1 Relations to other publications

Parts of this thesis have been previously published. Parts of Chapter 2 and Chapter 3 are

published in [20] (see Copyright Notice below for details). The methods and results of

Chapter 5 including Tables 5.1, 5.2 and 5.3 are published in [19]. Chapter 4 is currently

under preparation as a journal manuscript.

All work in this thesis is done in collaboration with Michael Brudno. In addition,

Chapter 5 is joint work with Georgii Bazykin and Alexey S. Kondrashov.

Copyright Notice:

Parts of Chapter 2, Tables 2.1 and 2.2; parts of Chapter 3, Figures 3.1, 3.2 and 3.7

and Table 3.1 are previously published as “Nilgun Donmez and Michael Brudno. 2011.

Hapsembler: an assembler for highly polymorphic genomes. In Proceedings of the 15th

Annual international conference on Research in computational molecular biology (RE-

COMB’11), Vineet Bafna and S. Cenk Sahinalp (Eds.). Springer-Verlag, Berlin, Hei-

delberg, 38-52”. Copyright for the material listed as such is held by Springer Berlin

Heidelberg and is reproduced with kind permission from Springer Science and Business

Media.

Chapter 2

Error correction in the presence of

high polymorphism

2.1 Introduction

Although the fractions vary, all sequencing technologies produce erroneous reads. In

genome assembly, these erroneous reads present a dilemma: while error-free reads could

help distinguish inexact repeats from each other, if we treat all disagreements between

the reads as genuine differences, reads containing sequencing errors essentially become

useless. In Chapter 3 we will see that some assemblers take the approach of ignoring

such reads (or at least their error-prone portions), whereas others allow a small fraction

of differences between the reads and resolve errors at a later stage. In either scenario,

the positive effect of error correction on genome assembly has been demonstrated by

numerous studies [56, 35, 64, 32].

In addition to assembly, sequencing errors complicate any application where a set

of reads are mapped to a reference sequence. Due to efficiency issues, most mapping

algorithms allow a limited number of disagreements between the reference and a read.

As a result, reads containing multiple errors may not be mapped to a location. Further-

13

Chapter 2. Error correction in the presence of high polymorphism 14

more, when a mapping location can be identified, it is very difficult to determine whether

the disagreements between the read and the reference are due to errors or genuine nu-

cleotide differences. For example, sequencing errors pose significant challenges in Single

Nucleotide Polymorphism (SNP) detection[35].

Curiously, this is a dual problem: while polymorphism detection is hindered by the

presence of sequencing errors, error correction itself is negatively affected from a high

level of polymorphism. Most correction methods rely on uniform coverage and detect

errors based on their low frequency. In the presence of polymorphism, this assumption

leads to an excess of false negatives: if one allele happens to have low coverage, it may

be mistaken for an error.

In this chapter, we momentarily shift our attention from assembly to sequencing

error correction as a precursor to successful polymorphic genome assembly as well as

other applications. In particular, we present a novel method to remove sequencing errors

from reads in the presence of high polymorphism. This method is based on a simple

but fundamental notion: if two otherwise similar reads disagree on a base and both base

pairs have high quality scores, the disagreement is more likely due to a SNP rather than a

sequencing error. To incorporate this idea in a robust probabilistic framework, we apply

a well known machine learning method called Naive-Bayes [18].

The outline of this chapter is as follows. First, we give a brief summary of error

correction tools currently available. In the following section, we elaborate on the details

of our error correction approach. We then give a presentation of the results achieved by

our method on various sequencing platforms and conclude the chapter with a discussion.

2.1.1 Related work

Currently, a plethora of stand-alone sequencing error correction tools exists that are

applicable to specific platforms and error types. Shrec [67], which is based on a suffix

trie built from reads, identifies low weight branches in the trie which are subsequently

Chapter 2. Error correction in the presence of high polymorphism 15

altered to map high weight branches but can only handle substitution errors. A modified

version of Shrec [62] is adapted to handle insertion and deletion errors as well as color

space reads generated by the SOLiD platform. Hitec [29] uses a suffix array instead of a

suffix trie to save space and perform a statistical analysis on the suffix array to correct

errors.

Some assemblers such as Euler-SR [9] and Allpaths [8] incorporate read correction di-

rectly into their framework using a method called Spectral Alignment (SA) or k-spectrum.

This method is based on the idea that low copy k-mers (i.e. length k subsequences of

reads) are likely to be erroneous and can be corrected by making a small number of

edits so that they are converted into high copy k-mers. Although SA works well with de

Bruijn graph based assemblers, it is less accurate and ill-fitted for general purpose read

correction. This is due to the fact that this method is quite sensitive to non-uniform

coverage and prone to corrupting genuine k-mers.

Criticizing the indifference of the k-mer frequency approaches to base qualities, Kelley

et al. [35] has introduced a method that also utilizes the quality scores. This stand-alone

error correction algorithm, named Quake, leverages the k-mer coverage framework by

prioritizing the alteration of bases with low quality scores.

Most of the aforementioned methods rely on a uniformly high coverage to correct

sequencing errors. An exception is Hammer [49], which is developed for applications

such as single-cell or transcriptome sequencing, where coverage is drastically non-uniform

[39, 11, 42]. Hammer is based on the idea of building a Hamming graph of k-mers and

analyzing the clusters in this graph. Nonetheless, this method is still susceptible to

making mistakes if the genome contains a large number of near-exact repeats or is highly

polymorphic.

Recently, Salmela and Schröder [64] have developed a multiple sequence alignment

based framework named Coral, that is applicable to virtually any sequencing platform.

However, their method performs a simple majority voting to correct errors and is still

Chapter 2. Error correction in the presence of high polymorphism 16

prone to overcorrecting SNPs and small genuine indels.

In summary, despite the fact that a variety of error correction approaches exist,

polymorphism is usually ignored and the methods are only tested on bacterial or other

haploid genomes. Even when diploid organisms are represented [32], the polymorphism

rates considered are under 1-2%, which falls below the levels targeted in this thesis.

In the rest of this chapter, we present a method to effectively remove sequencing errors

when a large fraction of bases have multiple alleles. This method, which we shall refer to

as ENCORE (Effective Naive-Bayesian Correction of Errors), is similar to Coral in that

both methods form multiple sequence alignments to detect and correct errors. On the

other hand, there are several differences between the two algorithms in how they perform

sequence alignment and treat quality scores. As we show below, these differences make

ENCORE more resistant to corrupting genuine bases. Another framework similar to

ENCORE has recently been implemented to correct reads in PANDAseq [46]. However,

in PANDAseq the error correction is only performed between the two ends of a paired-end

fragment and therefore polymorphism is not an issue.

ENCORE has been implemented in C++ as a part of the genome assembly toolkit

Hapsembler [20], though it can be used as a stand-alone program to correct reads for any

purpose (see http://compbio.cs.toronto.edu/hapsembler for details).

2.1.2 Motivation for error correction via sequence alignment

We have previously noted that SNPs and short indels complicate the error correction

process because they masquerade as sequencing errors. Here we show how sequence

alignment may alleviate the effect of SNPs and genuine indels with the help of quality

scores. Consider the pairwise sequence alignment of two reads shown in Figure 2.1. In

the first two mismatches, both reads have high quality scores suggesting that these may

in fact be SNPs. In the third mismatch, one of the reads has a low score, which may or

may not be due to a sequencing error.

Chapter 2. Error correction in the presence of high polymorphism 17

Figure 2.1: A pairwise alignment of two reads with three mismatches. The base qualities

associated with the first two mismatches are high suggesting that these might be genuine

alleles. On the other hand, in the third mismatch, one of the bases has a low score, which

may or may not be due to a sequencing error.

In a k-mer coverage framework, information about far apart mismatches between

two reads does not propagate. In the case shown in Figure 2.1, no k-mer will span

the last two columns if the k-mer size is 11 or less. Therefore, any algorithm based on

k-mer coverage will make decisions for these columns separately. If sequence coverage

is perfectly uniform and high, this may not pose a problem since SNPs will in general

have more support than sequencing errors. Nevertheless, even in relatively high coverage

sequencing projects, coverage is variable and low coverage regions are not uncommon.

Consequently, low coverage regions are either corrupted by these methods or not corrected

at all.

In contrast, a sequence alignment based method can incorporate full information

about the reads without having to rely on high coverage when SNPs and short indels are

prevalent. In particular, when correcting a query read, we can weigh the contribution of

each read based on the quality of the overall pairwise alignment between the query and

the latter. This notion lends itself to an elegant Naive-Bayes framework as we explain in

the next section.

Chapter 2. Error correction in the presence of high polymorphism 18

2.2 ENCORE algorithm

2.2.1 Overlap computation

To perform correction, we first need to detect overlaps (i.e. alignments) between the

reads. Considering every pairing in n reads - requiring O (n2) comparisons - is prohibitive

for most datasets. A common technique to accomplish this task efficiently is k-mer

indexing. In its basic form, this technique involves building a hash of k-mers sampled

from the reads starting at every base, and then comparing only those reads sharing one

or more k-mers. Each hash entry includes the list of reads containing the k-mer, and in

most implementations also the position of the k-mer within the read.

For large datasets, storing this index is costly. To reduce the space requirement,

ENCORE employs a variation of this technique inspired by the work of Rasmussen et al.

[58]. In this variation, we build the hash by sampling k-mers at every kth position of a

read. As Rasmussen et al. show, this reduced sampling is sufficient to find all ε-matches

between the reads provided that k is small, where ε is twice the expected error rate [58].

This is achieved by calculating the number of shared k-mers between two reads required

to ensure that the reads have an alignment with identity (1 − ε) or more over a given

length. When the k-mers are sampled at every kth interval, this calculation is trivial. For

example, if k = 13 and ε = 0.02, two reads should share at least three k-mers in order to

have an overlap of length 52 or more, regardless of where the errors occur.

To correct a read, we consider all k-mers contained in the read and look up these

k-mers in the index. We create a list of all reads encountered in this process together

with the number of shared k-mers and their relative positions in both reads. Storing the

locations of the shared k-mers enables us to estimate the expected length of the overlap

between the two reads. We then use the formula
lovl

k
−(lovl × ε) to compute the minimum

number of k-mers required to be shared between the read and the query; where lovl is the

estimated length of the overlap. In general, distinct shared k-mers may suggest different

Chapter 2. Error correction in the presence of high polymorphism 19

Figure 2.2: Modified Needleman-Wunsch algorithm. If we expect the best alignment to

occur along the diagonal arrow, we only compute the cells within a distance d = lovlt

from this diagonal, where lovl is expected the overlap length and t is the error tolerance.

overlap lengths. If the inferred overlap lengths and locations are close, we bundle these

k-mers and take the average, otherwise they are considered separately. To avoid overlaps

that occur by chance, we impose a minimum overlap length lmin.

Once we decide which reads to compare with the query, we use a modified version

of the Needleman-Wunsch (NW) algorithm [54] to align these reads against the query.

Originally, this algorithm takes two sequences of lengths li and lj and returns the best

global alignment between them using a dynamic programming matrix of size li×lj. Thus,

the running time of the original algorithm is quadratic in read lengths.

To speed up this task, we modify the algorithm so that only the relevant parts of

the dynamic programming matrix are calculated. Again, we use the expected length and

location of the overlap inferred from the shared k-mers. The matching k-mers suggest that

the best alignment should occur along a certain diagonal in the NW matrix. Thus, we

Chapter 2. Error correction in the presence of high polymorphism 20

only compute those cells within a distance d from this diagonal. d denotes the maximum

number of disagreements we are willing to allow in the overlap and is calculated as lovlt,

where lovl is the expected overlap length and t is the tolerance rate for errors (Figure

2.2). Since base mismatches do not require a deviation from the diagonal, if indel type

errors are rare, t may be set to a lower value than ε. This yields significant savings in

computation time for sequencing platforms such as Illumina, where the dominant type

of error is substitution.

If the modified NW algorithm returns an overlap with length ≥ lmin and at least (1−ε)

identity, we store the pairwise alignment for further processing. Otherwise, we discard

the alignment. The entire process is repeated once more for the reverse complements of

the k-mers found in the query read. This time, we take the reverse complements of the

matching reads before performing sequence alignment.

While the k-mer hash can be built in time linear in m, the total number of bases,

the running time of the overlap computation stage is dominated by the NW calls. In

the worst case, we may have to compare all pairs of reads leading to a time complexity

of O (l1+tn2), where n is the number of reads, l is the read length and t is the error

tolerance rate. In practice, this worst case scenario is almost never seen. Nevertheless, if

the genome is repeat-rich, reads from high-copy repeats significantly increase the running

time. Note that, the highest copy repeats are often short. These result in high-frequency

k-mers, yet reads sharing such k-mers do not necessarily have a sufficient overlap. In

order to avoid spending too much time on such reads, we impose a limit on the k-mer

frequencies. If a k-mer reaches a frequency of fmax, we stop adding new reads to its

hash entry. Thus, the maximum number of overlaps that can be detected for any read

is bounded by O

(
l

k
fmax

)
. Consequently, the running time of the overlapping stage can

be stated as O

(
l2+t

k
fmaxn

)
. We note that this bound is still far from being tight; as

for the majority of the reads the number of overlaps remains directly proportional to the

sequence coverage.

Chapter 2. Error correction in the presence of high polymorphism 21

Setting the parameters for overlap computation

Since overlap computation is the bottleneck of our error correction algorithm, it is impor-

tant to state the parameters that control the trade-off between its sensitivity and speed.

These parameters are k, the k-mer size, lmin, the minimum overlap length and fmax, the

maximum k-mer frequency.

Recall that we require at least
lovl

k
− (lovl × ε) shared k-mers between two reads in

order to perform sequence alignment. If ε is high and k is set too large, this formula may

return a value less than 1. Naturally, it is not possible to detect an overlap if no k-mer is

shared. In contrast, if it is set too small, we make many NW calls that do not yield valid

alignments. A rule of thumb therefore is to set k to the maximum value that satisfies

lmin

k
− (lmin × ε) ≥ 1.

In turn, the minimum overlap length, lmin, should be set based on the sequence cov-

erage and the average read length. When lmin is too large, fewer overlaps are detected

reducing the effectiveness of error correction. When it is too small, the running time

increases since we have to perform more sequence alignments. A reasonable range for

this parameter can be derived statistically. If we assume all reads have length l and are

randomly sampled from the genome, then the expected number of reads with no over-

lapping neighbours can be estimated as ne−2c(1−lmin/l), where c is the sequence coverage

[50]. Ideally, we would like this number to be as small as possible, hence lmin should be

set accordingly.

Although it is difficult to derive an optimal value for fmax, in practice, we have found

that its effect is minimal for most datasets so long as it is set to a reasonably high value

(e.g. ∼5k) and increased linearly with coverage.

Chapter 2. Error correction in the presence of high polymorphism 22

Figure 2.3: An example Multiple Sequence Alignment (MSA) using the star heuristic. The

pairwise alignments between the query and the other reads are combined to generate a

pairwise-consistent MSA. The columns that contain disagreements are typed in boldface

for visualization. Note that only the parts of the reads that align to the query are used

in generating the MSA.

Chapter 2. Error correction in the presence of high polymorphism 23

2.2.2 Multiple sequence alignment

The overlap computation stage generates a set of pairwise alignments for the read to

be corrected. In the next stage, we construct a multiple sequence alignment (MSA)

of these reads. As finding an optimal MSA is computationally impractical, we use a

heuristic algorithm called “star alignment” [2]. In essence, this algorithm constructs

an MSA around a reference read that is consistent with all the pairwise alignments of

the reference to other reads (see Figure 2.3). This heuristic is suitable for our purpose

since we already have a natural choice of reference, i.e. the read to be corrected, and

its pairwise alignments to other reads. In addition, if all the reads are indeed from the

same location in the genome, we expect little deviation among them justifying the use of

a simple heuristic algorithm.

2.2.3 The Naive-Bayes probabilistic model

The Naive-Bayes model is a simple probabilistic model based on the Bayes’ Theorem

with a “naive” independence assumption. Let C be a random variable that is conditional

on a feature set {F1, F2, ..., Fn}. The Bayes’ Theorem states that:

p(C|F1, F2, ..., Fn) =
p(C)p(F1, F2, ..., Fn|C)

p(F1, F2, ..., Fn)
(2.1)

=
p(C)p(F1|C)p(F2|C, F1)...p(Fn|C, F1, F2, ..., Fn)

p(F1, F2, ..., Fn)
(2.2)

The formula above becomes intractable as the number of features grows. If we assume

that each feature Fi is conditionally independent of every other feature given C, the right

hand side of the equation simplifies to:

p(C|F1, F2, ..., Fn) =
p(C)p(F1|C)p(F2|C)...p(Fn|C)

p(F1, F2, ..., Fn)
(2.3)

=
1

Z
p(C)

n∏
i=1

p(Fi|C) (2.4)

Chapter 2. Error correction in the presence of high polymorphism 24

This assumption of conditional independence forms the basis of all Naive-Bayes mod-

els. Above, Z = p(F1, F2, ..., Fn) is called the normalization factor, which ensures that we

have a valid probability distribution function, and is typically ignored when the Naive-

Bayes model is used as a classifier.

