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ABSTRACT
Hyperbolic spaces offer a rich setup to learn embeddings with supe-
rior properties that have been leveraged in areas such as computer
vision, natural language processing and computational biology. Re-
cently, several hyperbolic approaches have been proposed to learn
robust representations for users and items in the recommendation
setting. However, these approaches don’t capture the higher order
relationships that typically exist in the recommendation domain.
Graph convolutional neural networks (GCNs) on the other hand
excel at capturing higher order information by applying multiple
levels of aggregation to local representations. In this paper we com-
bine these frameworks in a novel way, by proposing a hyperbolic
GCN model for collaborative filtering. We demonstrate that our
model can be effectively learned with a margin ranking loss, and
show that hyperbolic space has desirable properties under the rank
margin setting. At test time, inference in our model is done us-
ing the hyperbolic distance which preserves the structure of the
learned space. We conduct extensive empirical analysis on three
public benchmarks and compare against a large set of baselines.
Our approach achieves highly competitive results and outperforms
leading baselines including the Euclidean GCN counterpart. We fur-
ther study the properties of the learned hyperbolic embeddings and
show that they offer meaningful insights into the data. Full code for
this work is available here: https://github.com/layer6ai-labs/HGCF.
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1 INTRODUCTION
A central task in recommender systems is to accurately capture user
preferences and item attributes to correctly predict whether a user
will prefer a given item. Collaborative filtering (CF) approaches
utilize past user-item interaction data to drive recommendations.
Recent research has largely focused on the implicit feedback setting
as implicit interactions can typically be collected in much larger
quantity and at low cost. A prominent direction in CF is latent mod-
els that learn compact representations of users and items, distances
between these representations are then used to infer preference.
The most popular latent CF approach is matrix factorization where
user-item interaction matrix is approximated by a product of two
low-rank matrices that are taken as user and item representations.
An alternative direction is to view the interaction matrix as a bi-
partite graph, with edges representing interactions between user
and item nodes. Graph-based methods can then be applied to pass
messages along the edges and learn representations that summarize
neighbourhood information for each node.

A key advantage of the graph oriented approach is the explicit
ability to model higher order relationships (neighbors-of-neighbors)
between users and items. Recent work on applying graph convolu-
tion networks (GCNs) to CF has demonstrated the importance of
exploring higher order relationships for user-itemmodeling [14, 36].
These approaches have achieved state-of-the-art performance on
many public benchmarks by applying multiple levels of neighbor-
hood aggregation under the graph convolutional setting to produce
the final representations. Similarly strong performance from graph
learning has been achieved in other domains such as computer
vision [23, 38, 39], natural language processing [1, 19, 26] and com-
putational biology [8, 10, 17].

In parallel, it has been shown that many real-world datasets ex-
hibit the prototypical characteristics of complex networks such as
the power-law degree distribution [31], including user-item graphs
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in CF datasets [3]. These properties are related to the underly-
ing hierarchical structure [31] which is well modelled by hyper-
bolic geometry [20]. This has motivated representation learning
in hyperbolic space to more e�ectively capture the structure of
the user-item graph. Proposed methods in this area have recently
demonstrated that a considerable improvement in accuracy can be
achieved by adapting variants of the traditional matrix factoriza-
tion approach to the hyperbolic setting [3, 27, 35]. Furthermore, the
learned hyperbolic representations were found to naturally capture
both hierarchy and similarity through their norm and hyperbolic
distance [24, 28].

Motivated by these advances, we propose a new hyperbolic GCN
model for CF. We refer to our approach as theHyperbolicGraph
CollaborativeFiltering (HGCF), and to the best of our knowledge
this is the �rst successful combination of GCN and hyperbolic
learning in recommender systems. HGCF learns user and item rep-
resentations in the hyperbolic space by aggregating neighborhood
information through a GCN module on the tangent space of a refer-
ence point. By taking advantage of the exponential neighborhood
growth in the hyperbolic space, we show that our model can be
e�ectively learned using a margin ranking loss based on hyperbolic
distances optimized with the Riemannian Gradient Descent. We an-
alyze margin learning under hyperbolic distance, and demonstrate
that it has more capacity to distribute the items within a given
margin than the equivalent Euclidean representation. Additional
capacity can in turn alleviate the problem of dissimilar items being
pushed closer together that was shown to a�ect margin learning in
CF [22].

