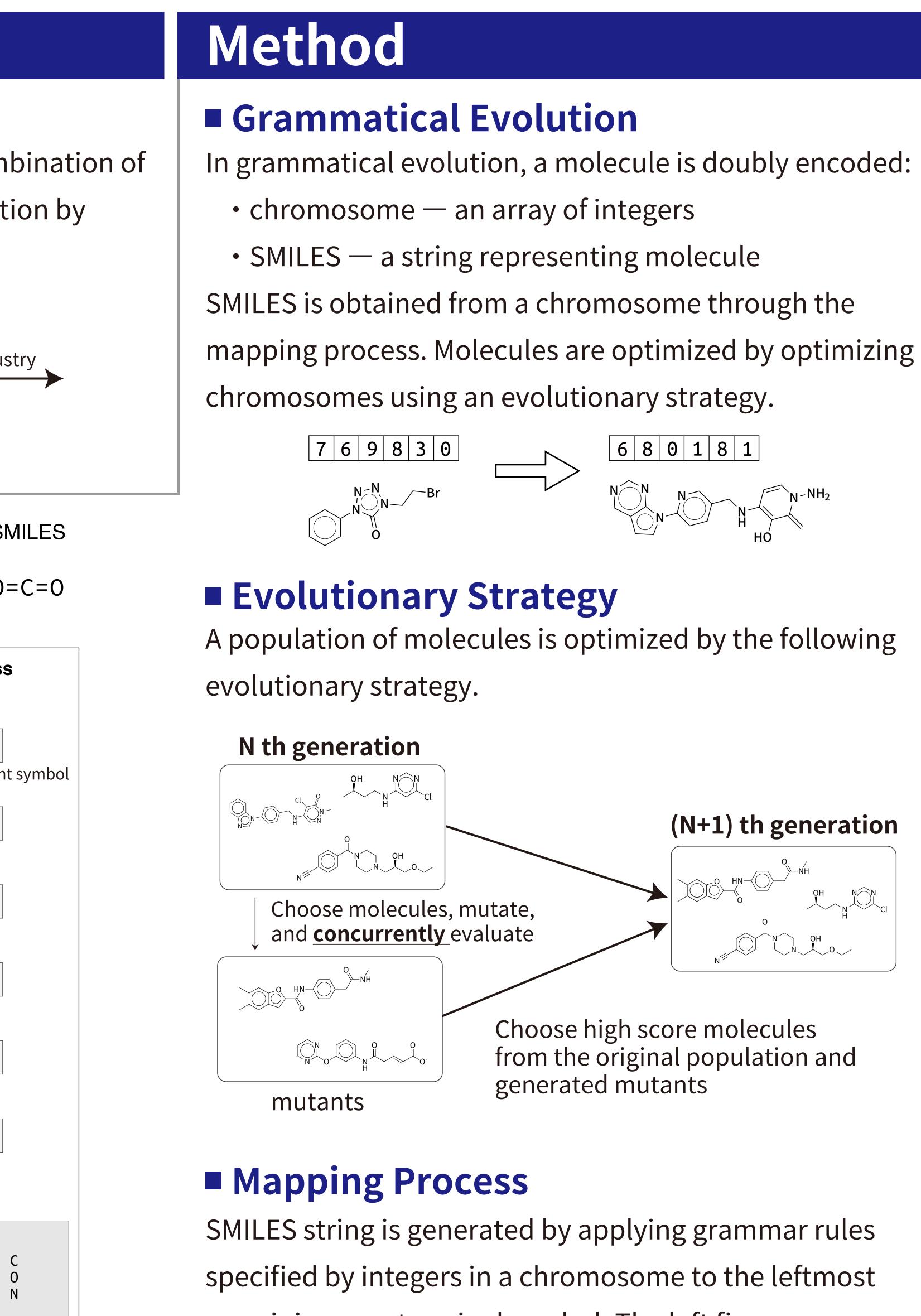
Population-based de novo Molecule Generation, **Using Grammatical Evolution**