2.2.4 Naive-Bayesian error correction

In our error correction algorithm, we adapt the Naive-Bayes model at two levels. At the

lower level, we use this model to estimate the probability that two reads are sampled

from the same location of the same haplotype (i.e. haploid genotype), given their pair-

wise alignment. We refer to reads that belong to the same haplotype and location as

“neighbours”. At the higher level, we use this model to produce a consensus sequence

for the query read, given the multiple sequence alignment and the likelihood of each read

being a true neighbour of the query. For ease of narration, we start with the higher level.

Formally, let Cx ∈ {A, C,G, T} denote the xth base of a read R. Suppose that R

has pairwise alignments with the reads {S1, S2, ..., Sn}. Let Fi denote the base aligned

with the xth base in the pairwise alignment between R and Si. Then the conditional

probability of Cx assuming a particular nucleotide is given by:

p(Cx|Fi=1,2,...,n) =
1

Z
p(Cx)

n∏
i=1

p(Fi|Cx) (2.5)

Above, p(Cx) is the prior probability of Cx and it is equal to 1 − 10−q/10 if it has

the same value as the nucleotide present in the read, where q is the Phred score [22]

associated with the base. Otherwise it is equal to (10−q/10)/3. p(Fi|Cx) is given by the

equation:

p(Fi|Cx) = p(Fi|Cx, Bi)p(Bi) + p(Fi|Cx,¬Bi)p(¬Bi) (2.6)

= p(Fi|Cx, Bi)p(Bi) + p(Fi)p(¬Bi) (2.7)

Chapter 2. Error correction in the presence of high polymorphism 25

where Bi is a binary variable indicating whether the two reads are neighbours or not.

When two reads belong to different loci, we assume that their bases are independent

of each other hence p(Fi|Cx,¬Bi) = p(Fi) (i.e. we have conditional independence).

p(Fi|Cx, Bi) equals 1 − 10−qi/10 if Fi = Cx and (10−qi/10)/3 otherwise, where qi is the

quality score associated with Fi. p(Fi) simply denotes the probability of seeing that

particular nucleotide at that position and is given by 1− 10−qi/10.

In the equations above, we abuse the notation slightly and use p(Bi) to denote the

posterior probability of Si and R being neighbours. To estimate p(Bi), we first have to

compute the following probabilities:

p(BR,Si|R,Si) =
p(B)

Z ′

k∏
j=1

p(Rj, S
i
j|B) (2.8)

p(¬BR,Si|R,Si) =
p(¬B)

Z ′

k∏
j=1

p(Rj, S
i
j|¬B) (2.9)

=
p(¬B)

Z ′

k∏
j=1

p(Rj)p(Si
j) (2.10)

Above, k is the number of bases in the pairwise alignment between R and Si.

p(Rj, S
i
j|B) denotes the conditional probability of the jth position in the alignment. If

two reads are indeed neighbours, the disagreements between their sequences should be

due to sequencing errors alone. In other words, if two bases differ, at least one of them

must be an error. Let q denote the quality score of the jth base in read R and qi denote

the quality score of the corresponding base in read Si. If Rj 6= Si
j:

p(Rj, S
i
j|B) = (1− 10−q/10)((10−qi/10)/3) (2.11)

+(1− 10−qi/10)((10−q/10)/3) (2.12)

+2((10−q/10)/3)((10−qi/10)/3) (2.13)

Chapter 2. Error correction in the presence of high polymorphism 26

If Rj = Si
j, on the other hand, either both reads are correct or they both have a

sequencing error:

p(Rj, S
i
j|B) = (1− 10−q/10)(1− 10−qi/10) (2.14)

+(10−q/10)((10−qi/10)/3) (2.15)

p(Rj) and p(Si
j) are computed as (1− 10−q/10) and (1− 10−qi/10) respectively.

The prior probability p(B), of two reads belonging to the same location is set to

a value near 1.0 since we only compare reads that have a sufficient overlap with high

identity. The posterior probability p(Bi) is then estimated using the logistic function:

p(Bi) =
1

1 + exp(log p(¬BR,Si|R,Si)− log p(BR,Si|R,Si))
(2.16)

The consensus nucleotide of read R for position x is chosen to be the nucleotide that

gives the highest probability p(Cx|Fi=1,2,...,n).

Above, we can ignore the calculation of the normalization factors Z and Z ′. For the

latter, the calculation is unnecessary since the two instances of Z ′ cancel each other in

Equation 2.16. For the former, the calculation is unnecessary since we are only interested

in the ranking of the probabilities and not their nominal values.

Note that the equations above do not account for indel errors. Although indels could

be handled similarly, there are no associated quality scores with missing bases. We treat

indels separately: If a significant fraction of reads are calling for a deletion the base

is deleted. A similar rule is applied for insertion. If there is sufficient support for an

insertion, the insertion base is selected using the same procedure as above using only

those reads supporting the insertion. In this case, log p(Cx) is taken to be log(1/4),

assuming an equal prior on each of the four nucleotides. For the computation of p(Bi),

we use a default gap quality score which depends on the sequencing platform.

Chapter 2. Error correction in the presence of high polymorphism 27

2.2.5 Complexity analysis

As we have discussed in Section 2.2.1, the overall complexity of the overlap computation

stage is O

(
l2+t

k
fmaxn

)
. For each read, the number of columns in the MSA is bounded

by O (l + fmaxlt). The latter term is due to the fact that each pairwise alignment can

introduce at most lt gaps into the MSA. Thus, the overall space and running time required

to compute the MSA is O (fmaxl(1 + fmaxt)). If we assume all mathematical operations

take constant time (i.e. O(1)), the time complexity of the Naive-Bayes computations is

linear in the size of this MSA. Thus, the cumulative time complexity of the MSA and

Naive-Bayes stages is O (fmaxl(1 + fmaxt)n).

In practice, we employ several techniques to speed up the mathematical computations

during the Naive-Bayes stage. First, the product operations are computed in log space.

Furthermore, we create a look-up table to store frequently needed calculations. This is

possible due to the discrete nature of the quality scores, which typically range between

0 − 60. For example, we compute the Equations 2.13 and 2.15 for all quality scores in

advance.

The space complexity of the methods is typically dominated by the k-mer index,

requiring O(m) space, where m is the total number of bases.

Note that once the k-mer index is created, the MSA and Naive-Bayes tasks are per-

formed separately for each read, allowing them to be computed in parallel. In ENCORE,

we parallelize these tasks for multi-core machines, achieving several fold speed up de-

pending on the number of the cores.

2.3 Evaluation

In this section, we evaluate the performance of ENCORE along with a comparison to

other error correction tools. Our tests span a variety of sequencing platforms and genomes

with simulated and real reads. In particular, we assess the effect of sequence coverage

Chapter 2. Error correction in the presence of high polymorphism 28

on error correction and show that at low coverage levels the careful treatment of poly-

morphism is critical. Our experiments on a bacterial genome also demonstrate that this

seemingly conservative approach need not result in reduced effectiveness in correction

when polymorphism is absent.

2.3.1 Datasets

We evaluate our methods on two organisms: E. coli and C. savignyi. E. coli is a well

studied bacterium with a genome length of ∼4.6 million base pairs (mbp). We use a

high quality reference sequence for E. coli which is available at NCBI (http://www.

ncbi.nlm.nih.gov/) with the accession code NC 000913.2. C. savignyi is a sea ascidian

and has a highly polymorphic diploid genome. Since a finished genome assembly is not

available for this organism, we use a small portion of the draft assembly generated by

Small et al [73] as our reference. This draft assembly is organized in 374 “hypercontigs”,

where each hypercontig is a pairwise alignment of two sequences, each representing a

single haplotype. To use in our experiments, we choose the three largest hypercontigs,

with a total size of 33mbp (haploid size = 16.5mbp).

2.3.2 Effect of sequence coverage on the accuracy of error cor-

rection

To test the effect of coverage on error correction, we simulate Sanger style reads from

the reference sequence we constructed for C. savignyi. In order to make these sim-

ulations realistic, we use the Sanger reads from the original C. savignyi sequencing

project http://www.broadinstitute.org/annotation/ciona/ as templates. Simula-

tion is performed by mapping the quality scores of each template to a random location of

the reference and extracting that region as a read. This is repeated until the desired cov-

erage depth is reached. For each base, we use the corresponding quality score to decide

Chapter 2. Error correction in the presence of high polymorphism 29

Table 2.1: Effect of coverage depth on error correction.

Sequence Total Err. after Method Err. after Mis- Reduction

Coverage bases trimming correction corrections (%)

(mbp) (kbp) (kbp) (kbp)

7x 102 2,199 H-Shrec 2,893 1,453 -31.5

ENCORE 741 51 66.3

10x 148 3,056 H-Shrec 4,370 2,443 -41.9

ENCORE 631 48 79.3

13x 194 3,924 H-Shrec 4,750 2,221 -21.0

ENCORE 598 45 84.7

whether to simulate a sequencing error. In accord with how Phred scores are interpreted

[22], if the quality score of the base is q, we introduce an error with probability 10−q/10.

Errors consist of substitutions, insertions and deletions with a distribution of 75%, 12.5%

and 12.5% respectively. We simulate three coverage depths: 7x, 10x and 13x (Table 2.1).

Following the convention for Sanger sequencing, we trim the very low quality bases at

the start and end of the reads before correction. Note that this is typically not sufficient

to remove all errors. For instance, in our experiments, the error rate is around 2% after

trimming (Table 2.1).

On these datasets, we compare the performance of ENCORE to the modified version

of Shrec [62] (referred to as H-Shrec throughout this text). We choose this implementation

of Shrec for its ability to handle indel errors. The results on three coverage levels are

summarized in table 2.1. Observing this table, we see that H-Shrec introduces more errors

than it corrects, most likely due to the high prevalence of SNPs and indels in this dataset.

Interestingly, coverage depth seems to have a non-linear effect on its performance: The

error reduction rate first decreases, then increases as we go from 7x to 13x sequence

Chapter 2. Error correction in the presence of high polymorphism 30

Table 2.2: The effect of error correction on real Roche/454 and Sanger reads. Number

of reads mapped is calculated by counting the reads that map with at least 95% identity

and 95% coverage. A read is considered to be perfect if the entire read maps with 100%

identity. The numbers in parenthesis denote the number of discarded reads (by H-Shrec)

that map in each category. H-Shrec discards a total of 13,600 and 1,132 reads from the

C. savignyi and E. coli datasets respectively.

Data Error No. of No. of reads Total size

correction reads mapped of perfect

mapped perfectly reads (mbp)

E. coli None 88,624 4,154 1.6

H-Shrec (738) 88,814 (10) 9,573 3.7

ENCORE 89,817 10,292 3.9

C. savignyi None 411,626 20,689 13.6

H-Shrec (11,401) 391,016 (761) 48,994 32.6

ENCORE 421,819 126,306 83.9

coverage. In contrast, ENCORE introduces very few errors and is able to reduce the

number of errors by 66 ∼ 85%. These results suggest that ENCORE is suitable for low

coverage sequencing projects even in the presence of high polymorphism.

2.3.3 Assessment of error correction on different sequencing

platforms

In the previous section, we have analyzed the effect of sequence coverage using simulated

reads. In this section, we assess the performance of ENCORE on different sequencing

platforms using real reads.

Chapter 2. Error correction in the presence of high polymorphism 31

Figure 2.4: Percentage of mapped (95% identity) and perfect (100% identity) reads before

and after correction in the E. coli and C. savignyi datasets.

In our first experiment, we use reads generated by the Roche/454 sequencing platform

sampled from an antibiotic resistant E. coli (NCBI Short Read Archive, accession code:

SRR024126). This dataset includes 110,388 reads amounting to ∼10x sequence coverage.

In our second experiment, we use a subset of the real Sanger reads from the original C.

savignyi sequencing project (see previous section). This subset is identified by mapping

the reads to the 33mbp reference sequence we have compiled using the mapping software

MUMmer1 (version 3.22 [38]). A read is included in the subset if at least 90% of its

sequence maps to a location on the reference with a minimum of 95% identity. For each

read that is added to the subset we also include its pair, yielding a total of 558,936 reads.

The total number of bases in this dataset is 358mp, which equals roughly 10x haploid

coverage. Both datasets are quality trimmed before correction.

Since we do not have the ground truth in this case, we assess the performance of

ENCORE by mapping the reads to the reference sequences. Results are summarized

in Table 2.2. ENCORE and H-Shrec perform similarly on the E. coli dataset. Indeed,

1All mapping tasks in this section are performed using this software unless otherwise stated.

Chapter 2. Error correction in the presence of high polymorphism 32

Table 2.3: The effect of error correction on real Illumina reads. A read is considered to

be perfect if the entire read maps with 100% identity. A read is considered miscorrected

if the read maps with lower identity after correction. Time is reported as wall clock time

in minutes. The number of threads is set to 8 for both programs.

Correction No. of Total No. of mis- time space

perfect reads size (mbp) corrected reads (min) (gb)

None 1,260,759 146.57 - -

Coral 1,603,058 188.67 164,406 80 9.2

ENCORE 1,642,085 192.59 25,048 250 4.5

the probabilistic framework implemented in ENCORE might not have a substantial ad-

vantage over the coverage-based methods when a haploid and non-complex genome is

considered. On the other hand, ENCORE has a noticeable advantage over H-Shrec on

the C. savignyi dataset. For example, after correcting with ENCORE, the number of

reads mapping perfectly increases by more than 6-fold, while H-Shrec only yields a 2-fold

increase. Furthermore, fewer reads map to the reference at the 95% threshold after cor-

recting with H-Shrec than without any correction, indicating that the overall gain might

still be negative (Figure 2.4).

In our third experiment, we evaluate the performance of ENCORE on the Illumina

platform with a comparison to Coral [64]. For this experiment, we use 160bp long Illumina

reads from a recent C. savignyi sequencing project (data unpublished). As above, we

choose a subset of these reads by mapping them to the 33mbp reference sequence taken

from the draft C. savignyi assembly [73]. 6,527,699 reads that map with at least 95%

identity are quality trimmed before correction, constituting roughly 25x coverage. We

run both programs in multi-threaded mode using 8 threads. Table 2.3 summarizes the

results.

Chapter 2. Error correction in the presence of high polymorphism 33

We remark that this is a challenging dataset both from the perspective of error cor-

rection and of performance evaluation. The former is due to the shorter read length

compared to Roche/454 and Sanger sequencing. Not only short repeats that can be re-

solved with long reads can no longer be resolved via sequence alignment, but also higher

coverage depth is required to compensate for the shortness of the reads, increasing the

computational burden. The latter is due to the fact that the Illumina reads are sampled

from a different C. savignyi individual, for which no reference assembly exists. Thus,

we perform the evaluation using the available reference sequence assembled from Sanger

reads. For an organism with low polymorphism, this fact may be ignored. Nevertheless,

C. savignyi is highly polymorphic; for example, it has an estimated SNP rate of ∼5%

[72]. We remind the readers to consider the results of Table 2.3 under this light. On the

other hand, we expect any such bias to affect both programs similarly and believe that

the given comparison is still of value for this reason.

As there may be genuine differences between the reference and the reads due to

polymorphism, we employ a different evaluation strategy for this dataset. In addition to

the number of reads that map perfectly, we look at miscorrected reads, defined as reads

that map with lower identity after correction. Since this dataset is computationally more

challenging that the previous datasets, we also report the time and memory statistics for

each program.

From Table 2.3, we see that both ENCORE and Coral only slightly increase the

number of perfectly mapping reads. Note that these numbers are lower bounds, since a

portion of correct reads will not map perfectly to the reference due to genuine SNPs and

indels. On the other hand, similar to our previous experiments, we see that ENCORE

corrupts fewer reads than Coral. Despite being slower than Coral, ENCORE requires

less memory due to its efficient k-mer indexing strategy.

Chapter 2. Error correction in the presence of high polymorphism 34

Parameters

To run H-Shrec (Version 1.0), we use the largest strictness value the program accepts for

each dataset. For the C. savignyi datasets, we set the number of iterations to 1 (more

iterations introduced more errors). For the E. coli dataset 3 iterations are used. The

other parameters are left at defaults. To run Coral (Version 1.3), we used the default

parameters for Illumina. For the Sanger and Roche/454 datasets, ENCORE is run with

an error threshold of 0.07 and minimum overlap size of 30bp (k-mer size set to 13). For

the Illumina dataset, the error threshold is set to 0.04 and the minimum overlap size

to 45bp (k-mer size set to 14). We run Coral and ENCORE in parallel mode using 8

threads.

2.4 Discussion

Despite being motivated by the lack of error correction algorithms suitable for highly

polymorphic genomes, the methods implemented in ENCORE are suitable for a variety

of sequencing projects. The use of multiple sequence alignments ensure that ENCORE

is applicable to several different sequencing platforms with divergent error landscapes.

Moreover, combining quality scores with an efficient probabilistic framework allows us to

reliably correct errors when sequence coverage is low or variable. In contrast, methods

that do not use quality scores and/or heavily rely on coverage are not effective on such

datasets.

ENCORE also adapts well to the nature of the datasets at hand. For example, it per-

forms well on a bacterial genome using the same parameters as for a diploid genome with

a very highly polymorphism rate. In particular, datasets with low or no polymorphism

may still benefit from the Naive-Bayesian framework since repeats, while discarded by

most other methods, are handled in a similar way to alleles.

