
TAFA: Two-headed Attention Fused Autoencoder for
Context-Aware Recommendations

Jin Peng Zhou∗
University of Toronto, Layer 6 AI
jinpeng.zhou@mail.utoronto.ca

Zhaoyue Cheng∗
Layer 6 AI

joey@layer6.ai

Felipe Pérez
Layer 6 AI

felipe@layer6.ai

Maksims Volkovs
Layer 6 AI

maks@layer6.ai

ABSTRACT
Collaborative filtering with implicit feedback is a ubiquitous class
of recommendation problems where only positive interactions such
as purchases or clicks are observed. Autoencoder-based recom-
mendation models have shown strong performance on many im-
plicit feedback benchmarks. However, these models tend to suf-
fer from popularity bias making recommendations less personal-
ized. User-generated reviews contain a rich source of preference
information, often with specific details that are important to each
user, and can help mitigate the popularity bias. Since not all re-
views are equally useful, existing work has been exploring various
forms of attention to distill relevant information. In the majority
of proposed approaches, representations from implicit feedback
and review branches are simply concatenated at the end to gener-
ate predictions. This can prevent the model from learning deeper
correlations between the two modalities and affect prediction accu-
racy. To address these problems, we propose a novel Two-headed
Attention Fused Autoencoder (TAFA) model that jointly learns
representations from user reviews and implicit feedback to make
recommendations. We apply early and late modality fusion which
allows the model to fully correlate and extract relevant informa-
tion from both input sources. To further combat popularity bias,
we leverage the Noise Contrastive Estimation (NCE) objective to
“de-popularize” the fused user representation via a two-headed de-
coder architecture. Empirically, we show that TAFA outperforms
leading baselines on multiple real-world benchmarks. Moreover,
by tracing attention weights back to reviews we can provide ex-
planations for the generated recommendations and gain further
insights into user preferences. Full code for this work is available
here: https://github.com/layer6ai-labs/TAFA.
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1 INTRODUCTION
With virtually unlimited product choices, high-quality recommender
systems have become an essential part of online platforms, and
serve to help customers find items of interest in every aspect of their
daily lives. Collaborative filtering (CF) is the de-facto approach for
making personalized recommendations based on user-item interac-
tions [18]. In many cases interactions such as purchase history are
taken as positive signals while explicit negative signals are missing.
Absence of interaction does not necessarily imply negative pref-
erence as user can be unaware of the particular item. However, in
many applications only positive interactions are available, and the
focus of recent research has been on modeling such data [15, 24],
we refer to this as the implicit feedback setting.

A diverse set of approaches have been proposed to tackle recom-
mendations in the implicit feedback setting. For example,WRMF [10]
characterizes users and items with latent factors learned via matrix
factorization; while metric learning approach CML [8], learns a
joint user-item metric to model similarity. Notably, autoencoder-
based methods have shown to be effective in this setting [12, 21, 26].
Autoencoders learn preference patterns by first encoding observed
interactions into a lower-dimensional latent representation. This
representation is then decoded to reconstruct observed data and si-
multaneously generate predictions for unobserved interactions. By
using non-linear activation functions in the encoding layer, an au-
toencoder is able to represent more complex relationships between
users and items than linear embedding approaches such as matrix
factorization. However, a vanilla autoencoder often exhibits bias
towards popular items, making recommendations less personalized
and limiting accuracy [25].

User-generated text reviews can be an important source of prefer-
ence data, and often contain very specific and nuanced information
about user preferences. High-quality reviews typically have particu-
lar reasons why a user likes or dislikes a particular item. Leveraging
this additional information can be an effective way to mitigate the
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popularity bias, and improve the overall performance of the rec-
ommendation model. One major challenge with utilizing reviews
lies in the fact that the quality of reviews vary. Not all reviews are
equally informative, and not all words/sections within a particular
review contain useful information. One way to address this chal-
lenge is to use attention over reviews or concepts extracted from
them. This can allow the model to focus on parts that are helpful
for recommendation and discount everything else. Although previ-
ous works that utilize various attention mechanisms have achieved
considerable improvement in performance [4, 13, 14], one major
bottleneck is the lack of an effective way to correlate meaningful
information between observed preferences and reviews. Majority
of existing approaches simply concatenate both representations to
make predictions. This prevents deeper interactions between the
two modalities and can affects recommendation performance.

To address these issues, we propose a novel approach calledTwo-
headed Attention Fused Autoencoder (TAFA). TAFA consists of
several components: a preference encoder which encodes implicit
feedback, a review encoder which applies attention mechanism
at both word and review levels, early and late fusion modules to
combine information from both encoders, and a decoder with two
decoder heads. To better correlate the representations from the two
modalities, we propose to first apply an early fusion module which
leverages attention to select which reviews are relevant for the rec-
ommendation task. This is followed by a late fusion module which
combines representations from the two encoders. Finally, we use a
two-headed decoder architecture to further mitigate popularity bias
through a closed-form Noise Contrastive Estimation [25, 29]. Ex-
tensive empirical evaluation on six public benchmarks shows that
TAFA outperforms many leading baselines. We further demonstrate
that our approach leads to a higher level of personalization by accu-
rately recommending less popular items to users. Finally, by tracing
attention weights back to the reviews we can explain generated
recommendations and gain further insight into user preferences.