Extensive experiments on public benchmarks show that our ap-
proach outperforms many leading baselines including the Euclidean
GCN counterpart, and is more robust to changes in embedding di-
mensionality. Further analysis of the item representations learned
by our model reveals a natural hierarchical structure. In summary,
our contributions are as follows:

� We propose a hyperbolic GCN architecture for CF and conduct an
investigation into GCN layer designs to better facilitate learning
in deeper models that explore higher order relationships.

� We analyze margin ranking optimization with hyperbolic dis-
tances and demonstrate that it has desirable properties for learn-
ing robust representations.

� We implement an optimization procedure for our model based
on Riemannian Gradient Descent that propagates information
through the GCN via the tangent space of a selected reference
point.

� We conduct extensive experiments demonstrating superior per-
formance and show that learned item representations capture
meaningful structure in the interaction data.

2 RELATED WORK
In this section we review relevant previous work from the GCN
and hyperbolic learning literature.

2.1 Graph Convolutional Neural Networks
GCN-based methods have received increasing attention due to their
ability to learn rich node representations from arbitrarily structured
graphs [19, 30]. They have been e�ectively applied in a wide range

of domains such as computer vision [23, 38, 39], natural language
processing [1, 19, 26] and computational biology [8, 10, 17]. In
collaborative �ltering, GCNs have been adapted for matrix factor-
ization [36] and diversi�ed recommendation [32], demonstrating
leading performance. Subsequently, [14] empirically showed that
the essential GCN component for CF is the iterative neighborhood
aggregation. Other components such as feature transformation and
nonlinear activations have little e�ect and can be removed. [33]
proposes a neighbor interaction aware GCN approach that explic-
itly models the neighbor relationships in the user-item graph. [16]
expands the GCN architecture to multi-behavior setting where
several sources of user preference are available.

The majority of proposed GCN approaches embed nodes in the
Euclidean space. Recently, [24] and [5] propose to learn GCNs in the
hyperbolic space and show superior results on graph classi�cation
problems where graphs have hierarchical structure. We build on this
work to bring the bene�ts of hyperbolic GCNs to the CF domain.

2.2 Hyperbolic Embedding Learning
Representation learning has taken an important role in extracting
information out of semi-structured and unstructured data such as
text or graphs. This type of data often contains an underlying hier-
archical structure that is di�cult to capture with representations in
Euclidean space. To mitigate this problem [28] proposes learning
representation in the Poincaré ball formulation of hyperbolic space
that naturally captures hierarchical structure. Expanding on that
work, [29] �nds that learning representations based on the Lorentz
formulation of the hyperbolic space is more e�cient. Recently, hy-
perbolic representation learning has been applied to a variety of
problems in di�erent areas [4, 7, 12, 18], including CF [3, 9, 27, 35].
In CF, [27] uses a single layer autoencoder in hyperbolic space to
learn user-item embeddings. [35] studies metric learning in hy-
perbolic space and its connection to CF. [3] proposes a weighted
margin rank batch loss to learn a hyperbolic model and generates
user representation by item aggregation in hyperbolic space via
Einstein midpoint. Finally, [9] applies hyperbolic learning for point
of interest recommendation. Our approach is related to these works
in that we also learn user and item representations in hyperbolic
space. However, a key di�erence is that our approach captures
higher order information in user-item interactions by incorporat-
ing multiple levels of neighborhood aggregation through a GCN
module.

3 PRELIMINARIES
Our aim is to learnd-dimensional user and item embeddings in the
hyperbolic space. A number of equivalent mathematical formula-
tions have been derived for the hyperbolic space. Here, we use the
Lorentz formulation to de�ne the model which is found to be more
stable for numeric optimization [29]. We then use the Poincaré
formulation to visualize the learned embeddings as it provides an
intuitive way to lay out the points on the sphere. This property
is particularly useful to visualize the hierarchical structure as dis-
tances stretch exponentially towards the sphere boundary. In this
section we summarize the main properties of both formulations.