Chapter 2. Error correction in the presence of high polymorphism 35

2.4.1 Effect of the independence assumptions

Naturally, Naive-Bayes models work better if the independence assumptions are justified

although they have been shown to work reasonably well in a variety of applications for

which these assumptions are severely violated [18]. In our application, the conditional

independence assumptions are partially justified. At the higher level, the evidence of

a sequencing error at a particular base of a read is expected to have no effect on the

probability that another read has an error at the same location since sequencing errors

are believed to be mostly independent. Note that this excludes indel type errors in the

Roche/454 platform, however, we handle indels separately and do not assume indepen-

dence in this case.

At the lower level, we make a less justifiable assumption: that the bases of two reads

are independent if they are not true neighbours. Yet, our set of pairwise alignments is

non-random: even if two reads belong to highly divergent haplotypes, we expect a large

fraction of their bases to be common. Nonetheless, the use of a high prior probability

seems to help counter-balance this violation. In addition, we only use the posterior

probability of two reads being neighbours as a weighing factor in calculation of the

consensus nucleotide, which perhaps does not require a precise estimation.

Chapter 3

Polymorphic genome assembly

3.1 Introduction

The emergence of high throughput sequencing platforms enabled researchers not only to

study established model organisms in depth via re-sequencing projects but also to work on

new model organisms via de novo sequencing. Although some biological problems can be

investigated using alternative sequencing techniques such as transcriptome sequencing

(a.k.a. RNA-seq), none of these methods provide as complete information as whole

genome sequencing.

Since the old capillary sequencing technology was expensive and time consuming, until

recently, sequencing projects were reserved for a limited number of species. In addition

to humans, these included model organisms such as mouse or fruit fly; agriculturally

important plants such as corn; and prokaryotes such as virus and bacteria. These species

typically have low levels polymorphism. For example, model organisms and agricultural

plants are often inbred, which can drastically reduce the polymorphism level within the

population over sufficient time.

With the cost of sequencing in decline and throughput in rise, projects such as Genome

10k [1] are already underway to sequence wild-type individuals from many diverse species.

36

Chapter 3. Polymorphic genome assembly 37

As we have discussed in the first chapter, there is growing evidence that some of these

organisms might be more challenging to assemble than the ones sequenced to date due

to elevated polymorphism levels.

Not unlike the error correction tools we have seen in the previous chapter, current

assembly tools are adapted to polymorphism levels (e.g. < 1% SNP rate) observed in

humans and other model organisms. When confronted with highly polymorphic data,

these tools require substantial tailoring and/or manual intervention [76, 73]. Assembling

such genomes, already difficult with the more reliable Sanger sequencing, is a challenge

even greater with the new sequencing platforms. If we are to make sense of the large

volumes of sequencing data produced daily in numerous sequencing centers around the

world, this is a challenge worth addressing.

Motivated by this notion, we devote this chapter to genome assembly for organisms

with high polymorphism rates. In particular, we limit our attention to de novo assembly

of such genomes. Although reference-guided assembly is an important research direction,

re-sequencing of these genomes is only marginally easier than de novo efforts. This is

due to the fact that reliable mapping of reads to the reference is difficult. Moreover,

structural variations such as large indels and inversions may cause misassemblies, further

complicating downstream analyses.

In the next section, we summarize common approaches to genome assembly. Then,

we give an outline of our assembly algorithms followed by detailed explanation of these

algorithms. We evaluate our method on two different genomes and end the chapter with

a discussion.

3.1.1 Related work

Genome assembly has been a topic of interest since the introduction of the first generation

sequencing technologies [65]. Earlier genome assemblers built for Sanger reads have

typically employed either greedy heuristics [75, 26] or a framework referred to as Overlap-

Chapter 3. Polymorphic genome assembly 38

Layout-Consensus (OLC) [52, 3, 10, 51]. As the name suggests, the basic OLC framework

has three main stages. In the first stage, the reads are compared to each other to

determine which read pairs have overlaps. The next stage involves building a graph

where the reads serve as nodes and the list of overlaps serve as edges. This graph, named

the overlap graph, is then subjected to various procedures such as error removal and

repeat resolution. In the final stage, a consensus sequence is computed using the reads

along a chosen path in the graph. Each consensus sequence is called a contig. The OLC

assemblers vary by how they implement each stage, with the second stage typically being

at the core of these differences.

Originally motivated by the work on Sequencing-By-Hybridization (SBH) [28], an

alternative assembly approach is based on a structure called the de Bruijn Graph (DBG).

Proposed as a new sequencing strategy, SBH involved synthesizing all possible DNA

molecules of a small fixed length and observing the hybridization of these molecules with

the target genome. The outcome of this experiment would therefore be the knowledge of

all k-mers contained in the genome. SBH was ultimately abandoned since the experiment

is impractical except for very small values of k. However, its theory inspired the DBG

assembly approach.

The DBG method for regular sequencing reads starts by computationally breaking

down the reads into their k-mers, mimicking an SBH experiment. These k-mers are used

to build a graph where each k-mer represents an edge between two nodes, denoting the

(k − 1 long) suffix and prefix of the k-mer. Pevzner et al. [55] has suggested finding a

Eulerian path - a path that visits each edge exactly once - in this graph as a solution

to the assembly. This is motivated by the fact that the true assembly must include all

the k-mers found in the reads as a subsequence. Although efficient algorithms exist for

finding a Eulerian path in an arbitrary graph, this path need not be unique. In fact, an

exponential number of distinct Eulerian paths may exist in general. A proposed remedy

for this problem is to use the reads to guide this path and ensure the Eulerian path thus

Chapter 3. Polymorphic genome assembly 39

generated is consistent with the read set. However, this formulation makes the problem

considerably harder to solve [47].

Initially, the DBG approach was not widely adopted in part due to its sensitivity to

sequencing errors and the fact that a substantial amount of information is lost by de-

composing the reads into smaller fragments. With the development of high throughput

sequencing technologies, there is a revived interest in this approach. First, less informa-

tion is lost by breaking down the short reads produced by these technologies into their

k-mers. Second, these sequencing technologies typically produce coverage depths much

higher than possible with the capillary sequencing. This increased data size is problem-

atic for the overlapping stage of the OLC approach. In contrast, the DBG methods avoid

this time-consuming step using the exact matches between k-mers.

DBG-based assemblers developed for short reads implement different methods than

the Eulerian path method [79, 8, 9, 70, 43]. Like OLC assemblers, these assemblers

mainly differ by how they handle errors and repeats, and if applicable, how they treat

paired reads. For instance, EULER-USR [9] has a step to detect errors in k-mers before

graph creation whereas Velvet [79] performs error correction directly on the graph. On

the technical side, AbySS [70] uses a Message Passing Interface protocol to distribute the

memory over a computing cluster, while SOAPdenovo [43] works by performing multiple

passes on compressed data structures.

Although recent work on genome assembly has been dominated by the DBG approach,

a number of assemblers developed for high throughput sequencing apply different tech-

niques. For example, SSAKE [77] and SHARCGS [17] are based on greedy heuristics,

while Edena [25] adapts the OLC approach to short reads by computing only exact over-

laps with the help of a suffix array. A similar approach is adapted by Simpson and

Durbin [69], who build a Ferragina-Manzini(FM)-index to compute overlaps efficiently.

Like Edena, this approach can only detect exact overlaps and has a large memory foot-

print.

Chapter 3. Polymorphic genome assembly 40

As we have discussed at the beginning of this chapter, most of the tools we men-

tion above ignore polymorphism in their methods. The assemblers specially developed

for short reads are not very successful in assembling large and complex genomes, even

when these genomes have low polymorphism rates. Yet, highly polymorphic genomes

are already difficult to assemble with the traditional Sanger sequencing. For instance,

Arachne [3, 30], one of the most successful assemblers developed for Sanger sequencing,

was substantially modified to assemble the highly polymorphic C. savignyi genome [76].

Still, the resulting assembly had lower quality than typically achieved with Sanger se-

quencing, prompting more effort to improve this assembly with a combination of manual

and automated approaches [73].

In this chapter, we present Hapsembler, an assembler developed specially for highly

polymorphic genomes. Hapsembler is based on the OLC approach with several novel ad-

ditions. In particular, we introduce a structure called the mate pair graph. A mate pair

graph is essentially an overlap graph built from read pairs instead of single reads and is

very useful in resolving repeats in addition to the ambiguities caused by polymorphism.

Although the idea of using paired reads for repeat resolution is not new, most assemblers

employ heuristics that only use local information [8, 80] while the mate pair graph pro-

vides a unique way of globally representing the information contained in read pairs. An

exception to this is “paired de Bruijn graphs” introduced by Medvedev et al. [48], which

incorporate the mate-pair information directly into the graph. The key difference of the

mate pair graph from the paired de Bruijn graph is that the mate pair graph requires

the existence of a path to connect two mate pairs, while the latter ignores whether such

a path can be found or not. Furthermore, the paired de Bruijn graph approach is very

sensitive to insert size deviation and its performance rapidly deteriorates with large insert

sizes.

Chapter 3. Polymorphic genome assembly 41

Figure 3.1: Representation of read overlaps as a bidirected graph. The directed lines to

the right represent the reads where the arrowed end is the 3’ end while the flat end is

the 5’ end. The node weights, l1 and l2, are equal to the lengths of the reads. The edge

weights, w1 and w2, denote the lengths of the read portions that are not covered by the

overlap.

3.1.2 Hapsembler

Here we give a brief outline of Hapsembler’s algorithm. As an OLC assembler, the first

step of Hapsembler is overlap computation. This step is performed using the methods

explained in Section 2.2.1. Next, an overlap graph is built using the list of computed

overlaps. The overlap graph is then subjected to various graph simplification procedures.

In the next step, this simplified graph is used to build a mate pair graph, which is

subjected to similar simplification procedures. In the final step, consensus sequences

generated from maximal paths in the mate pair graph are output as contigs. The following

sections explain these steps in more detail.

3.2 The overlap graph

Since the overlap graph forms the basis of a typical OLC-based assembler, in this section

we describe this structure in detail. In general, an overlap graph is a graph where the

nodes represent reads and the edges represent the existence of overlaps between the

Chapter 3. Polymorphic genome assembly 42

corresponding reads. In our implementation, we form the overlap graph as a bidirected

graph (Figure 3.1). Formally, a bidirected graph G is a graph where each edge can acquire

either of the two types of arrows at each node; in-arrow and out-arrow. As a result, there

are 3 possible types of edges in a bidirected graph; in-out, out-out and in-in. A valid

walk in a bidirected graph must obey the following rule: If we come to a node using an

in-arrow we must leave the node using an out-arrow. Similarly, if we come to a node

using an out-arrow we must leave using an in-arrow. In the former case, the node is said

to be in-visited and in the latter case it is said to be out-visited.

There is a direct correlation between bidirected edges and the possible ways two

double-stranded DNA sequences can overlap (Figure 3.1). Representing read overlaps

with a bidirected graph has the advantage that reverse complements of the reads are

automatically handled. To help estimate the length of the DNA sequence that is spelled

by a walk in the overlap graph, we assign weights to the nodes and edges as illustrated

by Figure 3.1.

In fact, there are two more types of read overlaps, omitted in Figure 3.1: overlaps

caused by reads that are entirely contained within other reads. We refer to such reads

as contained reads. These overlaps, if they were to be represented in a bidirected graph,

would require two edges. Furthermore, part of the weights associated with these edges

would have to be negative in order to obey the edge weight definition. This is unde-

sirable from the perspective of some of the graph algorithms we apply on this graph.

Consequently, we discard contained reads before building the overlap graph.

Transitive edge reduction

Many edges in the overlap graph are redundant since they can be inferred by other edges.

These edges can be removed from the graph using an operation called transitive edge

reduction [51] as illustrated in Figure 3.2. Many OLC assemblers adapt this operation

as it significantly reduces the size of graph, saving memory and computation time.

Chapter 3. Polymorphic genome assembly 43

Figure 3.2: Transitive edge reduction. Since we can reach the node c from a via b, we

do not need the edge between a and c. During this procedure, we check whether the two

paths have the same overall length within a permissible difference f , where f is defined

as the total number of indels that are present in the pairwise alignments associated with

the overlaps. Otherwise, the edge is not deleted.

We remark that transitive edge reduction has another, subtle effect on the overlap

graph. In an ideal environment, the initial overlap graph built as above is guaranteed to

have a Hamiltonian path, which is a path that visits every node exactly once. Such a path

will also represent a solution to the assembly problem: the DNA sequence spelled by this

path will contain every read as a subsequence. Transitively reducing the edges voids this

guarantee. On the other hand, unlike the Eulerian path problem, finding a Hamiltonian

path in an arbitrary graph is NP-complete even if we know such a path exists. Thus, in

practice, the apparent information loss due to this operation is not important.

Graph pruning

Typically, after transitive edge reduction, a majority of the nodes in the overlap graph

have one incoming and one outgoing edge. Indeed, if all the reads are error-free and the

genome contains no repeats longer than the minimum overlap size, this operation should

reduce the overlap graph to a single path. In practice, the reduced graph often contains

a large number of nodes with higher degrees depending on the sequencing error rate and

the repeat structure of the genome.

Although repeats are generally harder to resolve at this stage, most graph-based

Chapter 3. Polymorphic genome assembly 44

Figure 3.3: Sprouts and bubbles. Top: A sprout is identified by a short dead-end path (of-

ten a single node) splitting from a longer path. Bottom: A bubble is a short alternative

path, which eventually converges to the main path.

assemblers implement methods to remove the artifacts caused by sequencing errors. In

our case, these artifacts appear in two forms: sprouts and bubbles (see Figure 3.3).

Sprouts are usually caused by errors that are concentrated towards the end (or beginning,

as is common in Sanger sequencing) of a read. For such reads, no overlap is found on one

end although the other end is connected to the graph. Sprouts can be easily identified as

short dead-end paths splitting from a main path. In theory, sprouts may also be caused

by coverage gaps. However, such cases must be rare since the coverage gap should be

located exactly after a repeat boundary in order to appear as a sprout. We remove

sprouts if they are below a length threshold. Bubbles are usually caused by errors that

appear in the middle of reads, although they may also be caused by SNPs and short

indels. We remove bubbles only if the two sequences have similar lengths shorter than a

threshold.

Chapter 3. Polymorphic genome assembly 45

3.3 The mate pair graph

As we have discussed in the first chapter, an additional source of information in genome

assembly is paired reads. While generating reads with a few thousand base pairs is

beyond the reach of available sequencing technologies, paired reads can be generated from

significantly larger fragments. For example, large scale sequencing projects using Sanger

sequencing typically include 20-40kbp insert libraries as part of their datasets. Generating

such inserts with the second generation sequencing technologies is currently more difficult;

however, paired reads with relatively long insert sizes are routinely available. Since these

inserts can span longer repeats than the reads, paired reads have a substantial advantage

over single reads. Though many assemblers use paired reads to resolve repeats and

generate longer contigs, we believe that their potential has not been sufficiently explored.

Our strategy is inspired by the following, seemingly utopian, idea: Treat every read

pair as one single read. Surprisingly, this idea is in fact applicable in the context of

an overlap graph. In explanation, it is possible to build an “overlap graph” of such

artificially constructed reads.

Recall that, when discussing transitive edge reduction, we have stated that if the

genome has no repeats longer than the minimum overlap size, this operation should

reduce the overlap graph to a single path, representing the genome. If we could treat

read pairs as single reads, we could set the minimum overlap size to a value greater than

the read length, potentially resolving much longer repeats.

Naturally, there are several caveats in treating read pairs as single reads. First, we

only have an estimate for the size of the genomic region between a read pair and more

importantly we do not know the sequence of this region. These obstacles prevent us from

building the true overlap graph of paired reads; we can, however, build a graph that

contains the true overlap graph as a subgraph. We call this graph the mate pair graph

and explain how to build it below.

Chapter 3. Polymorphic genome assembly 46

Figure 3.4: Calculation of path lengths. The length of the path from x to z is calculated

as w1 + w3, while the length from z to x is calculated as w4 + w2.

3.3.1 Definitions

A mate pair 1 is a pair of reads that has an insert size distribution with mean µl and

standard deviation σl. The insert size is defined to include the read lengths. The valid

range of an insert size is taken as µl ± (kσl), where k is a real number controlling the

largest deviation from the mean we are willing to allow.

Suppose we are given a bidirected overlap graph G built from a set of reads. For two

nodes u, v in G, we use indist(u, v) to denote the length of the shortest path from u to

v, which enters v using an in-arrow. Similarly, we use outdist(u, v) to denote the length

of the shortest path from u to v, which enters v using an out-arrow. The length of a

path is calculated as a sum of the corresponding edge weights (Figure 3.4). For a node

v ∈ G, length(v) denotes the length of the corresponding read. We assume the correct

orientation of the reads in a mate pair to be forward-reverse, which corresponds to a path

that leaves both nodes using an out-arrow.

A mate pair graph H is defined as a bidirected graph where the nodes represent mate

pairs and the edges represent the existence of overlapping paths between two mate pairs.

3.3.2 Finding mate pair paths

To build H, we first have to identify all paths of length µl±(kσl) between each mate pair in

G. In general, there may be an exponential number of such paths in the graph. However,

1In this chapter, we use this term to refer to generic paired reads regardless of the lab technique used
to generate them.

Chapter 3. Polymorphic genome assembly 47

we can identify the subgraph of G which contains all paths with length ≤ µl + (kσl)

between two nodes in polynomial time.