2 RELATEDWORK
Deep Learning Given the success of deep learning approaches
in fields such as computer vision and natural language processing,
a number of deep learning approaches have been proposed for
the implicit feedback recommendation problem [7, 8, 12, 20, 26].
Even though classical techniques such as neighbor similarity re-
main strong baselines [5], deep learning approaches have shown
promising performance particularly when other sources of data
such as images or text are available [27]. Of these, autoencoder-
based models have shown strong performance on a number on
benchmarks, with an ability to learn robust representations for
users and items. One of the earliest such approaches is AutoRec [20],
an encoder-decoder architecture that maps users’ implicit feedback
to a low-dimensional latent space via a feed forward network. A
symmetric architecture is then used to decode, and the model is opti-
mised with a reconstruction loss. Following the success of AutoRec,
other related approaches have been proposed including Collabora-
tive Denoising Autoencoder [26] and Variational Autoencoder [12].
One prominent challenge in recommender systems is bias towards
popular items [1]. As we demonstrate empirically this bias can be

particularly strong in autoencoder models limiting their accuracy,
similar observation was also made by [25].

User Reviews In many applications, other sources of infor-
mation are often available in addition to implicit feedback. One
important such source is user-generated textual reviews. Reviews
can contain rich preference information which can be leveraged
to augment implicit feedback. To model user reviews many recent
works, motivated by the advances in natural language processing,
have proposed to use deep learning methods that jointly learn from
reviews and implicit feedback [3, 4, 9, 13, 22, 28]. Early work in this
area includes DeepCoNN [28] and TransNet [3]. Both approaches
use convolutional neural networks (CNNs) on review word em-
beddings to generate review-based user representations. These
representations are then used in a factorization machine to make
predictions. To model multiple reviews from the same user, Deep-
CoNN and TransNet concatenate reviews together. This forces the
CNN to model all reviews which can skew representations since not
every review contains useful information. Later approaches address
this by introducing attention [4, 13, 14], which enables the model to
focus on relevant information. Specifically, [4] applies review-level
attention on the text representations learned by the CNN. On the
other hand, [13] first extracts topics from reviews and then applies
attention over topics in a recurrent model. Finally, [14] applies a
word-level attention mechanism to encode text followed by a gating
layer analogous to the LSTM, output of this layer is then fed to an
autoencoder to make predictions. However, one major drawback
of all of these approaches is that the review and implicit feedback
representations are simply concatenated together, limiting model’s
ability to learn deeper interactions between the two modalities.

Noise Contrastive Estimation Recommender systems often
exhibit a strong popularity bias that prevents them from accurately
recommending less popular items [1, 2]. To reduce this bias, Noise
Contrastive Estimation (NCE) [6] aims to discriminate between the
observed data and artificially generated noise that usually comes
from a popularity-based distribution. Furthermore, in the implicit
feedback setting, NCE becomes a robust tool to learn a recommen-
dation model without explicitly assuming that missing interactions
indicate negative preference as done in other models [25]. In this
setting, the NCE objective aims to increase the likelihood of ob-
served implicit interactions, while minimizing the probability of
negative samples drawn from a popularity-based noise distribution.

3 APPROACH
Given users {u}u ∈U and items {i}i ∈I , the implicit feedback rui
for user u on item i is set to be 1 if there is a positive historical
interaction between them. If there is no such interaction we set
rui = 0. The |U | × |I | matrix R obtained from rui across all users and
items is referred to as the implicit feedback matrix. We note that the
column r:,i represents the historical feedback for item i across all
users. Similarly, ru, : contains the complete historical information
for useru. In this work we propose an end-to-endmodel, TAFA, that
leverages both implicit feedback and review information. Given
the implicit feedback matrix R and a set of reviews, we aim to first
encode R into a lower dimension and then reconstruct it filling
missing values in the process. We denote this reconstruction by
R̃. TAFA contains the following major components: preference
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Figure 1: TAFAmodel architecture. Review encoder encodes user reviews into user review representation. Preference encoder
encodes user implicit feedback into user preference representation. Early and late fusion modules integrate the two represen-
tations together. NCE and preference decoders reconstruct by minimising the NCE and squared error losses respectively.

encoder which encodes historical user-item interactions, review
encoder which extracts relevant information from the reviews,
two fusion modules that integrate the representations from both
encoders and a two-headed decoder. The full model architecture
is shown in Figure 1, and we describe each component in detail
below.

Preference Encoder The preference encoder uses implicit feed-
back to generate a latent representation for each user. Given a user
u with implicit feedback ru, :, we encode ru, : via a two-layer feed-
forward MLP to obtain latent representation eu . This architecture
is analogous to [20], and the main difference is that we apply noise
to the input in the form of dropout [26]. Adding input noise makes
this module similar to the denoising autoencoder [23] and improves
generalisation. It is worth noting here that the latent representa-
tions learned by this model geometrically encode information about
the number of interactions that each user has, see Section 4.8 for
more details.

Review Encoder User-generated reviews contain important
preference information with specific details about items. To ex-
tract this information an important step is to distinguish between
relevant and noisy reviews. Furthermore, within each review it
is desirable to identify particularly important sections. Guided by
this intuition, we use attention combined with recurrent neural
networks to extract relevant information at both word and review
level. Let S1, . . . , SN denote a sequence of reviews written by a
given user. Each review S is composed of word tokens t1, . . . , t |S | .
We first embed these tokens using the pre-trained GloVe embed-
dings [16]. To further capture contextual information, an embedded
token sequence is passed through a bi-directional LSTM. Hidden
states in both directions at each token are then concatenated to-
gether to produce contextual token embeddings t̂1, . . . , t̂ |S | . After

contextual encoding, we apply attention which allows the model
to focus on relevant tokens within each review:

γk =W2 tanh(W1t̂k + b1) + b2

ak =
exp(γk )∑ |S |

k ′=1 exp(γk ′)

a =

|S |∑
k=1

ak · t̂k

(1)

whereW ’s and b’s are weights and biases to be learned. The vector
a can be interpreted as a summarization for the review S . Repeating
this process for every user review S1, . . . , SN , we obtain the corre-
sponding attention vectors a1, . . . ,aN . Similarly to contextualising
words, we apply another bi-directional LSTM over the attention
vectors, and concatenate hidden states in both directions at each
review to get attended contextualised review vectors â1, . . . , âN .
These vectors capture both global context across reviews and spe-
cific word-level information from each review. In practice users can
have hundreds or even thousands of reviews. To make this compu-
tation practical we can sample a subset of the most recent reviews
as those are more likely to convey the latest user preference.