We recall that ad-dimensional hyperbolic space is a Riemannian
manifoldM with a constant negative curvature, which we denote
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Figure 1: HGCF model architecture. Input user embedding� u is projected into the tangent spaceToH d usingo as the reference point in the
hyperbolic space. The resulting representationz¹0º

u is passed through multiple layers of SkipGCN to encode higher order neighborhood
information. Output of SkipGCNzu is then projected back to the hyperbolic space via an exponential map to get the �nal user embedding
 u which is used to compute the loss. Analogous derivation is done for item embeddings.

by c. Letk = � 1•c denote the negative reciprocal of the curvature
such thatk > 0. The tangent spaceTxM at point x on M is a
d-dimensional Euclidean space that best approximatesM around
x. The elements ofTxM are referred to as tangent vectors. The
Lorentz and Poincaré formulations are equivalent mathematical
representations of the hyperbolic space, and each is determined by
an underlying set and a metric tensor. The Lorentz representation
is de�ned by the pairL d = ¹H d ;gL º:

H d = f x 2 Rd+1 : hx; xi L = � k;x0 > 0g (1)

where hx; yi L is the Lorentz inner product given byhx; yi L =
� x0y0 +

Í d
i =1xi yi for x; y 2 Rd+1, and the metric tensor isgL =

diag»� 1; 1; 1; � � � ; 1¼. The metricgL induces a distance function for
any pair of pointsx; y 2 H d given by:

dL ¹x; yº =
p

k arcosh
�
�

hx; yi L

k

�
(2)

The tangent space centered at the pointx in the Lorentz manifold
is then de�ned by:

TxH d = f v 2 Rd+1 : hv; xi L = 0g (3)

The Poincaré representationBd has the open spheref x 2 Rd :
kxk < kg as the underlying set, with curvaturec = � 1•k < 0
and wherek:k denotes the Euclidean norm. Distances inBd are
measured via the function :

dB ¹x; yº =
p

k arcosh
�
1+ 2k

kx � yk2
�
k � k xk2

� �
k � k yk2

�
�

(4)

It is important to note here that for a �xed pointx the distance
dB ¹x; yº will increase exponentially towards in�nity asy gets closer
to the sphere boundary. To map between Lorentz and Poincaré
formulations we apply the following transformation:

pL!B ¹xº = pL!B ¹x0;x1; : : : ;xd º =
p

k
¹x1; : : : ;xd º

x0 +
p

k
(5)

4 OUR APPROACH
In this section we present our HGCF approach. We consider the
standard implicit CF set-up withm usersU = fu1; ::;um g andn
items I = f i1; :::;in g. Interactions between users and items are
given in a sparsem � n binary interaction matrixR where Rui
is 1 if useru interacted with itemi and 0 otherwise. We denote
Nu = f i 2 I : Rui = 1g as the set of items that useru interacted
with and refer to this set as the user neighborhood. Similarly, the
item neighborhood is given byNi = fu 2 U : Rui = 1g.

To apply HGCF, we �rst initialize embeddings for all users and
items in the hyperbolic space. Then, given a useru with corre-
sponding embeddings� u 2 H d , we map� u to the tangent space
of a reference point where it is passed through several layers of
graph convolutions. The updated embedding, with encoded neigh-
bor information, is mapped back toH d where a hyperbolic margin
ranking loss is applied. The signal from the loss is back-propagated
to update relevant parameters and the process is repeated. An analo-
gous procedure is applied to item embeddings. Figure 1 summarizes
the HGCF architecture and we describe each component in detail
below.

4.1 Embeddings in Hyperbolic Space
We use the Lorentz representation for both user and item embed-
dings. We �x the origin o = ¹

p
k;0; � � � ; 0º 2 H d and use it as a

reference point. Note thatk = � 1•c is the reciprocal of the curva-
turec that is considered a hyper-parameter here and set empirically.
The embeddings are initialized by sampling from the Gaussian
distribution on the tangent spaceToH d of the reference pointo.
Formally, given a useru and an itemi , we �rst sample from the
multivariate Gaussian:

� 0
u ; � 0

i � N ¹0; � I d� d º

and then set:

� 00
u = »0;� 0

u ¼ � 00
i = »0;� 0

i ¼

where»;¼denotes concatenation. Note that both� 00
u and� 00

i satisfy
h� 00

u ;oi L = 0 andh� 00
i ;oi L = 0 and therefore belong toToH d . To
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Figure 2: Graph convolution architectures,G represents the graph
convolution layer. PlainGCN is the original GCN architecture, and
the other three architectures have di�erent structures of skip con-
nections.

obtain the corresponding embeddings inH d we project into the
hyperbolic space via the exponential mapexpo : ToH d ! H d ,
de�ned as [5]:

expo¹vº = cosh
�

kvkLp
k

�
o +

p
k sinh

�
kvkLp

k

�
v

kvkL
(6)

where v 2 ToH d and kvkL =
p

hv ;v i L . We then get user and
item embeddings inH d :

� u = expo¹� 00
u º � i = expo¹� 00

i º (7)

These hyperbolic embeddings are used to initialize the model for
all usersf � u gu 2U and itemsf � i gi 2I .