This idea can be summarized as follows. Let nodes a and a′ be a mate pair in G. First,

we perform Dijkstra’s [16] shortest path finding algorithm starting from a (and leaving the

node using an out-arrow). While Dijkstra’s algorithm is originally invented for directed

or undirected graphs, the generalization to bidirected graphs is straightforward. The

only difference is that instead of a single distance from the source, we have to keep track

of the shortest in-distance and out-distance separately for each node. We also modify

the algorithm so that only the nodes that are within a distance of µ∗ = µl + (kσl) are

enqueued.

During this search, if we do not encounter a′ it means there is no path in the graph

between a and a′ less than the given length. This situation can arise for several reasons:

(1) there might be a coverage gap between the mates, (2) the insert size deviation might

be higher than we allow, (3) we might be missing overlaps (due to sequencing errors,

short overlaps, etc) or (4) the mate pair can be chimeric, meaning that the reads are in

fact unrelated. The latter is due to a sequencing anomaly and is only common in certain

insert library generation techniques. Typically, a majority of these cases are explained

by the first scenario.

If we encounter a′ during the search, we do another pass of Dijkstra’s, this time

starting from a′. During this second pass, we enqueue a node if and only if the sum of its

shortest distance from a, its current distance from a′ and the read’s length is less than

µ∗. Furthermore, we put such nodes into a set which we call Saa′ together with their

shortest distances from a and a′.

After this second pass, we end up with a set of nodes, Saa′ , that are guaranteed to

lie on at least one path that has length less than µ∗ between a and a′. This set is also

exhaustive; that is, all nodes v that satisfy indist(a, v) + outdist(a′, v) + length(v) < µ∗

or outdist(a, v) + indist(a′, v) + length(v) < µ∗, are included in Saa′ . Note that we find

Chapter 3. Polymorphic genome assembly 48

Figure 3.5: Finding overlapping mate pairs. By comparing the sets Saa′ and Sbb′ , we

can find whether the two mate pairs have overlapping paths. If such a path exists, we

create a bidirected edge between aa′ and bb′. The direction of this edge is based on the

(arbitrarily) assigned direction for each mate pair and how they overlap.

this set of nodes in polynomial time even though there might be an exponential number

of paths between a and a′.

3.3.3 Detecting overlapping paths between mate pairs

The process described above is repeated for each mate pair, yielding a collection of sets

S̄. We then use these sets to detect overlapping paths between mate pairs. Consider two

mate pair sets Saa′ and Sbb′ . To decide if these mate pairs have paths that overlap with

each other, we first check whether the following conditions hold:

Chapter 3. Polymorphic genome assembly 49

a ∈ Sbb′ (3.1)

a′ ∈ Sbb′ (3.2)

b ∈ Saa′ (3.3)

b′ ∈ Saa′ (3.4)

Whenever there are less than two positive answers to these checks, an overlap of

paths is not possible. Otherwise, we check if the length and orientation of the paths are

compatible. For example, if we find that a′ ∈ Sbb′ and b′ ∈ Saa′ , we check whether the

following inequalities hold:

indist(a, b′) + outdist(a′, b′) + length(b′) < µ∗ (3.5)

outdist(b′, a′) + indist(b, a′) + length(a′) < µ∗ (3.6)

where µ∗ is defined as above. If these inequalities hold, we create a bidirected edge

between the nodes aa′ and bb′ in H as illustrated in Figure 3.5.

This algorithm may be problematic in terms of memory for large insert sizes since

we store a set proportional to the size of the insert for each mate pair. In practice,

we use a slightly different version of this algorithm which can be implemented in linear

space complexity independent of the insert size. In this version, we perform two extra

Dijkstra’s starting from each end of a mate pair, this time in opposite directions (i.e.

leaving the node using an in-arrow). As before, we only enqueue nodes that are within

the distance cutoff. This gives us two additional sets Sâ and Sâ′ . Then for each node b in

Saa′ we check if its mate pair b′ is in Sâ or Sâ′ depending on the orientation of the node.

If the path lengths are compatible with the insert size then we put an edge between aa′

and bb′ in the mate pair graph. Since we can immediately determine which nodes aa′

should be connected to, we do not have to store the set Saa′ after we process aa′. Hence,

this alternative algorithm takes only linear space in the number of nodes.

Chapter 3. Polymorphic genome assembly 50

If the overlap graph is not missing any genuine read overlaps between the reads and

there are no coverage gaps, the mate pair graph as built above is guaranteed to contain

all the genuine mate pair overlaps. Nonetheless, like the overlap graph, the mate pair

graph will typically contain a number of false edges due to repeats and polymorphism.

Analogous to an overlap graph, the degree to which the repeats and polymorphism can

be resolved is governed by the size of overlaps. By default, the minimum overlap size of

the mate pair graph is the read length. A larger value can be set if the coverage depth

is sufficient to ensure that the resulting mate pair graph is connected.

3.3.4 Processing the mate pair graph

The mate pair graph is structurally very similar to the overlap graph; hence some of the

procedures we apply on the overlap graph can also be applied to the mate pair graph.

We have previously discussed the effect of contained reads on the overlap graph in

Section 3.2. Contained mate pairs have a similar negative effect on the mate pair graph.

A contained mate pair is defined as a mate pair whose sequence is entirely spanned by

another mate pair. Since we do not know the real DNA sequence between a mate pair,

contained mate pairs can not be detected as easily as contained reads. However, we can

detect potentially contained mate pairs with the following method. Let aa′ be a mate

pair. We first check the sets Sâ and Sâ′ to see if there is any mate pair bb′ such that

b ∈ Sâ, b′ ∈ Sâ′ and:

outdist(a, b) + dist(a, a′) + outdist(a′, b′) < µ∗ (3.7)

where dist(a, a′) is the shortest distance between the pair aa′ as computed during

Dijkstra’s algorithm. If there is any mate pair satisfying this property, aa′ may be a

contained mate pair so it is removed from the graph.

After contained mate pairs are removed, we perform transitive edge reduction on the

mate pair graph. When creating the mate pair graph, three values are stored with each

Chapter 3. Polymorphic genome assembly 51

Figure 3.6: Walking the overlap graph using mate pair edges. Every edge of the mate

pair graph corresponds to particular paths in the overlap graph. For instance, to go from

the mate pair node aa′ to the node bb′ above, we first traverse the path from a to b′, then

from b′ to a′ and finally from a′ to b.

edge. For example, for the mate pair edge between aa′ and bb′ of Figure 3.5, we store

the distances indist(a, b′), outdist(b′, a′) and indist(b, a′). Given three mate pair nodes

where each node is connected to the other two, we decide whether one of the edges can

be inferred from the other two using these distances.

3.4 Contig and consensus generation

Like the overlap graph, after transitive edge reduction, most of the nodes in the mate

pair graph have one incoming and one outgoing edges, forming long non-branching paths.

Using these paths as guides, we generate walks on the overlap graph which form our

contigs. This process is illustrated in Figure 3.6.

Each walk on the overlap graph produces an ordered list of reads, corresponding to

a contig. To determine the sequence of a contig, we first compute a pairwise alignment

between each pair of successive reads in the list. These pairwise alignments are then used

to generate a multiple sequence alignment in a similar way as we described in Section

2.2.2. The main difference in this case is that each newly added pairwise alignment

Chapter 3. Polymorphic genome assembly 52

uses the previous read as the base. Once the multiple sequence alignment is generated,

we assign the consensus nucleotide for each base via a majority voting weighted by the

quality scores.

In general, these walks may not cover all the nodes of the overlap graph. For example,

a portion (or all) of the dataset may consist of single reads. To utilize these reads, we

also report any non-branching path in the overlap graph that has not been covered by a

walk. These contigs are then processed in the same way as described above.

3.5 Complexity

The time complexity of building the overlap graph is the same as overlap computation,

which we have discussed in Section 2.2.1. The complexity of transitive edge reduction

is discussed in detail by Myers [51]. The graph pruning operations are linear in the size

of the transitively reduced overlap graph, which we assume to be O(n), where n is the

number of reads.

The most time consuming step of building the mate pair graph is generating the

mate pair sets. In theory, each mate pair set requires O(n log n) time, as this is the

time complexity of Dijkstra’s shortest path algorithm. As a result, the asymptotic time

complexity of building the mate pair graph is (n2 log n). In practice, however, the number

of nodes traversed by Dijkstra’s algorithm is limited because of the distance cutoff. Thus,

the upper bound of O(n log n) is almost never reached. Furthermore, this step can be

parallelized, as each mate pair set can be computed separately.

Chapter 3. Polymorphic genome assembly 53

Figure 3.7: Polymorphism and repeat resolution. Left: A diploid genome and paired

reads sampled from it. We do not know the exact distances between the pairs but we

assume that we are given an upper bound (in this case 13bp). Middle: The overlap

graph after removal of contained reads (i.e. GAA, GCA and GCG) and transitive edge

reduction. The nodes are labelled with the mate pairs they belong to and arbitrarily

numbered. The minimum overlap size is set to 2bp. Right: The paths between the

mate pairs shorter than the given upper bound and the resulting mate pair graph. In

practice, we do not need the exact paths and we only compute the set of nodes that lie

on at least one path. Node d is removed since it is contained by node c. In addition, the

edge between f and i is removed during transitive edge reduction. The resulting paths

correspond to the two haplomes.

Chapter 3. Polymorphic genome assembly 54

3.6 Polymorphism and repeat resolution with the

mate pair graph

In essence, polymorphism resolution is very similar to repeat resolution and the mate pair

graph is designed to exploit paired reads to handle both problems. Figure 3.7 illustrates

this with a toy example. In this example, we have a diploid genome2 which has several

SNPs. After the overlap graph is built and simplified, we have several ambiguous nodes

(i.e. nodes with three or more edges). Some of these ambiguities are due to short repeats

and some are due to regions that are identical in both haplomes. Yet, the mate pair

graph built from this overlap graph is less tangled. Indeed, the simplified mate pair

graph has exactly two disjoint paths, each spelling the sequence of one haplome (i.e.

haploid genome).

3.7 Evaluation

3.7.1 Assembly of E. coli

First, we evaluate our methods on the haploid genome of E. coli. For this experiment,

we use the dataset explained in Section 2.3.3. Since this dataset consists of single reads,

we artificially pair the reads as follows. Reads are mapped to the reference sequence and

sorted by their mapping positions allowing duplicate mappings. For each read mapping

to the forward strand, an unpaired read mapping on the opposite strand that has distance

closest to 8000bp is taken. If there is no such read with distance 8000±2400, then the read

is left unpaired. This mapping yields 33,160 pairs with insert size mean and standard

deviation of 8534.67 and 713.35 respectively. The rest of the reads are left as single reads.

On this dataset, we compare Hapsembler with Velvet [79] and Euler [9]. Table 3.1

2For simplicity of the example, we pretend the genome is single stranded.

Chapter 3. Polymorphic genome assembly 55

Table 3.1: Assembly of E.coli with Roche/454 reads. Only contigs longer than 500bp

are reported. Coverage and accuracy are computed by mapping contigs to the E. coli

reference sequence (4.6mbp) using MUMmer [38] with default parameters. N50 is defined

as the largest contig size such that the sum of contigs at least as long is greater than half

the genome size. “Velvet (ec)” contains the results achieved using Velvet when the reads

are corrected with ENCORE.

N50 No. of Total size Coverage Accuracy

(kbp) contigs (mbp) (%) (%)

Unpaired

Hapsembler 72.4 128 4.6 90.3 98.6

Velvet 41.2 199 4.5 89.5 98.4

Velvet (ec) 72.3 126 4.6 90.6 98.5

Euler 8.1 913 4.7 88.6 98.6

Paired

Hapsembler 103.7 111 4.6 90.9 98.6

Velvet 41.9 189 4.6 89.5 98.2

Velvet (ec) 72.3 132 4.6 90.6 98.5

Euler 9.4 765 4.5 88.4 98.6

Chapter 3. Polymorphic genome assembly 56

Table 3.2: Running times in seconds taken by the assemblers on the E. coli dataset. The

read correction time taken by ENCORE is reported separately. Since ENCORE and

Hapsembler are multi-threaded, we give the wall-clock time and report the total CPU

time in paranthesis. 16 threads are used in each case. For the other tools only the CPU

times are reported.

ENCORE Hapsembler Velvet Velvet (ec) Euler

Unpaired 65 (422) 50 (254) 106 74 54

Paired - 67 (241) 104 75 54

shows the results of two experiments. In the first experiment, no pairing information

is supplied to the assemblers. In the second experiment, we use the artificial pairings

described above. For Velvet and Euler, we report the results using the k-mer size that

achieves the best N50 value (19 and 23 respectively). For Hapsembler, the overlapping

parameters are set to the values used for error correction (see Section 2.3.3).

As part of its pipeline, Hapsembler corrects the reads using the ENCORE algorithm

(see Section 2.2) before assembling them. To assess how much of Hapsembler’s perfor-

mance is due to error correction, we also report the results achieved by Velvet using these

corrected reads. For the unpaired case, we see that Hapsembler and Velvet perform very

similarly if Velvet is supplied with corrected reads. Indeed, with single reads, Hapsem-

bler’s ability to resolve repeats is limited. For the paired case, Hapsembler performs

better than Velvet even when both programs use corrected reads, demonstrating the

utility of the mate pair graph in resolving repeats. Table 3.2 shows that when multiple

cores are available the running time of Hapsembler is comparable to Velvet and Euler on

this dataset.

Chapter 3. Polymorphic genome assembly 57

Table 3.3: Assembly of C.savignyi with Illumina reads. Only contigs longer than 200bp

are reported. Coverage is computed by mapping contigs to the diploid reference sequence

(total size 336mbp) using MUMmer with default parameters. N50 is calculated as the

largest contig size such that the sum of contigs at least as long is greater than half the

size of the total reference sequence. For SOAPdenovo and AbySS, we also report the

results (represented by “ec”) achieved by these tools when the reads are first corrected

with ENCORE.

N50 Largest No. of Total Reference Haplome

(bp) contig contigs size coverage specificity

(bp) (mbp) (%) (%)

Hapsembler 1,970 39,816 182,064 285.54 79.74 31.24

SOAPdenovo 568 30,516 472,203 274.17 66.49 27.89

SOAPdenovo (ec) 685 30,516 433,082 279.79 68.07 29.73

AbySS 368 28,653 533,712 246.69 60.46 20.86

AbySS (ec) 380 37,442 536,057 250.83 60.94 20.99

3.7.2 Assembly of C. savignyi

To evaluate Hapsembler on a highly polymorphic genome, we use C. savignyi. As our

dataset, we use 87 million paired-end Illumina reads from a C. savignyi re-sequencing

project (data unpublished). The reads are 160bp in length with an estimated insert

size of 600bp. On this dataset, we compare Hapsembler to AbySS [70] and SOAPdenovo

[43]. We choose these DBG-based assemblers for their relative efficiency in handling large

sequencing datasets.

The results are given in Table 3.3. For AbySS and SOAPdenovo, we set the k-mer size

Chapter 3. Polymorphic genome assembly 58

Table 3.4: Running times in minutes taken by the assemblers on the C. savignyi dataset.

The read correction time taken by ENCORE is reported separately. Since ENCORE,

Hapsembler and SOAPdenovo support multi-threading, we report both wall-clock and

CPU times for all tools. 16 threads are used in each case.

ENCORE Hapsembler SOAPdenovo Abyss

Real 1,145 1,955 31 327

CPU 15,819 6,884 163 322

to 63.3 The wall-clock and CPU times taken by the assemblers and the error correction

module are reported in Table 3.4.

As we have discussed in Section 2.3.3, since the available reference sequence is as-

sembled from a different C. savignyi individual, we note that the coverage values are

expected to be low. Furthermore, contig accuracy can not be determined in the usual

way due to possible recombination events between the two individuals. Instead, to evalu-

ate the accuracy of contigs, we report the proportion of long contigs (>600bp) that map

entirely to one haplome. This is reported as haplome specificity in Table 3.3.

We see that on this dataset Hapsembler produces substantially longer contigs and

covers more of the reference sequence with fewer contigs. Note that Table 3.3 only

reports contigs that are longer than 200bp. In reality, both AbySS and SOAPdenovo

report a significant number of contigs (2.4m and 2.1m respectively), yet a majority of

these are shorter than the read length (160bp). In contrast, Hapsembler already covers

nearly 80% of the reference sequence with contigs longer than 200bp. Table 3.3 also

demonstrates that although error correction improves the performance of AbySS and

SOAPdenovo slightly, correction alone does not seem to explain the superior results

3Though the N50 values seem to increase very slightly as we increase the k-mer size, both programs
run out of memory for larger values on our server with 80GB RAM.

Chapter 3. Polymorphic genome assembly 59

achieved by Hapsembler. These results suggest that the mate pair graph strategy of

Hapsembler is indeed more effective than the current state-of-the-art assemblers for highly

polymorphic genomes.

3.8 Discussion

In this chapter, we summarized the current approaches to genome assembly and stated

the lack of methods that can handle highly polymorphic genomes. We also presented a

novel type of assembly graph that is designed to leverage the information contained in

paired reads in order to resolve polymorphic regions. As our results show, this graph,

which we call the mate pair graph, is also useful when assembling less polymorphic

organisms due to its ability to resolve longer repeats.

Some of the methods we present in this chapter are computationally expensive. In

particular, overlap computation and building mate pair sets are the two most time con-

suming steps. On the bright side, both steps are suitable for parallelization. Hapsembler,

which implements these methods, is currently slower than the widely used genome as-

semblers available for high throughput sequencing. Yet, this gap is not prohibitively

large. For a bacterial genome such as E. coli, the time requirements of Hapsembler is

comparable to that of Velvet and Euler when a moderate number of cores are available.