Early Fusion The objective of the early fusion is to combine
implicit feedback with the information extracted from reviews be-
fore it is aggregated to form a review-based user representation.
To this end we fuse the contextualised review vectors â1, . . . , âN
with attention that incorporates the user representation eu from the
preference encoder. By doing so, the selection of important reviews
relies not only on review information, but also on the implicit feed-
back from the user making it more accurate. To fuse the information
from the two sources, we concatenate user representation eu from
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Table 1: Dataset statistics.

Dataset # Users # Items # Ratings # Review Words Density

Yelp 2013 1,631 1,633 78,966 6,844,429 2.96 × 10−2
Yelp 2014 4,818 4,194 231,163 18,324,710 1.14 × 10−2

Amazon Digital Music 5,541 3,568 64,706 2,561,491 3.27 × 10−3
Amazon Grocery and Gourmet Food 14,681 8,713 151,254 3,074,602 1.18 × 10−3

Amazon Video Games 24,383 18,672 231,780 8,385,355 5.09 × 10−4
Amazon CDs and Vinyl 75,258 64,443 1,097,592 29,254,672 2.26 × 10−4

the preference encoder with each review vector before applying
attention. Using attention weights, we then combine all reviews to
get user review representation su :

βn =W4 tanh(W3[ân ; eu ] + b3) + b4

дn =
exp(βn )∑N

n′=1 exp(βn′)

su =
N∑
n=1

дn · ân

(2)

where [x ;y] is the concatenation operation. Note that without early
fusion, once review vectors are aggregated together the information
from individual reviews is lost. So fusing at a later stage, as done in
other models [4, 13], has a disadvantage where the model has less
flexibility to focus on information from specific reviews.

Late Fusion Using the two encoders we obtain a preference
representation eu and a review representation su for each user. The
latent spaces for preference and review encoders can differ and their
contribution to the final prediction may vary, so simply concatenat-
ing the two representations together can be inadequate. To ensure
that the information from two representations is properly combined
we introduce late stage fusion. We use cross modal attention and
first map each representation to a common latent space. Attention
is then applied in this space to fuse the two representations:

αs =W5 tanh(W6su + b6) + b5

αe =W5 tanh(W7eu + b7) + b5

α̃s , α̃e = softmax(αs ,αe )
vs =Wv tanh(W6su + b6) + bv

ve =Wv tanh(W7eu + b7) + bv

vfused = α̃s · vs + α̃e · ve

(3)

where vfused is the final user representation that combines both
modalities. By sharing weightsWv and biases bv we ensure that the
two representations are mapped to a common space before fusion.
Similarly, by sharing attention weightsW5 and b5 we also ensure
that attention coefficients are mapped to the same space before
the softmax normalisation. Fusing with softmax attention has a
clear advantage over concatenation in that the model can explicitly
decide how much weight is given to each representation.

Two-Headed Decoder As we discussed, autoencoder models
tend to exhibit excessive bias towards popular items. To address
this problem we leverage the NCE framework. The NCE objective
aims to increase the likelihood of observed interactions, while mini-
mizing it for negative samples drawn from a popularity-based noise

distribution q [6]:

argmin
θ

−
∑
i
ru,i

[
logp(ru,i = 1)+Eq(i′)[logp(ru,i′ = 0)]

]
(4)

where θ is the set of free-parameters to be learned. Both probabili-
ties are modelled using the decoder:

p(ru,i = 1) = σ (r̃u,i ;θ ) and p(ru,i′ = 0) = 1 − σ (r̃u,i′ ;θ ) (5)

where r̃u,i is the reconstructed interaction, and σ is the sigmoid
function. Combining Equations 4 and 5 we can solve for the recon-
structed matrix R̃ analytically [25, 29] by noting that:

∂ℓ

∂r̃u,i
= σ (−r̃u,i ) −

|r:,i |∑
i′ |r:,i′ |

σ (r̃u,i ) (6)

where ℓ is the loss in Equation 4. As a result, the optimal solution
r∗u,i for the observed interaction is:

r∗u,i = log
∑
i′ |r:,i′ |

|r:,i |
∀ru,i = 1 (7)

and for the unobserved interactions the optimal solution is simply:

r∗u,i = 0 ∀ru,i = 0 (8)

We build on this framework and use a two-headed decoder that is
optimized for both reconstruction and NCE losses simultaneously.
We hypothesize that the analytic NCE solution in Equation 7 can
be used as an effective way to “de-popularize” the representations
learned by the encoders, and can also serve as a form of regulari-
sation. Analogous to reconstruction loss, we also use the squared
error objective in the NCE head but with r∗u,i as the target. Em-
pirically we demonstrate that adding this loss does decrease the
popularity bias making recommendations more personalized and
improving accuracy (see Section 4.7).

