

Self Driving Labs for Chemistry

- Self-driving labs built with general purpose robots and with common hardware can democratize chemical laboratory automation
- Specialized hardware for lab automation is expensive and lacks flexibility
- Precise liquid handling is an essential task in chemistry labs

Problems with Automated Liquid Transfer

Accuracy is limited when pouring liquids with a robotic arm [1]

UNIVERSITY OF

- Existing pipette automation requires expensive specialized hardware
- Specialized solutions for operating commercial pipettes with robotic grippers limit manipulation abilites [2]

Initial Position

Aspiration

Links

CHEMRXIV PAPER https://doi.org/10.26434/chemrxiv-2023-nvxkg

GITHUB - DEMO VIDEO - SOURCE FILES

https://github.com/ac-rad/digital-pipette

[1] N. Yoshikawa, A. Z. Li, K. Darvish, Y. Zhao, H. Xu, A. Kuramshin, A. Aspuru-Guzik, A. Garg, and F. Shkurti, "Chemistry Lab Automation via Constrained Task and Motion Planning," arXiv preprint arXiv:2212.09672, 2023. [2] J. Zhang, W. Wan, N. Tanaka, M. Fujita, and K. Harada, "Integrating a Manual Pipette into a Collaborative Robot Manipulator for Flexible Liquid Dispensing," arXiv preprint arXiv:2207.01214, 2022.

DIGITAL PIPETTE

Open hardware for liquid transfer in self-driving laboratories

< \$200

3D models and code are

entirely open-source!

Kevin Angers, Naruki Yoshikawa, Kourosh Darvish, Mohammad Ghazi Vakili, Animesh Garg, Alán Aspuru-Guzik

Dispensing

Performace is comparable to commercial micropipettes! (%)

rro

ш

-2.0

-4.0

-6.0

-8.0

8.0 6.0 -----4.0 2.0 0.0

Pipette Design and Calibration

Three piece, **3D printed** design

syringe

serial communication with the robot workstation

Length of Arduino pulse signal controls the length of extension,

which was calibrated to desired volumes by weighing the dispensed liquid

Proposed pipette costs less than 200 USD in total; comparable to typical micropipettes used in chemistry labs

1280

10.10

() 10.05

= 10.00

9.95

9.90

Experiments & Validation

[3] Opentrons, OT-2 Pipettes by Opentrons, 2023, https://opentrons.com/products/pipettes/ [4] I. O. for Standardization, Piston-operated volumetric apparatus - Part 2: Pipettes, International Organization for Standardization, ISO 8655

A linear actuator operates a standard 10 mL

The linear actuator is controlled by an Arduino via USB