For a large and complex genome such as C. savignyi, Hapsembler takes considerably more

time than SOAPdenovo and AbySS. On the other hand, Hapsembler is more efficient in

terms of memory: while the peak memory required by Hapsembler is around 35GB for

this dataset, AbySS and SOAPdenovo require significantly more memory for large k-mer

sizes.

Chapter 4

Scaffolding

4.1 Introduction

In the previous chapter, we have seen that current assemblers developed for high through-

put sequencing platforms can produce high quality draft assemblies for small genomes.

In contrast, the assemblies produced for more complex genomes using short reads are

typically very fragmented. Hence, most sequencing projects are left as draft assemblies

because the finishing stage remains costly and time consuming.

The finishing stage, which requires additional sequencing and specialized methods, can

significantly benefit from scaffolding : the process of linking contigs into larger gapped

sequences using paired read information. Briefly, a contig is inferred to succeed (or

precede) another contig if one end of the pair maps to the first contig and the other

end maps to the second contig. Since the relative orientation of the reads in a pair is

also known (eg. forward-reverse for Illumina paired-end reads and forward-forward for

AB/SOLiD reads), we can also infer the orientation of these contigs with respect to each

other. Furthermore, the size of the gaps between these contigs can be estimated using

the insert size distribution. A chain of contigs constructed as such is called a scaffold.

Scaffolding can also be performed using other types of information such as the finished

60

Chapter 4. Scaffolding 61

genome of a closely related organism [56] or optical restriction maps [53]. In the first case,

contigs from the target assembly are mapped to the genome of a closely related organism.

These mappings provide information about the order and orientation of the contigs. In

the latter case, a genome-wide map of the approximate locations of a restriction enzyme

is attained using a special lab technique. This map is then used to identify the location

of the contigs along the genome.

Like contig assembly, scaffolding is a computationally hard problem [27]. To simplify

the problem, scaffolding is often performed as two sequential tasks: contig orientation

and contig ordering, where each task is formulated as maximizing the number of satisfied

paired read constraints. These formulations are still individually intractable and initial

methods applied to this problem have largely been greedy [27, 56].

Although the assembly algorithm we have presented in Chapter 3 already employs

paired read information, paired reads with a coverage gap in between are not utilized.

Such pairs may even exist in high-coverage sequencing projects and are only useful in

a scaffolding context. To complete our discussion of genome assembly, we devote this

chapter to the scaffolding problem.

The rest of this chapter is outlined as follows. We first give a brief summary of

different approaches to scaffolding and explain the shortcomings of these approaches.

Then, we present two novel algorithms; one to solve the orientation problem and the

other to solve the ordering problem. The former is based on a fixed-parameter tractable

algorithm developed for the odd cycle transversal problem [59]. The latter is based on

a combination of Linear Programming and a graph problem called the feedback arc set

problem [21]. We evaluate these algorithms on several datasets and compare our results

to those attained by several other scaffolders.

Chapter 4. Scaffolding 62

4.1.1 Related work

Most genome assemblers implement simple greedy algorithms to produce scaffolds using

paired reads, though several stand-alone scaffolders are available. Some of these scaf-

folders such as Bambus [56] and SSPACE [7] also use greedy heuristics, while others

employ more involved methods such as Mixed Integer Programming [63] or statistical

optimization [13].

Non-greedy scaffolders often represent the scaffolding problem as a graph where nodes

denote contigs and edges denote paired read links. SOPRA [13] partitions this graph

into smaller parts and solves each using statistical optimization. MIP Scaffolder [63]

partitions the graph in a similar way; however, it solves these subgraphs exactly using

Mixed Integer Programming. Both of these scaffolders limit the size of the subgraphs

in order to keep the algorithms tractable. Opera [24] applies a different partitioning

scheme using a graph contraction procedure and solves the scaffolding problem with a

fixed-parameter tractable algorithm based on a graph-bandwidth formulation.

Almost all approaches to scaffolding are based on maximizing the number of paired

reads that are satisfied. This formulation implicitly assumes that paired read links are

noisy and contigs are error-free. While the presence of chimeric pairs and inaccurate

mapping of the reads justify the former assumption, there is no real justification for

the latter. In our approach, we assume both type of errors are possible and integrate

these in a single formula. In contig orientation, this formulation allows us to detect

erroneous contigs and remove these instead of removing the conflicting edges incident to

them. Furthermore, we solve this formulation exactly using a fixed-parameter tractable

algorithm. In contig ordering, the use of a polynomial time, near-optimal graph algorithm

allows us to position the contigs with Linear Programming instead of computationally

expensive methods such as Mixed Integer Programming.

Chapter 4. Scaffolding 63

4.1.2 ScaRPA: Scaffolding Reads with Practical Algorithms

We implement our methods as a scaffolder named ScaRPA. As input, ScaRPA takes as a

set of contigs and a file containing the mappings of a paired read dataset to these contigs.

As a preprocessing step, ScaRPA filters ambiguously mapping reads and estimates the

mean insert size and deviation using pairs mapping to the same contig. Then, ScaRPA

assigns an orientation to each contig which discards a minimum number of paired read

links and contigs using a fixed-parameter tractable algorithm. In the next step, these

contigs are given a pairwise-consistent order which maximizes the paired read constraints

using a near-optimal polynomial time algorithm. In the final step, contig positions are

adjusted using a Linear Programming framework. The following sections explain these

steps in detail.

4.2 Preprocessing

The first step of ScaRPA is to filter and analyze the read mappings, which can be pro-

duced by any mapping software. Like other scaffolders, ScaRPA discards a read pair if

either of the reads maps ambiguously (i.e. has more than one optimal hit).

ScaRPA also analyzes the read mappings to adjust the mean insert size and deviation.

Typically, for most sequencing projects, an estimate for the mean insert size is readily

available. In some cases this estimate might be slightly off. An inaccurate mean value

causes the gap sizes between the contigs to be estimated incorrectly, resulting in a genome-

wide bias. For instance, if the given insert size is above the true mean, the total size

of the scaffolds may exceed the genome size. If a sufficient number of contigs are long

enough to allow both ends of a pair to map to the same contig, ScaRPA estimates the

insert size distribution using these mappings.

Ideally, if we have a large number of pairs mapping to the same contig in the right

orientation, the standard calculation of sample mean and variance should give a reliable

Chapter 4. Scaffolding 64

Figure 4.1: Plotting the mapped distances between paired reads from a P. syringae dataset

reveals the highly skewed shape of the library distribution. Above, the distances are

computed using pairs mapping to the same contig in the correct orientation. Mapping

the reads to the reference genome instead of the contigs results in a similar plot (data

not shown).

Figure 4.2: Iterative insert size estimation. To estimate the mean and variance of a

skewed insert size distribution, we employ an iterative approach. First, we calculate the

sample mean as usual (denoted with m above). Using the top percentile of the entire

dataset as a cutoff, we determine a restricted range of data points (m ± v). This new

range is used to calculate the next mean and this procedure is iterated until convergence.

Chapter 4. Scaffolding 65

estimate. Unfortunately, real datasets, especially paired-end libraries, tend to have highly

skewed distributions with a heavy tail on one side (Figure 4.1). In such cases, the sample

mean and variance estimates are frequently wrong. To improve the library size statistics,

we develop an iterative procedure as follows. Let m0 be the sample mean calculated as

m0 := 1
n

∑
i di where di are mapped distances between pairs and n is the number of pairs.

Let t be the point such that 99% of all di lie under t and set v0 := t−m0. We then set

k = 0 and repeat the following until |mk+1 −mk| < δmk, where δ << 1:

• mk+1 := 1
nk

∑
i di such that di < mk + vk and di > mk − vk

• vk+1 := t−mk+1

• k := k + 1

While this procedure converges in a few iterations for distributions such as the one

in Figure 4.1, it is also harmless for non-skewed distributions. Indeed, if the distribution

is symmetrical, e.g. Gaussian, the procedure stops after a single iteration returning the

initial sample mean.

After the library statistics are finalized, we build a scaffolding graph, where nodes

are contigs and edges are paired read links between the contigs. If there are multiple

links between a pair of contigs, we bundle them using the approach of [27] to form a

single edge. Briefly, this method works by combining the paired read constraints using

the following equations:

µ̄ =

∑
i

µi

σ2
i∑

i

1

σ2
i

(4.1)

σ̄ =
1√∑

i

1

σ2
i

(4.2)

Chapter 4. Scaffolding 66

where µi is the estimated distance between the contigs based on the paired read link

i. Here µi is calculated by subtracting the distance between the mapped positions and

the end of the contigs from the mean insert size. Note that it is possible for this value

to be negative if the end of the contigs overlap. σi is the standard deviation of the insert

size distribution and estimated as the square root of the sample variance.

Each edge is weighted by the number of paired reads supporting the link. Edges

with support lower than a threshold are discarded. Similar to library size adjustment,

if we have a large sample of pairs mapped to the same contig, we derive this threshold

empirically. Otherwise it can be set manually. In the former case, we set this threshold

to
log ε

log(1− r)
, where ε << 1 is a small positive constant and r is the ratio of successfully

mapping pairs to all pairs mapping to a single contig. A pair is said to map successfully

if the orientation of the reads are as expected and the distance between the reads is less

than a large cutoff.

4.3 Orientation

In general, each assembled contig is expected to lie on an arbitrary strand of the genome.

The orientation stage of scaffolding attempts to orient the contigs based on the read pairs

so that within each scaffold all the contigs lie on the same strand. This is illustrated in

Figure 4.3. In the absence of errors, this problem has a feasible solution easily identified

via a greedy algorithm. In practice, factors such as chimeric read pairs, mismapped reads

and incorrectly assembled contigs make the problem infeasible.

The orientation problem is usually formulated as follows: assign an orientation for

each contig so that the maximum number of paired reads is satisfied. This formulation

is NP-hard [34]. This approach, taken by most scaffolders [13, 56, 63], is justified when

the majority of incorrect links are due to chimeric pairs or mismapped reads. On the

other hand, links that are due to chimeric pairs tend to have low support - such errors

Chapter 4. Scaffolding 67

Figure 4.3: Contig orientation. The relative orientation of contigs with respect to each

other is identified via paired read links. Here, we assume the correct orientation of a read

pair is forward-reverse (i.e. paired-end orientation). If the orientation of the library is

otherwise, reads are reverse complemented to match this orientation.

are expected to occur independently - and are mostly discarded during preprocessing.

We adopt a different approach and formulate the contig orientation problem as an

odd cycle transversal problem. We first build an undirected graph G, where each contig c

is represented by two nodes c− and c+ corresponding to the 5’ and 3’ ends of the contig.

For each contig c, we add an edge between c− and c+. For each read pair r1 and r2

mapping to contigs x and y respectively, we add an edge between:

• x+ and y− if r1 maps to x on the forward strand and r2 maps to y on the reverse

strand

• x− and y+ if r1 maps to x on the reverse strand and r2 maps to y on the forward

strand

• x+ and y+ if both r1 and r2 map on the forward strands

• x− and y− if both r1 and r2 map on the reverse strands

Chapter 4. Scaffolding 68

Note that the contig orientation problem has a feasible solution if and only if G has

no cycles containing an odd number of nodes. We exploit this property to adapt a fixed-

parameter tractable algorithm developed by Reed et al.[59], which, given a graph G,

identifies a set X of nodes with |X| ≤ k, for any fixed k, such that G − X has no odd

cycles or asserts that no such set exists. In the graph theory literature, X is referred

to as an odd cycle transversal. Next, we give a summary of the odd cycle transversal

algorithm we adapt.

4.3.1 Finding odd cycle transversals

Algorithm 1 OddCycleTransversal(G, k)

Input: A graph G with vertices {v1, v2, .., vn} and an integer k ≤ n.

Ouput: A set X of at most k vertices in G, such that G−X has no odd cycles

or the information that no such set exists.

Let X ← {v1, v2, .., vk}

Let H be the subgraph of G induced by X

for i = k + 1, k + 2, ..., n:

H ← H + vi

X ← X + vi

X ← compress(H, X, k)

if |X| > k:

return “infeasible”

return X

The algorithm we use to find odd cycle transversals employs a method called itera-

tive compression. At each iteration, we are given as input a graph G and an odd cycle

transversal of size k + 1 and try to construct an odd cycle transversal of size k in G. Al-

Chapter 4. Scaffolding 69

though the original algorithm [59] is presented recursively, we implement an incremental

version as described in Algorithm 1.

Briefly, we start with a subgraph H of size k + 2. Trivially, H has an odd cycle

transversal X of size k + 1. Then we call a subroutine named compress(H, X, k), which

decides whether H has a smaller transversal or not. If there is no such transversal,

it follows that G does not have an odd cycle transversal of size k either. Hence, we

terminate and return this fact. Otherwise, we proceed by adding a new vertex to H and

repeat this process.

We now explain how the compress subroutine works. Given H = (V, E) and its odd

cycle transversal X, let S1 and S2 be two stable sets in the bipartite graph H−X. Using

this partition, we construct an auxiliary graph H ′ with the vertex set V ′ = V − X +

{x1, x2 : x ∈ X}. The edges of H ′ are determined as follows:

• If e ∈ H −X, we create an edge in H ′ between the corresponding vertices.

• If e = (x, y) such that x ∈ X and y ∈ S1, we create an edge e′ = (x2, y) in H ′.

• If e = (x, y) such that x ∈ X and y ∈ S2, we create an edge e′ = (x1, y) in H ′.

• If e = (x, y) such that x ∈ X and y ∈ X, we pick either of e′ = (x1, y2) or

e′ = (x2, y1) and add this edge to H ′.

Let S = S1 ∪ S2 and let H ′[U] denote the subgraph of H ′ induced by the vertex set

U . A valid partition below is defined such that ∀x ∈ Y , exactly one of {x1, x2} is in YA.

The following lemma from [59] forms the basis of the algorithm:

Lemma 1. An odd cycle transversal X is of minimum size if and only if

for any valid partition (YA, YB) of any subset Y of X, there are |Y | vertex

disjoint paths from YA to YB in H ′[YA ∪ YB ∪ S].

Using this lemma, we complete the subroutine as follows. Given the odd cycle

transversal X, we test each valid partition (YA, YB) of each subset Y of X. Suppose

Chapter 4. Scaffolding 70

Figure 4.4: Effect of misassembled contigs on contig orientation. Top: A genome con-

tains three copies of a repeat sequence (A), one of which has the opposite orientation

with respect to the other two. Bottom: The genome is assembled into five contigs,

including a contig that is misassembled due to the collapsed repeat. To orient these

contigs consistently, at least two paired links must be discarded, whereas it is sufficient

to discard one contig. In this scenario, an algorithm that only discards paired read links

will produce erroneous scaffolds, while an algorithm that can discard contigs may remove

the erroneous contig and produce correct scaffolds.

there are less than |Y | vertex disjoint paths from YA to YB in H ′[YA ∪ YB ∪S]. Then, we

can take a cutset W ′ separating YA from YB of size < |Y |. Using W ′, we construct a new

odd cycle transversal W ∪ (X − Y). The set W ⊆ H is determined such that, a vertex

w is in W if either w ∈ W ′ or w ∈ X and at least one of its copies w1, w2 is in W ′. Since

|W | ≤ |W ′| < Y , it follows that |W ∪ (X − Y)| ≤ k.

The problem of finding the cutset W ′ can be formulated as a maximum flow problem

with demand k, which can be solved in time O(km), where m is the number of edges. We

have to solve this flow problem for each choice of sets YA and YB. There are 2k+1 subsets

of X, and for each subset Y , there are 2|Y | ≤ 2k+1 partitions. Alternatively, as [44] points

out, this enumeration may be interpreted as all 3-way partitions of X. Consequently,

O(3kkm) gives a tighter bound for the subroutine. The total running time of the odd

cycle transversal algorithm is therefore O(3kkmn).

Chapter 4. Scaffolding 71

Figure 4.5: Formulation of the contig orientation problem as an odd cycle transversal

problem. a. We create two nodes for each contig corresponding to the two ends of the

contig and connect these nodes with an edge. Then the paired read links are used to

connect the ends of the contigs. Conflicting links create odd length cycles in the resulting

graph. b. In order to allow removal of paired read links as well as contigs, we modify

the graph by adding two auxiliary nodes on each edge induced by these links. This

modification preserves the odd cycles of the original graph.

Chapter 4. Scaffolding 72

The algorithm we describe above is based on removal of nodes. In some cases, it

may be desirable to remove edges as well as nodes. For example, if the optimal solution

involves removing multiple edges incident to a node, the contig associated with that node

might have been misassembled (see Figure 4.4). In contrast, if it suffices to remove a

single edge, there is a higher probability that the link is incorrect. We desire an algorithm

that chooses the most sensible solution in each case.

To allow removal of edges in addition to nodes, we build another graph G′, which is

derived from G by inserting auxiliary nodes to some of the edges. Briefly, we insert two

nodes for each edge that connects two contig nodes (but not for an edge that connects

the two ends of the same contig). It is easy to see that this transformation does not alter

the number of odd cycles. Any odd cycle we have in G remains an odd cycle though its

size will have increased. A similar argument holds for even cycles and no new cycles are

introduced. Figure 4.5 illustrates this process.