As seen in Figure 1, each decoder head takes as input the fused
representation vfused, transforms it with a two-layer MLP and
passes it to the target loss for each head. The NCE head aims to
minimize the difference between decoder reconstruction and the
analytic NCE solution from Equation 7:

LNCE
u =

r∗u, : − hnce(vfused)

2 (9)

where hnce is the NCE decoder. Similarly, the reconstruction head
is optimized with the mean squared error (MSE) reconstruction
objective:

LMSE
u =

ru, : − hmse(vfused)

2 (10)

wherehmse is theMSE decoder. During trainingwe linearly combine
the two losses:

L =
∑
u

LMSE
u + LNCE

u + λ ∥θ ∥2 (11)
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Table 2: Model performance on the Yelp 2013 dataset.

model R-Precision NDCG Precision@5 Precision@20 Precision@50 Recall@5 Recall@20 Recall@50
AutoRec 0.0187±0.0017 0.0632±0.0019 0.0191±0.0016 0.0134±0.0008 0.0100±0.0005 0.0296±0.0006 0.0842±0.0010 0.1498±0.0014
CDAE 0.0183±0.0017 0.0637±0.0019 0.0194±0.0016 0.0136±0.0009 0.0101±0.0005 0.0300±0.0006 0.0843±0.0009 0.1538±0.0013
CML 0.0128±0.0017 0.0411±0.0018 0.0139±0.0016 0.0089±0.0009 0.0064±0.0005 0.0214±0.0005 0.0519±0.0009 0.0927±0.0012

Baselines VAE-CF 0.0265±0.0017 0.0780±0.0019 0.0253±0.0016 0.0164±0.0009 0.0117±0.0005 0.0393±0.0005 0.1016±0.0010 0.1769±0.0014
WRMF 0.0210±0.0017 0.0653±0.0018 0.0202±0.0016 0.0133±0.0008 0.0101±0.0005 0.0304±0.0005 0.0827±0.0010 0.1524±0.0014
TARMF 0.0270±0.0017 0.0868±0.0019 0.0261±0.0016 0.0180±0.0009 0.0127±0.0004 0.0420±0.0005 0.1135±0.0010 0.1971±0.0014
GATE 0.0223±0.0017 0.0894±0.0019 0.0236±0.0016 0.0178±0.0009 0.0140±0.0004 0.0404±0.0005 0.1146±0.0010 0.2155±0.0014

Our Model TAFA 0.0343±0.0017 0.0995±0.0018 0.0304±0.0016 0.0194±0.0009 0.0144±0.0005 0.0495±0.0007 0.1223±0.0009 0.2232±0.0014

Table 3: Model performance on the Yelp 2014 dataset.

model R-Precision NDCG Precision@5 Precision@20 Precision@50 Recall@5 Recall@20 Recall@50
AutoRec 0.0187±0.0008 0.0648±0.0017 0.0182±0.0006 0.0129±0.0004 0.0095±0.0002 0.0308±0.0003 0.0859±0.0006 0.1551±0.0008
CDAE 0.0166±0.0007 0.0581±0.0017 0.0171±0.0005 0.0115±0.0004 0.0086±0.0004 0.0286±0.0003 0.0775±0.0006 0.1390±0.0007
CML 0.0147±0.0007 0.0483±0.0017 0.0148±0.0005 0.0099±0.0004 0.0073±0.0004 0.0244±0.0003 0.0628±0.0006 0.1127±0.0007

Baselines VAE-CF 0.0170±0.0008 0.0604±0.0017 0.0173±0.0006 0.0120±0.0004 0.0090±0.0004 0.0285±0.0003 0.0794±0.0006 0.1432±0.0007
WRMF 0.0267±0.0008 0.0861±0.0017 0.0258±0.0005 0.0173±0.0005 0.0120±0.0004 0.0452±0.0002 0.1185±0.0006 0.1993±0.0008
TARMF 0.0272±0.0008 0.0884±0.0017 0.0263±0.0005 0.0176±0.0006 0.0125±0.0004 0.0451±0.0004 0.1170±0.0006 0.2060±0.0008
GATE 0.0221±0.0008 0.0811±0.0016 0.0216±0.0005 0.0158±0.0006 0.0119±0.0002 0.0381±0.0004 0.1084±0.0006 0.1967±0.0008

Our Model TAFA 0.0319±0.0008 0.0990±0.0017 0.0307±0.0005 0.0196±0.0002 0.0138±0.0004 0.0528±0.0003 0.1298±0.0006 0.2266±0.0008

Table 4: Model performance on the Amazon Digital Music dataset.

model R-Precision NDCG Precision@5 Precision@20 Precision@50 Recall@5 Recall@20 Recall@50
AutoRec 0.0152±0.0020 0.0612±0.0021 0.0138±0.0016 0.0087±0.0008 0.0062±0.0004 0.0376±0.0005 0.0938±0.0020 0.1658±0.0025
CDAE 0.0063±0.0016 0.0372±0.0021 0.0051±0.0010 0.0048±0.0007 0.0039±0.0004 0.0159±0.0005 0.0583±0.0020 0.1137±0.0023
CML 0.0117±0.0020 0.0379±0.0023 0.0085±0.0010 0.0050±0.0008 0.0035±0.0004 0.0259±0.0005 0.0570±0.0021 0.0950±0.0025

Baselines VAE-CF 0.0374±0.0020 0.1074±0.0023 0.0274±0.0016 0.0149±0.0008 0.0092±0.0004 0.0806±0.0005 0.1640±0.0020 0.2450±0.0025
WRMF 0.0357±0.0020 0.1150±0.0022 0.0264±0.0016 0.0153±0.0007 0.0100±0.0004 0.0805±0.0005 0.1765±0.0019 0.2820±0.0023
TARMF 0.0393±0.0018 0.1210±0.0022 0.0314±0.0016 0.0163±0.0008 0.0102±0.0004 0.0944±0.0005 0.1870±0.0020 0.2855±0.0025
GATE 0.0543±0.0020 0.1557±0.0023 0.0395±0.0016 0.0205±0.0008 0.0126±0.0004 0.1227±0.0004 0.2418±0.0019 0.3572±0.0025

Our Model TAFA 0.0646±0.0020 0.1723±0.0022 0.0441±0.0016 0.0227±0.0008 0.0130±0.0004 0.1366±0.0005 0.2674±0.0020 0.3767±0.0025

where θ is the full set of parameters to be learned and λ is weight
penalty. The gradients from each head are combined and back-
propagated through the entire architecture to review token embed-
dings that are also updated during training. At inference, we use
the reconstruction from the MSE decoder head to make predictions.
We find that this gives better accuracy than combining the predic-
tions from the two decoders as the NCE head is used primarily for
de-biasing and regularisation.