4.2 Skip-connected Graph Convolution
Networks

The main idea behind GCNs is to learn node representations within
a graph by iteratively aggregating local information from multi-
hop neighbors. The aggregation process typically involves feature
transformations and non-linear activation at each stage. However,
recent work found that the gain from feature transformation and
non-linearity is minimal over the simpler approach of mean aggre-
gation [14]. Moreover, non-linearity adds considerable representa-
tional power to the model and can lead to signi�cant over-�tting
on highly sparse CF datasets [14]. In light of these �ndings, we opt
to remove feature transforms and non-linearities to both reduce
model complexity and speed up training and inference.

In hyperbolic space the analog of mean aggregation is the Fréchet
mean which has no closed form solution [11]. To deal with this
problem, we perform aggregation in the tangent spaceToH d . To
this end we �rst project the embeddings� u , � i to ToH d via the log-
arithmic maplogo : H d ! T oH d . For the Lorentz representation
this logarithmic map is de�ned as [5]:

logo¹xº =
p

k arcosh
�
�

ho; xi L

k

� x + 1
k ho; xi L o

kx + 1
k ho; xi L okL

(8)

wherex 2 H d , o 2 H d andx , o. The resulting vectors serve as
input to the �rst GCN layer and we denote them asz¹0º

u andz¹0º
i :

z¹0º
u = logo¹� u º z¹0º

i = logo¹� i º (9)

Given the user and item neighborhoodsNu andNi , each graph
convolutional layer is computed by aggregating neighborhood rep-
resentations from the previous layer:

z¹l +1º
u = z¹l º

u +
Õ

i 2Nu

1
jNu j

z¹l º
i z¹l +1º

i = z¹l º
i +

Õ

u 2Ni

1
jNi j

z¹l º
u

(10)

We apply normalization by degreesjNu j andjNi j to ensure that the
scale of embeddings does not increase with the number of layers.
Each layer aggregates over increasingly higher order neighbors
allowing to explicitly model long range relationships between users
and items.

To fully exploit higher order relations we need to stack multi-
ple graph convolutional layers together. However, previous work
has found that stacking layers often results in signi�cant drop in
performance (even after several layers) due to gradient vanishing
or over-smoothing [40]. To mitigate the depth limitation we ex-
plore architectures that contain skip connections motivated by the
residual networks [13] and related work on deep GCNs [21]. The ar-
chitectures that we consider are shown in Figure 2. Here, PlainGCN
is the original model and SkipGCN, ResGCN, and DenseGCN have
di�erent structures of skip connections. SkipGCN contains skip
connections from each layer to the �nal layer, ResGCN has residual
connections between consecutive layers and DenseGCN combines
SkipGCN and ResGCN. Empirically we �nd that SkipGCN performs
the best in the hyperbolic setting and adopt this architecture for
HGCF. Empirical comparison of these architectures is shown in
Section 5.3.

Under SkipGCN the last layer aggregates representations from
all intermediate layers and we getzu = z¹Lº

u + z¹L� 1º
u + ::: + z¹1º

u ,
andzi = z¹Lº

i + z¹L� 1º
i + ::: + z¹1º

i , whereL is the total number of
layers. The �nal embedding for each user and item is obtained by
applying the exponential map in Equation 6 to project the output
of SkipGCN back into the hyperbolic space:

 u = expo¹zu º  i = expo¹zi º (11)

The updated embeddings now encode rich neighbor information,
and we use the hyperbolic distancedL ¹ u ; i º to estimate similar-
ity between user-item pairs.

4.3 Hyperbolic Margin Ranking Loss
The margin ranking loss has proven to be highly e�ective for
distance-based recommender models [15, 34]. This loss aims to
separate positive and negative user-item pairs up to a given margin.
Once the margin is reached the pairs are considered well separated
and no longer contribute to the loss. This enables optimization to
continuously re-focus on di�cult pairs that violate the margin. We
adopt this loss in our model and optimize for margin separation in
the hyperbolic space. Formally, for each useru we sample a positive
item i with Rui = 1 and a negative itemj with Ru j = 0, the goal is
to separatei from j by their distance tou:

L¹u; i ; j º = max
�
dL ¹ u ; i º

2 � dL ¹ u ; j º
2 + m;0

�
(12)

wheredL is the hyperbolic distance (see Equation 2) andm is the
margin. Note that once the di�erencedL ¹ u ; i º

2 � dL ¹ u ; j º
2
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