If there is a tie between discarding a contig node versus discarding an auxiliary node

(representing a paired read link), we would like the algorithm to remove the auxiliary

node1. In order to encourage the algorithm to remove paired read links before removing

contigs, we order the nodes of G′ such that the auxiliary nodes are considered before any

contig node.

To speed up the process, we apply the odd cycle transversal algorithm separately to

each connected component of G′. The value of k, i.e. the maximum number of nodes and

edges to remove, is first set to 0 and then iteratively increased until a feasible solution is

found.

1Note that the algorithm will never choose to discard both auxiliary nodes representing the same
paired read link, since this would contradict the optimality of the algorithm.

Chapter 4. Scaffolding 73

Figure 4.6: Ordering problem. Even though the given orientations of the contigs satisfy

the paired read links, there is no consistent ordering of these contigs due to the cyclic

nature of the links.

4.4 Ordering

At the end of the orientation stage, each contig is assigned a strand, providing us with a

pairwise ordering of the contigs within each connected component. In the ordering step,

we compute an absolute order of contigs for each component.

Since the contigs are now oriented, we represent the scaffolding problem as a directed

graph T . Though the previous step ensures that there are no odd cycles left in G, there

may still be cycles in T . Due to these cycles there might be no absolute order of the

contigs that satisfies all pairwise constraints as illustrated in Figure 4.6.

To place the contigs into a linear order, we first need to eliminate all directed cycles

from T . The problem of finding a minimal set of edges, whose removal makes a directed

graph acyclic, is known as the feedback arc set problem. For arbitrary graphs, this

problem is NP-hard [33]. We use a heuristic algorithm described in [21] which runs in

O(m) time and guarantees an upper bound of m/2−n/6 where m is the number of edges

and n is the number of nodes. As in the orientation stage, to improve accuracy and

speed, we apply this algorithm to the connected components of T separately.

Chapter 4. Scaffolding 74

4.4.1 Spacing

During the ordering stage, T is transformed into a directed acyclic graph and is now

guaranteed to have an ordering of the contigs so that the remaining links are satisfied.

Yet, this ordering may not be unique. In the last stage of scaffolding, we try to find

a placement of contigs within each scaffold such that the distances between the contigs

agrees best with the size of the gaps as suggested by the paired read links. In a general

context, this problem is formulated as a Mixed Integer Programming problem. In our

case, we can instead formulate this problem as a Linear Programming (LP) problem since

the orientations are already fixed.

In the LP formulation, for each contig 1 ≤ i ≤ N , where N is the number of contigs

in the scaffold, we have a real valued free variable xi that represents the 5’ coordinate

of the contig. Without loss of generality, we set x1 to 0. For each paired read link, we

introduce the following constraints:

xi − xj + dij ≤ C(1− δij) (4.3)

xj − xi − dij ≤ C(1− δij) (4.4)

where dij is the distance between the 5’ ends of the contigs i and j suggested by the

paired read link. δij is a real valued slack variable in the range [0, 1]. C is a large constant

set to the sum of all the contig lengths and suggested distances between the contigs (or

to the estimated genome length if the former exceeds the latter). Subject to the set of

constraints as constructed above, we maximize
∑

i,j δij.

Although this formulation is designed to place the contigs so that the paired read

links are satisfied best, it may allow two contigs to occupy the same coordinates. In

practice, we do not use the coordinates returned by the LP solver; rather, we use these

coordinates to order the contigs in linear paths. If a contig i significantly overlaps with

Chapter 4. Scaffolding 75

Table 4.1: Datasets used for evaluation. The accession codes for the E. coli and the P.

syringae datasets are SRX000429 and ERX000536 respectively. Assemblathon1 dataset

consists of artificial paired-end Illumina reads simulated with errors.

Genome No. of Sequence Read Insert

size (mbp) reads Coverage length (bp) size (bp)

E. coli 4.6 2×10.4m 160x 36 200

P. syringae 6.1 2×3.5m 40x 36 400

Assemblathon1 112.5 2×22.5m 40x 100 300

the next contig j and the length of the shortest path2 between them in T is longer than

a small threshold, we infer that they are not supposed to be adjacent. In this case, the

contigs following j are considered in order until one of them passes these criteria. If such

a contig is found, then it follows i in the path and a new path is created for j. The

resulting linear paths are written as scaffolds.

4.5 Evaluation

In our first set of experiments, we compare ScaRPA to several other stand-alone scaffold-

ers on two bacterial genomes: E. coli (strain K-12 substrain MG1655) and P. syringae

(pathovar syringae B728a). For these genomes, we use Illumina paired-end libraries

downloaded from the Short Read Archive (http://www.ncbi.nlm.nih.gov/sra). Next,

we evaluate the combined performance of Hapsembler and ScaRPA against a state-of-

the-art assembler that has a dedicated scaffolding module. In this experiment, we use

an artificial diploid genome originally constructed for the first Assemblathon experiment

[15]. This genome is simulated by computationally evolving a real genome and is available

2The path lengths here are calculated in terms of the number of edges.

Chapter 4. Scaffolding 76

Figure 4.7: Scaffold accuracy versus N50 for the E. coli and P. syringae datasets.

as a diploid reference sequence. A SNP rate of about 1% is modeled in the simulation.

Moderate levels of other types of polymorphism such as indels are also present. The

statistics of all datasets are given in Table 4.1.

4.5.1 Scaffolding bacterial genomes

On the E. coli and P. syringae datasets, we compare ScaRPA to four other scaffolders;

SSPACE [7], MIP Scaffolder, [63], SOPRA [13] and Opera [24]. We assemble the reads

into contigs using Hapsembler (see Chapter 3) and only use contigs longer than 100bp for

scaffolding. The standard deviation for each library is set to 10% of the mean insert size.

For MIP Scaffolder, the minimum and maximum insert size values are set to 3 standard

deviations below and above the mean respectively. When running Opera we set the PET

threshold to the smallest value accepted by the program. The other parameters are left

at default values. We let ScaRPA adjust all parameters automatically for both datasets.

For all scaffolders, the reads are mapped with Bowtie [40].

The scaffolding results for these datasets are summarized in Tables 4.2 and 4.3. To

evaluate the accuracy of the scaffolds, we employ a method similar to the one used in [63].

Chapter 4. Scaffolding 77

Table 4.2: Scaffolding results for the E. coli dataset. We define NG50 as the largest

scaffold size such that the sum of scaffolds at least as long is greater than half the

genome size. N50 is calculated using the total scaffold size reported by the scaffolder

instead of the genome size. For each scaffolder, the second row contains the statistics

calculated without gaps.

No. of Accuracy Coverage Largest N50 NG50 Total

sequences at 3k (%) (%) (bp) (bp) (bp) (mbp)

Contigs 371 100.00 98.08 82,795 23,195 22,156 4.57

ScaRPA 140 99.76 98.21 248,493 74,796 72,387 4.56

248,461 74,790 72,311 4.56

SSPACE 142 99.61 98.17 178,229 74,044 74,044 4.56

178,226 73,921 73,921 4.56

MIP 134 99.47 98.28 236,583 65,283 62,344 4.56

236,450 65,283 62,302 4.56

SOPRA 171 99.71 98.10 180,052 71,485 67,663 4.57

180,017 71,485 67,653 4.56

Opera 312 99.20 98.11 82,805 24,869 24,843 4.57

82,795 24,859 24,833 4.57

Chapter 4. Scaffolding 78

Table 4.3: Scaffolding results for the P. syringae dataset. We define NG50 as the largest

scaffold size such that the sum of scaffolds at least as long is greater than half the genome

size. N50 is calculated using the total scaffold size reported by the scaffolder in place of

the genome size. For each scaffolder, the second row contains the statistics calculated

without gaps.

No. of Accuracy Coverage Largest N50 NG50 Total

sequences at 3k (%) (%) (bp) (bp) (bp) (mbp)

Contigs 876 99.70 98.17 51,433 12,947 12,866 6.03

ScaRPA 244 98.90 98.23 273,039 77,009 74,955 6.02

272,420 76,699 74,804 6.01

SSPACE 237 98.83 98.20 227,759 59,665 59,665 6.03

227,712 59,728 59,728 6.02

MIP 244 98.67 98.32 252,801 67,675 67,442 6.02

252,586 67,333 67,299 6.01

SOPRA 387 98.69 98.19 262,140 53,635 53,635 6.03

261,935 53,533 53,533 6.03

Opera 407 97.56 98.34 137,453 30,290 30,283 6.05

137,274 30,263 30,250 6.03

Chapter 4. Scaffolding 79

Figure 4.8: Running times of the scaffolders for the E. coli and P. syringae datasets.

Mapping time is excluded for all scaffolders with the exception of SSPACE, which runs

Bowtie internally. As a comparison, the total wall-clock times taken by Bowtie to index

the reference and report read mappings are 288 seconds for E. coli and 94 seconds for P.

syringae using 8 threads.

Chapter 4. Scaffolding 80

Briefly, this method works by extracting pairs of sequences separated by a certain distance

from the scaffolds. These pairs are then mapped to the reference and the proportion of

pairs that map with the correct orientation and within 10% of the correct distance is

reported. In our experiments, we use 1000bp long sequences separated by a distance of

3000bp. We map the contigs and scaffolds to the reference sequences using MUMmer

[38].

While the results are generally similar, ScaRPA produces the most accurate scaffolds

for both datasets. For scaffold contiguity, we see that ScaRPA performs similarly to

SSPACE, MIP Scaffolder and SOPRA, whereas Opera produces shorter scaffolds that

are also less accurate (Figure 4.7). The running times of the scaffolders are given in 4.8.

On these datasets, Opera is the fastest, followed by ScaRPA and SSPACE. SOPRA is

the slowest among the five scaffolders taking over an hour on the P. syringae dataset.

4.5.2 Hapsembler + ScaRPA

On the Assemblathon1 dataset, we compare the combined performance of Hapsembler

and ScaRPA to SOAPdenovo genome assembler [43], which includes a scaffolding module.

As before, for SOAPdenovo we report the results using the k-mer size that gives the best

N50 value. For validation, we use the same methods described above save that we map the

contigs/scaffolds separately to each haploid reference and report the average for coverage

and accuracy. The results are given in Table 4.4. Only contigs/scaffolds longer than

500bp are reported.

Hapsembler produces significantly longer contigs than SOAPdenovo, while the lat-

ter only covers ∼90% of the genome with contigs longer than 500bp. We remark that

the higher accuracy of SOAPdenovo contigs is largely due to the lack of long contigs.

Note that our validation method requires contigs of length ≥3000bp and SOAPdenovo

produces much fewer contigs of this size compared to Hapsembler.

The scaffolds produced by ScaRPA using Hapsembler contigs are also substantially

Chapter 4. Scaffolding 81

Table 4.4: Scaffolding results for the Assemblathon1 dataset. We define NG50 as the

largest scaffold size such that the sum of scaffolds at least as long is greater than half the

genome size. N50 is calculated using the total scaffold size reported by the scaffolder in

place of the genome size. The first section reports the contig statistics and the second

section reports the scaffold statistics.

No. of Accuracy Coverage Largest N50 NG50 Total

sequences at 3k (%) (%) (bp) (bp) (bp) (mbp)

Hapsembler 8,592 99.72 97.89 130,810 22,901 22,917 112.60

SOAPdenovo 57,680 99.97 91.11 43,516 2,337 2,170 104.21

Hapsembler
5,816 99.37 97.92

245,922 38,665 38,665 112.53

+ ScaRPA 245,820 38,661 38,630 112.49

SOAPdenovo 29,217 96.18 95.39
60,848 9,252 9,315 113.24

60,260 9,172 9,136 111.89

Chapter 4. Scaffolding 82

longer and more accurate than SOAPdenovo scaffolds. Moreover, even though SOAPde-

novo reports a total of 113.24mbp of scaffolds, these scaffolds still cover less than 96%

of the genome. In contrast, Hapsembler + ScaRPA scaffolds cover nearly 98% of the

genome.

4.6 Discussion

The advantage of paired reads in genome assembly is two-fold: During the contig assembly

stage, paired reads are useful in resolving repeat and polymorphism related issues; in the

scaffolding stage, paired reads allow us to jump across coverage gaps and establish a

relative order and orientation of the contigs. As we have seen in this chapter, clever

utilization of paired reads during scaffolding can also help detect contig misassemblies.

Like contig assembly, scaffolding is a computationally challenging problem. The meth-

ods we present in this chapter achieve tractability using bounded parameters or near-

optimal algorithms. For most scaffolders, the running time of scaffolding is typically

dominated by the read mapping step on smaller genomes with high coverage depths. On

the other hand, read mapping can be performed in parallel. As a result, for complex

genomes, the scaffolding stage is expected to be the real bottleneck.

Within ScaRPA, the most time consuming step is the contig orientation task. While

we believe our method produces more accurate scaffolds than greedy or heuristic based

approaches, it can be computationally expensive for large and complex datasets. On the

other hand, the fixed-parameter tractable algorithm we employ is suitable for parallel

computation. Although our current implementation is single-threaded, we plan to explore

this idea in a future version.

Chapter 5

Analysis of multiple substitution

codons in Ciona Savignyi

5.1 Introduction

In the previous chapters, we have presented methods to facilitate the sequencing and

assembly of highly polymorphic organisms. In this chapter, we present a case study of

polymorphism in C. savignyi as a motivation for our efforts in developing these methods.

As we explain below, sequencing of such organisms can be very useful in studying certain

phenomena and patterns of evolution, which may be almost impossible to investigate in

less polymorphic species.

Our case study considers one such phenomenon: the presence, in different haploid

genotypes (haplotypes) of C. savignyi, of allelic codons that differ from each other at

more than one nucleotide site. Such allelic codons are exceedingly rare in less diverse

populations. When codons that differ from each other by multiple non-synonymous

substitutions were observed in different species, an excess of substitutions within the

same lineage was interpreted as a sign of positive selection [5, 4]. Here, using the closely

related species C. intestinalis as an outgroup, we report a similar excess in two haplotypes

83

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 84

of C. savignyi and analyze its possible causes.

5.2 Material and methods

C. intestinalis annotations constituting 14,002 genes were downloaded from ftp://ftp.

jgi-psf.org/pub/JGI_data/Ciona/v2.0. The C. savignyi genome (version 2.01) was

downloaded from http://mendel.stanford.edu/SidowLab/ciona.html. We used the

alignment of the two haploid genotypes, A and B, available at the site and described in

[73].

5.2.1 Aligning gene triplets

Translated C. intestinalis genes were queried against both haplotypes of C. savignyi,

using the protein2genome functionality of the alignment software Exonerate [71]. The

best hits for a gene on both haplotypes were required to have a normalized score of at least

3.0 (calculated by dividing the Exonerate raw score by the protein length involved in the

alignment). In case of a tie for the best hit in either of the haplotypes, or if the normalized

score of the best hits on each haplotype differed by > 0.5, the protein was eliminated

to avoid potential paralog problems. In addition, the locations of the alignments on

each haplotype were checked to ensure that they correspond to the same position (±5

nucleotides) in the global alignment of the two haplotypes [73]. If the intersection of

the pairwise alignments was < 100 codons or covered < 75% of the gene, the gene was

not considered for further analysis. Finally, alignments with ambiguities in nucleotide

sequences or internal stop codons were discarded. For all of the remaining genes, the two

sets of pairwise Exonerate alignments were merged into three-way alignments as follows:

the intersection of C. intestinalis vs. haplotype A and C. intestinalis vs. haplotype B

alignments was taken on the basis of the C. intestinalis amino acid, while introducing

extra gaps whenever one of the pairwise alignments had a gap in the C. intestinalis

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 85

sequence that the other did not. The remaining data set consisted of 5478 triplets of

orthologous genes.

We further masked codons that were not flanked, on each side, by gapless alignments

of ≥ 10 amino acids, with at least five matches between the two haplotypes and at

least three matches between each haplotype and C. intestinalis. To remove the effect of

insertion and deletion sequencing errors, we also masked frame-shifted regions: those in

which the same DNA sequence of length 4 or more occurred in the aligned C. savignyi

sequences with a shift of ±1.

Gene-specific synonymous and non-synonymous evolutionary distances were estimated

by the Codeml program of the PAML package [78] from pairwise nucleotide alignments

for the two C. savignyi haplotypes and each haplotype and the C. intestinalis genome,

taken from the triple alignments. When the distances were estimated for correlation

with the occurrence of a variable codon in some region, that codon itself was excluded

in distance estimation.

5.2.2 Determination of the last common ancestor

The last common ancestor (LCA) codon for a pair of allelic codons in the two C. savignyi

haplotypes was determined as follows. When the two allelic codons differed from each

other at one nucleotide site, and encoded the same amino acid, we assumed that if the

homologous C. intestinalis codon (outgroup, O) coincided either with the codon from

haplotype A or with the codon from haplotype B, LCA coincided with O. In other

words, we assumed parsimony, which implies that when O coincides with A (B), the

single synonymous nucleotide substitution occurred in the lineage that led to B (A). If

A and B differ from each other at one nucleotide site but encode different amino acids,

we assumed that if O either coincides with A (B) or differs from both A and B but still

encodes the same amino acid as A (B), the LCA also encodes this amino acid, and that

the only non-synonymous substitution occurred in the lineage that led to B (A). When

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 86

O encodes an amino acid different from that encoded by both A and B, we assumed that

the LCA could not be determined.