4 EXPERIMENTS
We evaluate the performance of our approach on six real-wold
datasets, and compare to both classic collaborative filteringmethods
and leading recent deep learning approaches. We conduct an exten-
sive ablation study to investigate how different hyper-parameters
and modules affect recommendation accuracy in our model. To eval-
uate the effect of the NCE objective we compute popularity bias for
all models and analyse the level of personalisation. Finally, we con-
duct a qualitative investigation by tracing attention weights back
to the review text and visualising parts that the model is focusing
on.

4.1 Datasets and Evaluation Metrics
We use two Yelp1 and four Amazon2 datasets to benchmark model
performance. All datasets have ratings and user reviews and vary

1https://www.yelp.com/dataset
2http://jmcauley.ucsd.edu/data/amazon

in size, domain and sparsity, giving a broad view on the applica-
bility of our approach. The summary statistics of each dataset are
shown in Table 1. For each of the six datasets, we first randomly
split it into training, validation and test sets with 80%, 10% and
10% splits. To simulate implicit feedback we follow existing liter-
ature [14, 19], and set ratings greater than the threshold (three)
to 1 and those less than or equal to the threshold to 0. We tune
hyper-parameters of all methods on the validation set, and evalu-
ate final performance on the test set by calculating four standard
evaluation metrics: R-Precision [17], NDCG [17], Precision@K and
Recall@K with K ∈ {5, 20, 50}. All results are reported with a 95%
confidence interval. R-precision is order insensitive and uses the
number of interaction for each user as relevance cut-off. NDCG
is order sensitive and discounts each recommendation by its rank.
Precision@K/Recall@K are similar to R-precision but use a fixed
cut-off K for each user. Together these metrics evaluate different as-
pects of the recommendation task and provide a thorough analysis
of model performance.

4.2 Baseline Models
Recommender systems has been a popular research area and many
approaches have been proposed. Despite significant progress, fac-
torisation methods still provide highly competitive performance [5],
andwe useWeighted RegularizedMatrix Factorization (WRMF) [10]
and Collaborative Metric Learning (CML) [8] as our benchmarks
from this category. Autoencoder models have also shown highly

https://www.yelp.com/dataset
http://jmcauley.ucsd.edu/data/amazon
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Table 5: Model performance on the Amazon Grocery and Gourmet Food dataset.

model R-Precision NDCG Precision@5 Precision@20 Precision@50 Recall@5 Recall@20 Recall@50
AutoRec 0.0079±0.0007 0.0328±0.0010 0.0059±0.0005 0.0041±0.0004 0.0033±0.0003 0.0149±0.0005 0.0462±0.0012 0.0980±0.0019
CDAE 0.0078±0.0006 0.0329±0.0010 0.0056±0.0005 0.0042±0.0004 0.0033±0.0003 0.0141±0.0005 0.0476±0.0014 0.0977±0.0018
CML 0.0109±0.0007 0.0415±0.0011 0.0089±0.0004 0.0054±0.0004 0.0039±0.0003 0.0259±0.0005 0.0631±0.0013 0.1120±0.0019

Baselines VAE-CF 0.0125±0.0007 0.0534±0.0011 0.0112±0.0005 0.0074±0.0004 0.0050±0.0003 0.0333±0.0005 0.0863±0.0014 0.1442±0.0017
WRMF 0.0219±0.0007 0.0598±0.0011 0.0144±0.0005 0.0076±0.0004 0.0046±0.0003 0.0454±0.0005 0.0906±0.0014 0.1364±0.0019
TARMF 0.0162±0.0007 0.0596±0.0011 0.0124±0.0004 0.0082±0.0004 0.0055±0.0003 0.0373±0.0005 0.0958±0.0014 0.1567±0.0018
GATE 0.0173±0.0007 0.0716±0.0011 0.0153±0.0005 0.0096±0.0004 0.0064±0.0003 0.0479±0.0005 0.1188±0.0014 0.1916±0.0019

Our Model TAFA 0.0239±0.0007 0.0762±0.0011 0.0166±0.0005 0.0102±0.0004 0.0063±0.0003 0.0508±0.0005 0.1221±0.0014 0.1900±0.0019

Table 6: Model performance on the Amazon Video Games dataset.

model R-Precision NDCG Precision@5 Precision@20 Precision@50 Recall@5 Recall@20 Recall@50
AutoRec 0.0061±0.0002 0.0265±0.0003 0.0048±0.0003 0.0031±0.0002 0.0024±0.0001 0.0154±0.0001 0.0401±0.0002 0.0777±0.0002
CDAE 0.0061±0.0002 0.0270±0.0002 0.0049±0.0003 0.0032±0.0002 0.0024±0.0001 0.0163±0.0001 0.0424±0.0001 0.0788±0.0002
CML 0.0125±0.0002 0.0392±0.0003 0.0070±0.0003 0.0041±0.0002 0.0033±0.0002 0.0228±0.0002 0.0523±0.0002 0.1062±0.0002