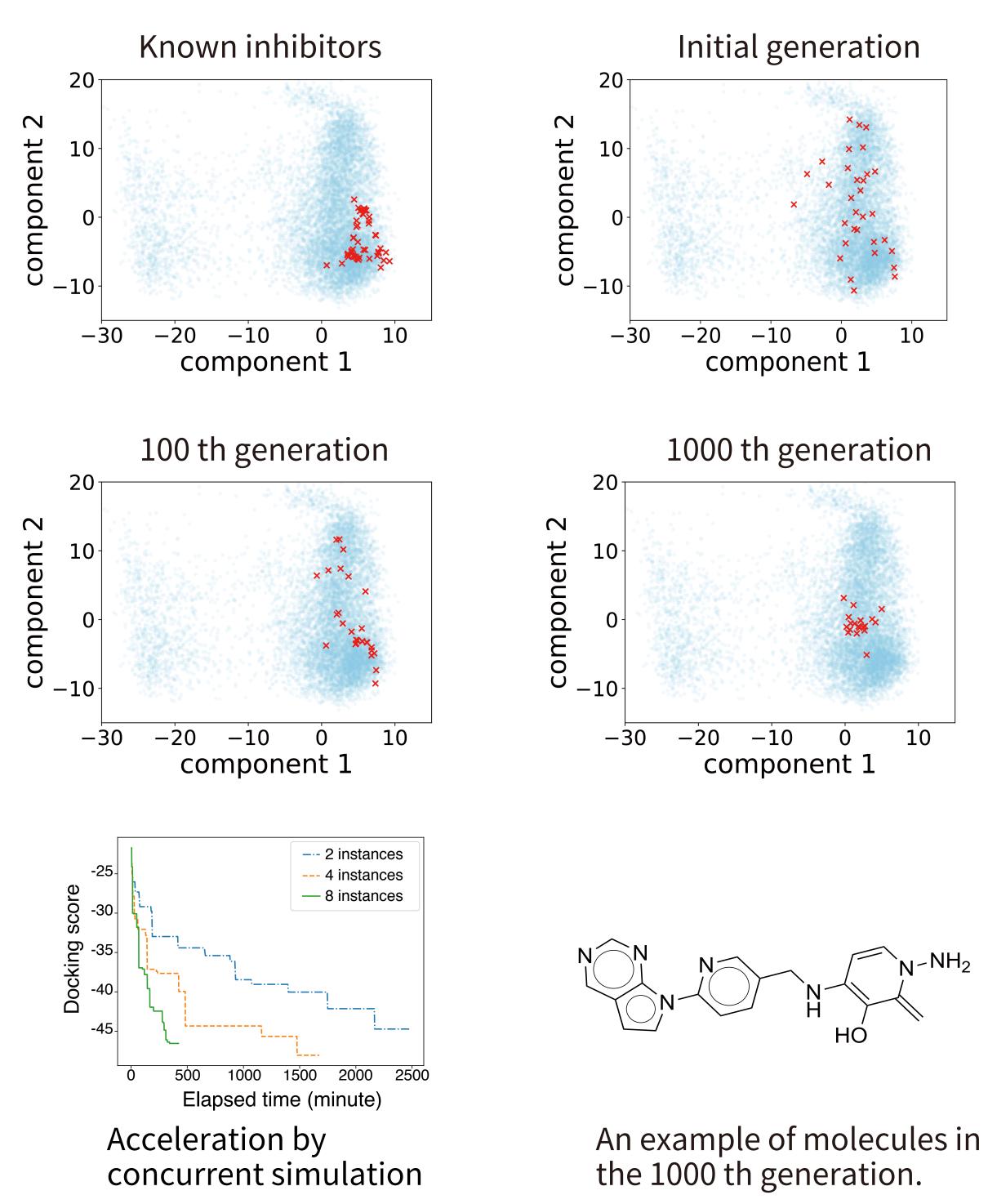

Naruki Yoshikawa^{*1}, Kei Terayama^{1, 2, 3}, Masato Sumita², Teruki Homma⁴, Kenta Oono⁵, and Koji Tsuda^{1, 2, 6} 1. The University of Tokyo, 2. RIKEN Center for Advanced Intelligence Project, 3. Kyoto University, * E-mail: naruki-yoshikawa@g.ecc.u-tokyo.ac.jp 4. RIKEN Systems and Structural Biology Center, 5. Preferred Networks, Inc., 6. National Institute for Materials Science

Introduction

Automatic Molecular Design

Automatic molecular design is conducted by a combination of molecule design by generative process and evaluation by simulators or machine learning models.

initial molcules	
Chromosome SM	
k 1 2 3 C[k] 2 5 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Translation from chromosome to SMILES in Mapping process	
<smiles></smiles>	The starting symbol is <smiles></smiles>
	$0 (= \frac{2}{5} \% \frac{1}{5}) < smiles > \Rightarrow < chain > 1$
<u><chain></chain></u>	\The number of rules available for the current s
rule	$1 (= 5 \% 2) < chain> \rightarrow < chain> < bond> < atom>$
<u><chain></chain></u> <bor< td=""><td>nd> <atom></atom></td></bor<>	nd> <atom></atom>
rule	$1 (= 7 \% 2) < chain> \rightarrow < chain> < bond> < atom>$
<u><chain></chain></u> <box< td=""><td>nd> <atom> <bond> <atom></atom></bond></atom></td></box<>	nd> <atom> <bond> <atom></atom></bond></atom>
rule	$0 (= 6 \% 2) < chain> \rightarrow < atom>$
<u><atom></atom></u> <bond< td=""><td>d> <atom> <bond> <atom></atom></bond></atom></td></bond<>	d> <atom> <bond> <atom></atom></bond></atom>
rule	$1 (= 1 \% 3) < atom> \rightarrow 0$
0 <u><bond></bond></u> <a< td=""><td>tom> <bond> <atom></atom></bond></td></a<>	tom> <bond> <atom></atom></bond>
	1 (= 4 % 3) <bond> → =</bond>
O = <u><atom></atom></u> ↓	<body> atom></body>
•	Grammar <smiles> \rightarrow (0) <chain> <atom> \rightarrow (0) C</atom></chain></smiles>
	<pre><chain> \rightarrow(0) <atom> \rightarrow(1) 0 <(2) N</atom></chain></pre>
• 0=C=0	\rightarrow (1) <chain><bond><atom> <bond> \rightarrow (0) - \rightarrow (1) =</bond></atom></bond></chain>


remaining non-terminal symbol. The left figure illustrates how this translation is conducted.

- 6 8 0 1 8 1

(N+1) th generation

Results

- accessibility score.

Conclusion

We developed a new molecular generator using grammatical evolution. This work demonstrated that molecule generation is possible without costly deep learning and showed a new direction for research. Our paper is available at https://arxiv.org/abs/1804.02134

• We optimized the sum of docking score (representing interaction with thymidine kinase, calculated by rDock) and the synthetic

• We found new molecules whose scores are better than known inhibitors. We used isomap to visualize molecules in 2D space.