When the two allelic codons differ from each other at two nucleotide sites, we also

assumed that the LCA coincided with O either if O coincided with A or B or if the

O codon was intermediate between codons A and B, in the sense that O differed from

both A and B by a single nucleotide. In addition, when both allelic codons and the

two intermediates all encoded different amino acids, we assumed that the LCA encoded

the same amino acid as O if O encoded the same amino acid as A, B, or one of the

intermediate codons. Otherwise, we assumed that the LCA could not be determined.

Pairs of codons for which one of the two possible intermediate codons is a stop codon

were not considered.

When the two allelic codons differ from each other at three nucleotide sites, we as-

sumed that the LCA coincided with O either if O coincided with A or B or if the O

codon was intermediate between codons A and B, in the sense that O differed from one

of them at one nucleotide site and from the other one at two nucleotide sites. In all other

cases, we assumed that the LCA could not be determined, as it is usually impossible to

establish with confidence that all the substitutions between the two allelic codons were

non-synonymous. Pairs of codons for which one of the six possible intermediate codons

is a stop codon were not considered.

5.3 Results

Among the 1,251,343 homologous codons in the 5478 analyzed genes, 93.46% are iden-

tical in the two haplotypes, and 6.40, 0.12, and 0.005% differ at one, two, and three

nucleotide sites, respectively (no-, one-, two- and three-substitution codons). The mean

evolutionary distance between the haplotypes is 0.086 at synonymous sites and 0.004 at

non-synonymous sites, in agreement with [72]. Among codons with a single synonymous

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 87

Table 5.1: Divergence at codons where haplotypes A and B differ at one nucleotide site.

Percentages for lineage A and lineage B are given for the codons where the last common

ancestor (LCA) is known.

Substitution in Substitution in LCA unknown

lineage of A (%) lineage of B (%) (%)

synonymous 20,023 (50.0) 20,052 (50.0) 31,901 (44.3)

non-synonymous 2,452 (49.7) 2,481 (50.3) 3,236 (39.6)

Table 5.2: Divergence at codons where haplotypes A and B differ at two nucleotide sites.

Percentages for the first and second columns are for codons where the last common

ancestor (LCA) is known.

Both substitutions Substitutions in LCA unknown

in same lineage different lineages (%)

(%) (%)

2 synonymous 82 (43.9) 105 (56.2) 101 (35.1)

1 synonymous and 117 (43.0) 155 (57.0) 404 (59.8)

1 non-synonymous

2 synonymous or 52 (69.3) 23 (30.7) 69 (47.9)

2 non-synonymous

2 non-synonymous 101 (65.6) 53 (34.4) 95 (38.2)

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 88

Table 5.3: Distribution of codons where haplotypes A and B differ with 2 non-synonymous

substitutions.

Both substitutions Substitutions in LCA unknown

in same lineage different lineages (%)

(%) (%)

Codons

Possible false excess 63 (68.5) 29 (31.5) 74 (44.6)

Possible false deficit 38 (61.3) 24 (38.7) 21 (25.3)

1,3-substitutiona 13 (56.5) 10 (43.5) 10 (30.3)

CpG-freeb 69 (66.3) 35 (33.7) 62 (37.3)

Regionsc

Very strong conservation 12 (92.3) 1 (7.7) 4 (23.5)

Strong conservation 15 (78.9) 4 (21.1) 11 (36.7)

Moderate conservation 19 (55.9) 15 (44.1) 18 (34.6)

All others 55 (62.5) 33 (37.5) 62 (41.3)

Genesd

Low Dn 18 (94.7) 1 (5.3) 4 (17.4)

Medium Dn 28 (58.3) 20 (41.7) 32 (40.0)

High Dn 55 (63.2) 32 (36.8) 59 (40.4)

a Codons where the two C. savignyi haplotypes differ from each other at the first and third

nucleotide sites.

b Codons in which neither of the two possible intermediate states between haplotype A and

haplotype B codons includes CpG context, either inside the codon or on its boundary.

c Regions with very strong, strong, and moderate conservation are those in which the codon

under consideration is flanked from each side by gapless alignments of two C. savignyi genomes

and C. intestinalis of length ≥10 each with 9 or 10, 8, and 7 invariant amino acids, respectively.

d Genes were split into three bins of equal size (low, medium, and high Dn) according to the

average of Dn values between C. intestinalis and each of the haplotypes of C. savignyi.

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 89

substitution between haplotype A and haplotype B, O coincides with either A or B in

56% of the cases (Table 5.1). Among codons with a single non-synonymous substitution

between A and B, O encoded the same amino acid as either A or B in 60% of the cases

(Table 5.1).

There are 1610 codons separated by two substitutions, including 288 codons separated

by two synonymous substitutions (such codons are rare, as they must code for either Leu

or Arg) and 249 codons separated by two non-synonymous substitutions (Table 5.2).

If the substitutions were independent, we would expect both of them to occur in the

same lineage with the probability of ∼50% [5]. In agreement with this expectation, in

codons where both substitutions were synonymous, they occur in the same lineage in

approximately half of the cases. In contrast, two non-synonymous substitutions occur in

the same lineage in 66% of the cases and in different lineages in only 34% of the cases.

Clumping of non-synonymous substitutions is more pronounced in highly conserved genes

and gene regions (Table 5.3). When two non-synonymous substitutions occur in the same

lineage, they tend to occur in the lineage that has a higher rate of non-synonymous (86

of 101; chi square, P < 0.0001), but not necessarily synonymous (55 of 101; chi square,

P = 0.573), substitutions in this gene. In contrast, when two synonymous substitutions

occur in the same lineage, there is no significant difference in the rate of synonymous or

non-synonymous substitutions between the two lineages (chi square, P > 0.05).

5.4 Analysis

In the following sections, we consider three possible explanations for the observed clump-

ing of non-synonymous substitutions: positive selection, compensatory mutations, and

potential biases in the last common ancestor identification, as well as other biases and

phenomena that could lead to an excess of substitutions in the same lineage.

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 90

5.4.1 Two-substitution polymorphisms due to positive selection

Positive selection can lead to clumping of non-synonymous substitutions within a codon

[5, 4]. However, in contrast to the previous observations of such clumping, here we

are dealing with intrapopulation polymorphisms, and transitive polymorphisms due to

positive selection-driven allele replacements are short-lived (see [12]). Thus, it is not

clear whether positive selection driving both of the substitutions that convert the codon

found in haplotype A into the codon found in haplotype B can provide a quantitatively

feasible explanation. We roughly estimate the number of codons that differ by two non-

synonymous substitutions between two haplotypes that segregate within a population

under positive selection. Let us assume (unrealistically) that both of these substitutions

occur simultaneously. Then, in the absence of dominance, the deterministic dynamics of

replacement of codon A with codon B are described by the fundamental equation:

dp/dt = sp(1− p) (5.1)

where p is the frequency of codon B, 1− p is the frequency of codon A, and s is the

selective advantage of codon B over codon A. The solution to this equation is given by:

p(t) =
1

1 + (1/p0 − 1)e−st
(5.2)

(see [12]). If two haploid genotypes are sampled from the population every generation,

the total number of heterozygous combinations over the whole course of a substitution is

T =

∫ ∞

∞
2p(t)(1− p(t))dt = 2/s (5.3)

Thus, if we observe k heterozygous loci under positive selection within a pair of

complete haploid genotypes, the per-generation number of positive selection-driven al-

lele replacements required to explain this fact is ks/2. The excess of codons where

both non-synonymous substitutions occurred in the lineage of the same haplotype sug-

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 91

gests that k ∼ 50 (Table 5.2). Thus, even if selection is very weak (say, s = 10−5),

we still need to assume that there is a positive selection-driven replacement that re-

sults in a two-substitution codon every 4000 generations. Probably this rate of positive

selection-driven evolution is too high [23], because selection that simultaneously favors

two non-synonymous substitutions must occur only in a minority of cases. Moreover,

our calculations underestimate the required prevalence of positive selection, because in

reality the two substitutions necessary to convert codon A into codon B cannot occur si-

multaneously. Codon A will be replaced not by codon B directly, but by an intermediate

codon that has selective advantage over A, and codons A and B would coexist for a much

shorter period than the two alleles where one directly replaces the other, as assumed in

Equation 5.1. Thus, simple positive selection favoring both changes is unlikely to be the

leading cause of the observed pattern.

5.4.2 Two-substitution polymorphisms due to compensatory mu-

tations

A second potential explanation for the observed pattern is compensatory evolution. Let

us assume that codons A and B have the same fitness, but the intermediate codons

have a reduced fitness, 1 − s. In this case, in each pair of the substitutions, only the

second (from an intermediate codon to either A or B) is driven by positive selection, and

there is no long-term increase in fitness. Then, the deterministic equilibrium frequency

of the intermediate codons will be 2m/s, where m is the per-nucleotide mutation rate,

and codons A and B appear from these intermediate codons, due to mutation, at the

rate m ∗ (2m/s) = 2m2/s. If we treat coexistence of A and B as a selectively neutral

polymorphism with the effective mutation rate” meff = 2m2/s, the expected nucleotide

diversity is π = 4Nemeff = 8Nem2/s. Assuming m = 10−8, Ne = 106 [72], and s = 10−5,

we obtain π ∼ 10−4. Thus, to explain the 50 extra codons where the variants found in

haplotypes A and B differ by two non-synonymous substitutions (Table 5.2), we need to

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 92

assume that such compensatory selection operates on 5× 105 codons, i.e., on 40% of all

codons. The assumption that such a large fraction of protein sites are under this kind of

selection, with at least two amino acids conferring the same high fitness, does not seem

to be very likely. Of course, if the selection against the intermediate codons is weaker, a

smaller fraction of codons under compensatory selection will suffice: if s = 10−6, only 4%

of the codons could be under this selection. As s declines past 10−6, however, selection

becomes inefficient given Ne = 106, and the intermediate codon(s) will become effectively

neutral.

5.4.3 Biased misidentification of the ancestral codon

The observed clumping could also be caused by biased misidentification of the LCA

codon for the two C. savignyi haplotypes. Because C. intestinalis is not a close outgroup

for within-species polymorphism in C. savignyi, in a substantial fraction of cases, the

LCA cannot be identified under the assumption of parsimony, and, in some cases, the

LCA is likely to be misidentified. Unbiased mistakes in identification of the LCA codon

will not produce the observed pattern: if, in the case of a two-substitution pair of C.

savignyi codons A and B, the LCA codon was drawn randomly from the four possible

codons (A, B, and the two intermediates), the two substitutions that distinguish A from

B will be attributed to the same and the two different haplotypes with equal probabilities.

However, there may also be a systematic bias in misidentification of LCA, due to two

reasons.

First, it may be possible that only one of the two intermediate codons confers a high

fitness and the other one confers a low fitness. For example, if the codons A and B are

AAT (encoding Asn) and GGT (encoding Gly), the intermediate codon AGT (encoding

Ser) may be fit, and the intermediate codon GAT (encoding Asp) may be unfit. Then,

if the outgroup is very distant from the LCA, it will carry the fit intermediate codon in

only one-third of cases (assuming that at equilibrium codons AAT, GGT, and AGT are

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 93

equally common). As a result, one could conclude that for two-thirds of codon pairs,

both substitutions occurred in one C. savignyi haplotype, because the LCA (as revealed

by the outgroup) coincides with the other haplotype.

Unfortunately, C. intestinalis is the closest known outgroup that can be used to

polarize the C. savignyi polymorphism. We investigated the potential effect of biased

misidentification of the LCA by testing the robustness of the excess of multiple substitu-

tions in the same lineage in interspecific divergence [5] to the choice of the outgroup. We

identified the codons with two non-synonymous substitutions between human and mouse

and determined the LCA in three ways: (i) using only sites where dog and opossum

carry the same codon (most confident), (ii) using dog as an outgroup, and (iii) using

opossum as an outgroup (least confident). The corresponding fractions of codons where

both substitutions in two-substitution human-mouse codons occurred in the same lin-

eage (amino acid-level pattern) were 76, 69, and 67%, respectively. Thus, the excess of

codons where both substitutions were attributed to the same lineage diminishes when a

more distant outgroup is used. These data argue against biased misidentification of the

LCA as an explanation of the observed pattern in divergence between independent evo-

lutionary lineages, although this conclusion does not necessarily apply to within-species

polymorphism of C. savignyi.

Second, biased misidentification of the LCA may appear if the amino acid composi-

tion of proteins is out of equilibrium [31]. If, for a double-substitution codon, the amino

acid substitution that creates the terminal amino acid from the intermediate amino acid

is more likely than the reciprocal substitution, some clumping could be an artifact of sys-

tematic errors in inferring the LCA from the outgroup codon [5]. To test this hypothesis,

we used the data on codons identical between the two C. savignyi haplotypes to infer

the rates of each non-synonymous substitution between C. intestinalis and C. savignyi.

Next, for each two-substitution pair of codons, we compared the rate of substitutions

from each of the two intermediate codons into each of the two terminal codons (a total

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 94

of four substitutions) with the rate of the reciprocal substitutions. A substitution from

intermediate to terminal codon can lead to false excess of clumping for the given two-

substitution codon if its rate is higher than the rate of the reciprocal substitution. We

compared the clumping between two-substitution codons with zero or one false excess

amino acid substitutions (false deficit codons) with that in two-substitution codons with

two to four false excess amino acid substitutions (false excess codons). The difference be-

tween the two values was not large (chi square, P > 0.1), arguing against nonequilibrium

composition of proteins as a leading cause for the observed clumping.

5.4.4 Other explanations

The observed clumping might also be due to errors in alignment or closely correlated

nearby single-nucleotide sequencing errors. We believe, however, that our filtering criteria

are effective in eliminating such cases: we make sure that the two orthologous C. savignyi

exons are also aligned to each other in the haplotype alignments and that the level of

conservation between the two exons in C. savignyi is above a threshold. The observed

elevated prevalence of non-synonymous substitutions in the vicinity of codons where

haplotypes A and B differ by two non-synonymous substitutions is unlikely to be due to

sequencing errors, because this effect is absent when A and B differ by two synonymous

substitutions. Moreover, the clumping of non-synonymous substitutions is the strongest

when the nearby codons are completely conserved between the A and B haplotypes,

further reducing the chance that sequencing or alignment errors play a dominant role.

This clumping cannot be explained by hypermutable CpG dinucleotides, because

substitutions are also clumped in codon pairs where no intermediate codons contain CpGs

(Table 5.3). Due to the small number of two-substitution amino acids with mutations at

the first and third nucleotides, we cannot immediately dismiss that some of the clumping

is due to mutation events spanning two adjacent nucleotides. In the interspecific case,

however, [5] rejected this explanation in the presence of a larger data set.

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 95

5.5 Discussion

Our analysis of differences between the two haploid genotypes from one C. savignyi in-

dividual follows closely that for differences between mouse and rat genomes [5]. Surpris-

ingly, the results of these analyses are also rather similar to each other. Our data reveal

clumping of within-population non-synonymous polymorphisms at the same codon that

is similar in magnitude to the clumping of non-synonymous substitutions that distinguish

different genomes. Clumping of non-synonymous substitutions in different mammalian

species [5] and HIV-1 strains [4] was interpreted as the signature of positive selection

that occurred at some time during the divergence of the analyzed lineages. Although the

exact fraction of positive selection-driven amino acid substitutions remains controversial,

it is almost certainly substantial [23].

In contrast, the role of positive selection in maintaining polymorphism at the molec-

ular level is believed to be small [36]. Indeed, our rough estimates suggest that the

observed clumping of non-synonymous substitutions cannot be easily explained by posi-

tive selection. We considered two different scenarios, assuming that either both or only

one of the two non-synonymous differences between the two C. savignyi codons are fa-

vored by positive selection, and in both cases it takes very high prevalence of positive

selection to explain the observed clumping. Another feasible explanation for the observed

clumping of non-synonymous substitutions is the biased mis-identification of the LCA.

Qualitatively, this is feasible if only one intermediate codon has a high enough fitness to

be present. Quantitatively, however, this mechanism appears to be unlikely to explain

what we see. We also considered the effect of sequencing errors and correlated mutations

at adjacent nucleotides and do not believe these to be the leading causes of the observed

clumping.

Recently, Schrider et al. [66] has suggested that the clumping of non-synonymous sub-

stitutions may be due to multinucleotide mutational events. In humans, this explanation

is particularly appealing because a similar clumping is observed even in parent-offspring

Chapter 5. Analysis of multiple substitution codons in Ciona Savignyi 96

trios [66]. Nevertheless, the available data is not adequate to draw the same conclusion

for C. savignyi. In particular, the allele frequencies of intermediate codons will help

elucidate the factors responsible for these observations. Deriving these frequencies re-

quires the sequencing and analysis of additional haplotypes. Automated methods that

can handle extreme polymorphism, as described in this thesis, can greatly facilitate this

task.

Chapter 6

Concluding Remarks

Like many interesting problems in computational biology, genome assembly is a com-

putationally hard problem. Despite this computational difficulty, the human genome -

complex and monumental in size - was assembled more than a decade ago using only a

fraction of the computational power available to us today. With the new challenges and

opportunities introduced by the recent innovations in sequencing technologies, genome

assembly is likely to remain as an active research field for many years to come.

Written in a time when the sequencing technologies and their applications are rapidly

evolving, this thesis exhibits several interesting phenomena and trends.

In Chapter 2, we demonstrate that quality scores, when incorporated in a robust

probabilistic framework, can be very useful in distinguishing errors from polymorphisms.