Baselines VAE-CF 0.0214±0.0002 0.0709±0.0003 0.0156±0.0002 0.0088±0.0002 0.0056±0.0001 0.0506±0.0002 0.1130±0.0002 0.1794±0.0002
WRMF 0.0194±0.0002 0.0695±0.0003 0.0150±0.0002 0.0085±0.0002 0.0056±0.0001 0.0492±0.0002 0.1098±0.0002 0.1787±0.0002
TARMF 0.0205±0.0002 0.0655±0.0003 0.0141±0.0003 0.0079±0.0003 0.0052±0.0001 0.0462±0.0002 0.1024±0.0002 0.1637±0.0002
GATE 0.0216±0.0002 0.0738±0.0003 0.0152±0.0004 0.0089±0.0002 0.0058±0.0001 0.0513±0.0002 0.1172±0.0002 0.1887±0.0002

Our Model TAFA 0.0288±0.0003 0.0897±0.0003 0.0201±0.0004 0.0109±0.0002 0.0068±0.0001 0.0665±0.0001 0.1435±0.0002 0.2178±0.0002

Table 7: Model performance on the Amazon CDs and Vinyl dataset.

model R-Precision NDCG Precision@5 Precision@20 Precision@50 Recall@5 Recall@20 Recall@50
AutoRec 0.0018±0.0001 0.0079±0.0002 0.0016±0.0003 0.0013±0.0002 0.0010±0.0001 0.0033±0.0001 0.0117±0.0002 0.0231±0.0002
CDAE 0.0017±0.0001 0.0080±0.0001 0.0015±0.0003 0.0012±0.0002 0.0010±0.0001 0.0032±0.0001 0.0116±0.0002 0.0233±0.0002
CML 0.0161±0.0001 0.0490±0.0002 0.0128±0.0003 0.0075±0.0002 0.0049±0.0001 0.0331±0.0001 0.0732±0.0001 0.1169±0.0002

Baselines VAE-CF 0.0187±0.0001 0.0522±0.0002 0.0139±0.0003 0.0076±0.0002 0.0047±0.0001 0.0385±0.0001 0.0791±0.0002 0.1188±0.0002
WRMF 0.0135±0.0001 0.0434±0.0002 0.0113±0.0003 0.0069±0.0002 0.0046±0.0001 0.0278±0.0001 0.0661±0.0002 0.1067±0.0003
TARMF 0.0175±0.0001 0.0503±0.0002 0.0138±0.0003 0.0077±0.0002 0.0049±0.0001 0.0353±0.0001 0.0751±0.0002 0.1165±0.0002
GATE 0.0216±0.0001 0.0586±0.0002 0.0165±0.0003 0.0091±0.0002 0.0056±0.0001 0.0439±0.0001 0.0894±0.0002 0.1284±0.0002

Our Model TAFA 0.0224±0.0001 0.0662±0.0002 0.0171±0.0003 0.0098±0.0002 0.0061±0.0001 0.0456±0.0001 0.1012±0.0001 0.1559±0.0002

competitive performance on implicit feedback. Among the many
proposed models, the most relevant to our work are the Collabora-
tive Denoising Autoencoder (CDAE) [26], Variational Autoencoder
for Collaborative Filtering (VAE-CF) [12] and AutoRec [20]. Since
our model incorporates text review information we also benchmark
Topical Attention Regularized Matrix Factorization (TARMF) [13], a
state-of-the-art matrix factorization model that uses textual feature
attention to learn user and item representations. Finally, we com-
pare against the Gatted Attentive Autoencoder (GATE) [14], as it is
the model closest to our work which incorporates both autoencoder
and review information. In total, we compare to seven baselines
that cover a wide spectrum of proposed methods in this area.

4.3 Hyper-parameter Settings
We tune all the hyper-parameters on the validation set via grid
search. To ensure fair comparison all important parameters such as
embedding dimensions and regularisation are swept over the same
grid for each model. For all models we search the dimension for
user and item embeddings in {50, 100, 200, 500}, and L2 regulariza-
tion weight penalty in {1e−7, 1e−6, . . . , 1e4}. For WRMF we select
the loss weighting in {−0.5,−0.4, . . . ,−0.1} ∪ {0, 0.1, 1, 10, 100}.
The corruption parameter for CDAE and VAE-CF is chosen in
{0.1, 0.2, . . . , 0.5}, and the confidencematrix coefficient for GATE is
chosen in {5, 10, 15, 20}. The hidden dimension for review encoder
in TARMF and our model is selected from {32, 64, 128, 256}. Finally,
we choose the fusion dimension for TAFA in {32, 64, 128, 256, 512}

and discuss the effect of this parameter below. All training and
parameter selection is done on a workstation with 40 Intel Xeon
2.20GHz CPUs, 256GB RAM and Titan V GPU.

4.4 Performance Comparison
The performance of all methods on each of the six datasets is shown
in Tables 2-7. From the tables we see that TAFA outperforms all
baselines on all datasets and metrics except Amazon Grocery and
Gourmet Food. On the Amazon Grocery and Gourmet Food dataset
GATE performs better on Precision and Recall at higher truncation
K = 50. These results demonstrate that TAFA has highly robust
and stable performance beating leading baselines by a wide margin
in many cases. We also observe that the performance of TARMF
and GATE are generally better than other baselines including VAE-
CF and WRMF. This indicates that incorporating text reviews can
benefit the recommendation task significantly due to the extra
preference information contained in them. Performance of TAFA
is generally strongest on the two largest datasets Amazon Video
Games and Amazon CDs. Fusion and encoder-decoder modules
together with word embeddings and contextual LSTMs have con-
siderable number of free parameters. Strong performance on larger
datasets suggests that our model performs best when there is suffi-
cient data to properly train all components. We anticipate a further
performance gain on larger datasets and leave this investigation
for future work.
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(a) Amazon Digital Music dataset.
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(b) Amazon CDs and Vinyl dataset.

Figure 2: Recall plots for TAFA on two Amazon datasets as dimension of vfused is varied from 32 to 512. Error bars are too
small to be shown.
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Figure 3: TAFA ablation NDCG results on four datasets. BASE mode has preference encoder and preference (MSE) decoder
only. BASE + NCE adds NCE decoder head, BASE + REVIEW adds review encoder, and BASE + NCE + REVIEW has both NCE
decoder and review encoder. Both BASE +REVIEWand BASE +NCE +REVIEWuse concatenation instead of fusion to combine
representations from the two encoders. BASE + NCE + REVIEW thus differs from TAFA in that TAFA applies early and late
stage fusion to combine the two modalities. Results on other datasets and metrics show similar trends.

4.5 Fusion Dimension
The dimension of vfused (see Equation 3) can be viewed as an in-
formation bottleneck after merging representations from implicit
feedback and user reviews. Both decoders receive vfused as input
so its size determines the amount of information that is available
for decoding and consequently for prediction. To understand how
the size of this bottleneck affects performance we plot Recall@5,
Recall@20 and Recall@50 as the fusion dimension is varied in {32,
64, 128, 256, 512}. Results on the Amazon Digital Music and Amazon
CDs and Vinyl datasets are shown in Figure 2. We see a general
trend where model performance improves as we increase the di-
mensionality of the fused representation. On the smaller Amazon
Digital Music dataset, the performance increases up to dimension
256 and then starts to drop. This can be potentially attributed to
over-fitting as there isn’t enough data to properly utilize the in-
crease in model capacity. On the other hand, on the larger Amazon
CDs and Vinul dataset the performance continues to improve even
at 512 dimensions although at a smaller rate.

4.6 Ablation Study
To quantify the contribution of each module in our architecture
we conduct an extensive ablation study. We start with the BASE
model which is a preference encoder with a single reconstruction
decoder that optimises the MSE objective. This model is similar to
AutoRec [20] with the addition of dropout on inputs to improve reg-
ularization. Next we consider BASE + NCE, where second decoder
head is added to the model with the NCE objective. In parallel, we
also consider BASE + REVIEW, where review encoder is added to
the model. Note that in BASE + REVIEW we don’t apply fusion
and instead concatenate the outputs of the two encoders. Finally,
in BASE + NCE + REVIEW we add both review encoder and NCE
decoder head but still with concatenation instead of fusion. The
difference between the full TAFA model and BASE + NCE + RE-
VIEW is thus the addition of early and late stage fusion modules
that combine the two modalities.

NDCG results for each model on four datasets are shown in Fig-
ure 3. We see that the addition of the NCE head in the BASE + NCE
model significantly improves NDCG across all datasets, increasing
performance by 2 to 4 points. Adding review encoder instead of
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Figure 4: Amazon Video Games popularity distribution of the top-10 items recommended by each model across all users. X-
axis represents item popularity (number of user interactions) and larger values indicatemore popular items.Models are sorted
according to the median of their popularity distribution. For our approach we show both the full TAFA model and ablated
BASE + REVIEWmodel (see Section 4.6) which excludes the NCE decoder head.
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Figure 5: Yelp 2013 dataset, users are partitioned evenly into ten groups by number of interactions. Figure 5a shows the aver-
age number of interactions for each group. Figure 5b shows the average same-group retrieval score for each group. The score
is computed by querying top-10 closest neighbors for each user using the Euclidean distance in the preference encoder em-
bedding space eu . We then compute the percentage of retrieved neighbors that are in the same group as the query user, and
average these percentages across all users in each group.

NCE head in the BASE + REVIEW model gives an even larger gain
particularly on the much sparser Amazon datasets. This further
validates our hypothesis that the additional preference information
from reviews can be highly beneficial in the sparse setting. Combin-
ing NCE head and review encoder in the BASE + NCE + REVIEW
model provides further gain in performance which is amplified by
the early and late stage fusion in the full TAFA model. The gain
from fusion indicates that concatenation is not optimal for combin-
ing representations from multiple modalities, and properly fusing
them is important.

4.7 Personalization

A good indicator of the level of personalization that a model
provides is the popularity of items that it recommends. Figure 4
shows the popularity distribution of the top-10 recommended items

by everymodel across all users on the Amazon Video Games dataset.
Here, X-axis represents number of user interactions for each item,
and larger values indicate more popular items. We see that AutoRec,
CDAE andCML exhibit strong popularity bias and achieve relatively
poor performance. In contrast, other baselines such as GATE and
VAE-CF, mainly recommend less popular items with sharp peaks
around very unpopular items. TAFA on the other hand, instead of
being extreme on either end of the popularity spectrum, diversifies
its recommendations in a more even way and is able to capture
user preference for both popular and unpopular items. The balance
between recommending popular and unpopular items can thus be
one of the key reasons for strong performance of TAFA.

In addition to TAFA, we also plot popularity distribution for the
ablated BASE + REVIEW model (see Section 4.6) that excludes the
NCE decoder head. We see that, compared to the preference only
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- This CD is greatly appreciated and you should get it. Great to listen to while you’re dancing and singing with the music.

- I like these CD that he has in Amazon .

- I have just learned about this man as a favorite singer and well learn more about him in the years I have left on this planet.

- Did like this good. I will look and see what I think of him singing and the songs that he sings .

Figure 6: Amazon Digital Music short reviews from the same user. We show both word and review level (colored box next to
each review) attention weights for each review. Darker color represents larger attention weights.

autoencoder model AutoRec, BASE + REVIEW shifts its recommen-
dations towards less popular items. This indicates that incorporat-
ing review information makes the model more personalised. At
the same time, we also observe that by adding the NCE decoder
head, the full TAFA model shifts even more towards less popular
items as compared to BASE + REVIEW and significantly improves
performance as shown in Figure 3. This indicates that the NCE loss
can effectively de-popularise the model further and improve the
quality of recommendations.