Yet a majority of error correction tools and genome assemblers, developed for the new

sequencing platforms, ignore quality scores. This trend is in contrast with the tools

developed for Sanger sequencing, for which the quality scores played a prominent role.

In most cases, the underlying reason for this is the memory overhead. We believe that

this is an omissible problem which can be mitigated by clever software implementations

and hope that our results may inspire future research in this direction.

In genome assembly, a noticeable trend is the exclusive use of the de Bruijn Graph

97

Chapter 6. Concluding Remarks 98

approach for the new sequencing platforms. As we have discussed in Chapter 3, this

approach is typically sensitive to sequencing errors. In particular, insertion and deletion

errors, which are common in the Roche/454 platform, can not be resolved via k-mer

correction methods such as Spectral Alignment.

Another drawback of this approach is the loss of information due to the breaking

of reads into k-mers. For very short reads, as produced by the earlier versions of the

existing high throughput platforms, this loss of information is insignificant. As the read

lengths of these platforms rapidly increase, the utility of the de Bruijn graphs may be

questionable.

In contrast, the Overlap-Layout-Consensus approach can utilize longer reads more

effectively. Combined with advanced algorithms that exploit paired sequencing, in Chap-

ters 3 and 4, we have demonstrated that this approach can outperform state-of-the-art de

Bruijn Graph based assemblers on relatively large diploid genomes. On the other hand,

the Overlap-Layout-Consensus approach, in its basic form, is arguably inefficient to as-

semble very large genomes with the current read lengths and coverage depths produced

by the high throughput sequencers.

We speculate that the main challenge of genome assembly in the near future will be

to efficiently assemble complex genomes to a high degree of accuracy with nearly Sanger-

length reads and very high coverage. We hope that the methods described in this thesis

will provide insights to help achieve this goal.

Bibliography

[1] Genome 10k: A proposal to obtain whole-genome sequence for 10000 vertebrate

species. Journal of Heredity, 100(6):659–674, 2009.

[2] S. F. Altschul and D. J. Lipman. Trees, stars, and multiple biological sequence

alignment. SIAM Journal on Applied Mathematics, 49(1):197–209, 1989.

[3] S. Batzoglou, D. B. Jaffe, K. Stanley, and J. Butler. Arachne: a whole-genome

shotgun assembler. Genome Research, pages 12–177, 2002.

[4] G. A. Bazykin, J. Dushoff, S. A. Levin, and A. S. Kondrashov. Bursts of non-

synonymous substitutions in HIV-1 evolution reveal instances of positive selection

at conservative protein sites. Proceedings of the National Academy of Sciences,

103:19396–19401, 2006.

[5] G. A. Bazykin, F. A. Kondrashov, A. Y. Ogurtsov, S. Sunyaev, and A. S. Kon-

drashov. Positive selection at sites of multiple amino acid replacements since rat-

mouse divergence. Nature, 429:558–562, 2004.

[6] D. Bentley et al . Accurate whole human genome sequencing using reversible termi-

nator chemistry. Nature, 456:53–59, 2008.

[7] M. Boetzer, C. Henkel, H. Jansen, D. Butler, and W. Pirovano. Scaffolding pre-

assembled contigs using SSPACE. Bioinformatics, 27(4):578–579, 2011.

99

Bibliography 100

[8] J. Butler, I. MacCallum, M. Kleber, I. A. Shlyakhter, M. K. Belmonte, E. S. Lander,

C. Nusbaum, and D. B. Jaffe. ALLPATHS: de novo assembly of whole-genome

shotgun microreads. Genome Research, 18(5):810–820, 2008.

[9] M. J. Chaisson, D. Brinza, and P. A. Pevzner. De novo fragment assembly with short

mate-paired reads: Does the read length matter? Genome Research, 19(2):336–346,

2009.

[10] B. Chevreux, T. Pfisterer, B. Drescher, A. J. Driesel, W. E. Muller, T. Wetter, and

S. Suhai. Using the miraEST assembler for reliable and automated mRNA transcript

assembly and SNP detection in sequenced ESTs. Genome Research, 14(6):1147–

1159, 2004.

[11] H. Chitsaz, J. L. Yee-Greenbaum, G. Tesler, M.-J. Lombardo, C. L. Dupont, J. H.

Badger, M. Novotny, D. B. Rusch, L. J. Fraser, N. A. Gormley, O. Schulz-Trieglaff,

G. P. Smith, D. J. Evers, P. A. Pevzner, and R. S. Lasken. Efficient de novo assembly

of single-cell bacterial genomes from short-read data sets. Nature Biotechnology,

29(10):915–921, 2011.

[12] J. F. Crow and M. Kimura. An introduction to population genetics theory. Harper

& Row, New York, 1970.

[13] A. Dayarian, T. Michael, and A. M. Sengupta. SOPRA: Scaffolding algorithm for

paired reads via statistical optimization. BMC Bioinformatics, 11(345), 2010.

[14] P. Dehal et al . The draft genome of Ciona intestinalis : Insights into chordate and

vertebrate origins. Science, 298(5601):2157–2167, 2002.

[15] A. E. Dent et al . Assemblathon 1: A competitive assessment of de novo short read

assembly methods. Genome Research, 21(12):2224–2241, 2011.

Bibliography 101

[16] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

[17] J. C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer. SHARCGS: a fast

and highly accurate short-read assembly algorithm for de novo genomic sequencing.

Genome Research, 17(11):1697–1706, 2007.

[18] P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier

under zero-one loss. Machine Learning, 29:103–130, 1997.

[19] N. Donmez, G. Bazykin, M. Brudno, and A. S. Kondrashov. Polymorphism due to

multiple amino acid substitutions at a codon site within Ciona savignyi. Genetics,

181:685–690, 2009.

[20] N. Donmez and M. Brudno. Hapsembler: an assembler for highly polymorphic

genomes. In V. Bafna and S. Sahinalp, editors, Research in Computational Molecular

Biology, volume 6577 of Lecture Notes in Computer Science, pages 38–52. Springer

Berlin / Heidelberg, 2011.

[21] P. Eades, X. Lin, and W. F. Smyth. A fast effective heuristic for the feedback arc

set problem. Information Processing Letters, 47:319–323, 1993.

[22] B. Ewing, L. Hillier, M. C. Wendl, and P. Green. Base-calling of automated se-

quencer traces using Phred error probabilities. Genome Research, 8:175–185, 1998.

[23] A. Eyre-Walker. The genomic rate of adaptive evolution. Trends in Ecology &

Evolution, 21(10):569–575, 2006.

[24] S. Gao, N. Nagarajan, and W.-K. Sung. Opera: Reconstructing optimal genomic

scaffolds with high-throughput paired-end sequences. In V. Bafna and S. Sahinalp,

editors, Research in Computational Molecular Biology, volume 6577 of Lecture Notes

in Computer Science, pages 437–451. Springer Berlin / Heidelberg, 2011.

Bibliography 102

[25] D. Hernandez, P. Francois, L. Farinelli, M. Osteras, and J. Schrenzel. De novo

bacterial genome sequencing: Millions of very short reads assembled on a desktop

computer. Genome Research, 18(5):802–809, 2008.

[26] X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome

Research, 9(9):868–877, 1999.

[27] D. H. Huson, K. Reinert, and E. W. Myers. The greedy path merging algorithm for

contig scaffolding. Journal of the ACM, 49(5):6003–615, 2002.

[28] R. M. Idury and M. S. Waterman. A new algorithm for DNA sequence assembly.

Journal of Computational Biology, 2:291–306, 1995.

[29] L. Ilie, F. Fazayeli, and S. Ilie. HiTEC: accurate error correction in high-throughput

sequencing data. Bioinformatics, 27(3):295–302, 2011.

[30] D. B. Jaffe, J. Butler, S. Gnerre, E. Mauceli, K. Lindblad-Toh, J. P. Mesirov, M. C.

Zody, and E. S. Lander. Whole-genome sequence assembly for mammalian genomes:

Arachne 2. Genome Research, 13(1):91–96, 2003.

[31] I. K. Jordan, F. A. Kondrashov, I. A. Adzhubei, Y. I. Wolf, and E. V. Koonin et

al . A universal trend of amino acid gain and loss in protein evolution. Nature,

433:633–638, 2005.

[32] W.-C. Kao, A. H. Chan, and Y. S. Song. ECHO: A reference-free short-read error

correction algorithm. Genome Research, 21(7):1181–1192, 2011.

[33] R. M. Karp. Reducibility among combinatorial problems. Complexity of computer

computations, pages 85–103, 1972.

[34] J. Kececioglu. Exact and Approximation Algorithms for DNA Sequence Reconstruc-

tion. PhD dissertation, Department of Computer Science, University of Arizona,

1991.

Bibliography 103

[35] D. Kelley, M. Schatz, and S. Salzberg. Quake: quality-aware detection and correction

of sequencing errors. Genome Biology, 11:R116, 2010.

[36] M. Kimura. The neutral theory of molecular evolution. Cambridge University Press,

Cambridge, UK, 1983.

[37] M. Kircher and J. Kelso. High-throughput DNA sequencing concepts and limita-

tions. BioEssays, 32(6):524–536, 2010.

[38] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M. Shumway, C. Antonescu, and

S. Salzberg. Versatile and open software for comparing large genomes. Genome

Biology, 5(2):R12, 2004.

[39] T. Kvist, B. Ahring, R. Lasken, and P. Westermann. Specific single-cell isolation

and genomic amplification of uncultured microorganisms. Applied Microbiology and

Biotechnology, 74:926–935, 2007.

[40] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biology, 10(3),

2009.

[41] J. Laserson, V. Jojic, and D. Koller. Genovo: de novo assembly for metagenomes.

In B. Berger, editor, Research in Computational Molecular Biology, volume 6044 of

Lecture Notes in Computer Science, pages 341–356. Springer Berlin / Heidelberg,

2010.

[42] J. Li, H. Jiang, and W. Wong. Modeling non-uniformity in short-read rates in

RNA-Seq data. Genome Biology, 11(5), 2010.

[43] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kris-

tiansen, S. Li, H. Yang, J. Wang, and J. Wang. De novo assembly of human genomes

Bibliography 104

with massively parallel short read sequencing. Genome Research, 20(2):265–272,

2009.

[44] D. Lokshtanov, S. Saurabh, and S. Sikdar. Simpler parameterized algorithm for

OCT. In J. Fiala, J. Kratochv́ıl, and M. Miller, editors, Combinatorial Algorithms,

pages 380–384. Springer Berlin / Heidelberg, 2009.

[45] E. R. Mardis. The impact of next-generation sequencing technology on genetics.

Trends in Genetics, 24(3):133 – 141, 2008.

[46] A. Masella, A. Bartram, J. Truszkowski, D. Brown, and J. Neufeld. PANDAseq:

paired-end assembler for illumina sequences. BMC Bioinformatics, 13(1):31, 2012.

[47] P. Medvedev, K. Georgiou, E. W. Myers, and M. Brudno. Computability of models

for sequence assembly. In Proceedings of WABI, pages 289–301, 2007.

[48] P. Medvedev, S. Pham, M. Chaisson, G. Tesler, and P. Pevzner. Paired de Bruijn

graphs: a novel approach for incorporating mate pair information into genome as-

semblers. In V. Bafna and S. Sahinalp, editors, Research in Computational Molecular

Biology, volume 6577 of Lecture Notes in Computer Science, pages 238–251. Springer

Berlin / Heidelberg, 2011.

[49] P. Medvedev, E. Scott, B. Kakaradov, and P. Pevzner. Error correction of

high-throughput sequencing datasets with non-uniform coverage. Bioinformatics,

27(13):137–141, 2011.

[50] B. Mishra. Statistical distributions in genome sequence assembly.

www.cs.nyu.edu/faculty/mishra/COURSES/09.HPGP/Lecture4BioX, Lecture

Notes, last accessed date 7/8/2012.

[51] E. W. Myers. The fragment assembly string graph. Bioinformatics, 21:79–85, 2005.

Bibliography 105

[52] E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan,

S. A. Kravitz, C. M. Mobarry, K. H. J. Reinert, K. A. Remington, E. L. Anson,

A. A. Bolanos, Q. Zhang, X. Zheng, G. M. Rubin, M. D. Adams, and J. C. Venter.

A whole-genome assembly of drosophila. Genome Research, 287(5461):2196–2204,

2000.

[53] N. Nagarajan, T. D. Read, and M. Pop. Scaffolding and validation of bacterial

genome assemblies using optical restriction maps. Bioinformatics, 24(10):1229–1235,

2008.

[54] S. B. Needleman and C. D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443–453, 1970.

[55] P. A. Pevzner, H. Tang, and M. S. Waterman. An Eulerian path approach to DNA

fragment assembly. Proceedings of the National Academy of Sciences, 98(17):9748–

9753, 2001.

[56] M. Pop, D. Kosack, and S. Salzberg. Hierarchical scaffolding with Bambus. Genome

Research, 14:149–159, 2004.

[57] M. Pop and S. L. Salzberg. Bioinformatics challenges of new sequencing technology.

Trends in Genetics, 24(3):142 – 149, 2008.

[58] K. Rasmussen, J. Stoye, and E. Myers. Efficient q-gram filters for finding all e-

matches over a given length. Journal of Computational Biology, 13:296–308, 2005.

[59] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations

Research Letters, 32:299–301, 2004.

Bibliography 106

[60] M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlen, and P. Nyren. Real-time

DNA sequencing using detection of pyrophosphate release. Analytical Biochemistry,

242(1):84–89, 1996.

[61] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume, A. Sidow, and M. Brudno.

Shrimp: Accurate mapping of short color-space reads. PLoS Computational Biology,

5(5), 05 2009.

[62] L. Salmela. Correction of sequencing errors in a mixed set of reads. Bioinformatics,

26:1284–1290, 2010.

[63] L. Salmela, V. Makinen, N. Valimaki, J. Ylinen, and E. Ukkonen. Fast scaffolding

with small independent mixed integer programs. Bioinformatics, 27(23):3259–3265,

2011.

[64] L. Salmela and J. Schroder. Correcting errors in short reads by multiple alignments.

Bioinformatics, 27(11):1455–1461, 2011.

[65] F. Sanger and A. R. Coulson. A rapid method for determining sequences in DNA by

primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3):441–

446, 1975.

[66] D. R. Schrider, J. N. Hourmozdi, and M. W. Hahn. Pervasive multinucleotide

mutational events in eukaryotes. Current Biology, 21(12):1051–1054, 2011.

[67] J. Schroder, H. Schroder, S. J. Puglisi, R. Sinha, and B. Schmidt. SHREC: a short-

read error correction method. Bioinformatics, 25(17):2157–2163, 2009.

[68] J. Shendure, G. J. Porreca, N. B. Reppas, X. Lin, J. P. McCutcheon, A. M. Rosen-

baum, M. D. Wang, K. Zhang, R. D. Mitra, and G. M. Church. Accurate multiplex

polony sequencing of an evolved bacterial genome. Science, 309(5741):1728–1732,

2005.

Bibliography 107

[69] J. T. Simpson and R. Durbin. Efficient construction of an assembly string graph

using the FM-index. Bioinformatics, 26(12):i367–i373, 2010.

[70] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol.

ABySS: A parallel assembler for short read sequence data. Genome Research,

19(6):1117–1123, 2009.

[71] G. S. Slater and E. Birney. Automated generation of heuristics for biological sequence

comparison. BMC Bioinformatics, 6(31), 2005.

[72] K. S. Small, M. Brudno, M. M. Hill, and A. Sidow. Extreme genomic variation in a

natural population. Proceedings of the National Academy of Sciences, 104(13):5698–

5703, 2007.

[73] K. S. Small, M. Brudno, M. M. Hill, and A. Sidow. A haplome alignment and refer-

ence sequence of the highly polymorphic Ciona savignyi genome. Genome Biology,

8(3), 2007.

[74] E. Sodergren et al . The genome of the sea urchin Strongylocentrotus purpuratus.

Science, 314:941–952, 2006.

[75] G. G. Sutton, O. White, M. D. Adams, and A. Kerlavage. TIGR Assembler: A new

tool for assembling large shotgun sequencing projects. Genome Science & Technol-

ogy, 1:9–19, 1995.

[76] J. P. Vinson, D. B. Jaffe, K. O’Neill, E. K. Karlsson, N. Stange-Thomann, S. An-

derson, J. P. Mesirov, N. Satoh, Y. Satou, C. Nusbaum, B. Birren, J. E. Galagan,

and E. S. Lander. Assembly of polymorphic genomes: Algorithms and application

to Ciona savignyi. Genome Research, 15(8):1127–1135, 2005.

[77] R. L. Warren, G. G. Sutton, S. J. M. Jones, and R. A. Holt. Assembling millions of

short DNA sequences using SSAKE. Bioinformatics, 23(4):500–501, 2007.

Bibliography 108

[78] Z. Yang. PAML: a program package for phylogenetic analysis by maximum likeli-

hood. Computer Applications in the Biosciences, 13:555–556, 1997.

[79] D. R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly

using de bruijn graphs. Genome Research, 18(5):821–829, 2008.

[80] D. R. Zerbino, G. K. McEwen, E. H. Margulies, and E. Birney. Pebble and Rock

Band: Heuristic resolution of repeats and scaffolding in the Velvet short-read de

novo assembler. PLoS ONE, 4(12), 12 2009.