4.8 Embedding Visualization
To provide further insight into the NCE objective and why it im-
proves recommendations, we analyse the embedding space vfused
learned with and without the NCE decoder. As mentioned earlier,
we hypothesize that the NCE objective can better regularize the
embeddings by de-popularizing them. To verify this hypothesis
we cluster users in the learned embedding space and then analyze
the clusters. Recent work has found that the number of interac-
tions in user profile correlates directly with preference for popular
items [11]. Consequently, we first evenly partition users into ten
groups based on the number of items they interacted with. We
use the Yelp 2013 dataset and the average number of interactions
in each user group is shown in Figure 5a. There is a significant
variation between the groups with fewer than 10 interactions on
average in the first group and more than 70 in the last one.

After grouping, we query the top-10 closest neighbors for each
user using the Euclidean distance in the preference encoder em-
bedding space eu . We then compute the percentage of retrieved
neighbors that are in the same group as the query user, and average
these percentages across all users in each group. This is equivalent
to computing user-based retrieval Precision@10 for each group. To
remove the effects of other components we use the ablated models
BASE and BASE + NCE (see Section 4.6) that only have the pref-
erence encoder. Note that for both models the fused embedding
vfused reduces to the preference encoder user embedding eu and
no review information is used. The results for this experiment are
shown in Figure 5b. We see that embeddings from BASE + NCE
have significantly higher same-group retrieval rates for all groups
except the first one. First group contains near cold start users and
both methods are able to successfully cluster them together. The
middle groups have relatively low scores since the difference in
the number of interactions is not significant between them as seen
from Figure 5a. However, BASE + NCE scores are still consider-
ably higher than BASE alone with more than 3x increase for some
groups. Finally, similar pattern is observed for the upper groups

where BASE + NCE again improves in every group, and in particu-
lar is able to accurately cluster most active users in the last group.
These results indicate that adding the NCE decoder head enables
the model to learn embeddings that better cluster users by the level
of activity which improves personalisation.

4.9 Qualitative Analysis
By tracing the attention weights back to review text we can vi-
sualise parts that the model is focusing on. This can be used to
explain generated recommendations and gain further insight into
user preferences. Our model has both review and word level at-
tention. Combined, the two attention modules provide both global
view into reviews that the model finds useful and local view on spe-
cific information that is used from each review. We show both types
of attention in Figure 6. The reviews are taken from the Amazon
Digital Music dataset and belong to the same user. The colors repre-
sent attention weights with darker color indicating larger attention
weight.

We see that for review level attention the model is focusing
more on reviews 1 and 3 than 2 and 4. Both reviews 1 and 3 are
longer and have specific preference reasons whereas, reviews 2 and
4 are relatively vague and ambiguous. In particular, in review 4 the
reviewer expresses an undecided opinion about an artist. We also
see that for word level attention the model focuses on words such
as “great(ly)”, “favorite” and “like” that express direct preference. In
review 1 some attention is also put on the reasons why the reviewer
likes a particular CD such as “singing” and “dancing”. This example
demonstrates that by combining review and word level attention
themodel can effectively extract relevant information frommultiple
user reviews that can be ambiguous and noisy.

While short reviews are relatively easy to model, longer review
pose a bigger challenge as they often contain multiple opinions that
need to be distilled. Figure 7 shows word level attention on three
longer reviews from different users on the Amazon Digital Music
dataset. We still see that the model is able to pick up informative
preference words such as “wonderful”, “pleasing”, “nice” and “fresh”
throughout the reviews. In addition, some of the attention is focused
on the target artist in each review such as “Mr Neil Diamond” and
“Teedra”. Combining this information themodel can infer preference
for these artists and incorporate it into user embedding to improve
recommendations.

5 CONCLUSION
In this work, we present a novel two-headed attention fusion au-
toencoder model that leverages both user-generated reviews and
implicit feedback to make recommendations. We introduce novel
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- This is an all out well written and well composed effort by Mr Neil Diamond . This is a world class superstar who continues to delight as

well as entertain his audiences for almost 35 years . “Velvet Gloves and Spit” is a wonderful collection of songs pleasing to the senses . “A

modern day version of love” is as smooth as silk while “Honey Drippin times" is as refreshing as an ice cold glass of lemonade on a hot summer day .

The only down side of this CD is the naive “Pot Smoker song”. Although the interviews here are a nice personal touch with thought provoking insight ,

the lyrics throughout the CD will really make you stop and think.

- This is just another great album that got no promotion . The CDs out there that are receiving good promotion are garbage . Teedra is a very

unique artist and I hope she stays in the game for a long time. This album worth listening to and buying.

- My dad bought me an 8 track tape of “silk degrees through columbia house ” when I was eleven years old . Needless to say I was immediately hooked

on much of the material . Hearing the song “lowdown” is what made me want the 8 track . I bought the CD many many years later and just as

before the music is as fresh and vibrant as that first day I listened to the 8 track .

Figure 7: Amazon Digital Music examples of long reviews from different users with word level attention. Darker color repre-
sents larger attention weights.

multi-stage fusion module to combine the information from the
two modalities, and utilize two-headed decoder with MSE and NCE
losses to decode the fused representation. Extensive ablation study
demonstrates that each added component improves performance,
and the NCE decoder head effectively de-popularises the model
making it effective for both popular and unpopular items. Exten-
sive empirical evaluation on six real-world datasets from Yelp and
Amazon show that our approach consistently outperforms leading
baselines. Future works involves additional investigation into the
NCE objective and other data sources such as item images, video
and audio.
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